What to do today (Nov 9, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)
 - ▶ 3.3.1 Maximum Likelihood Estimation
 - ▶ 3.3.2 Likelihood-Based Tests
 - ▶ 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11

3.3.1 Maximum Likelihood Estimation (MLE): Procedure

Recall

Likelihood Function.

• Let the joint distribution (pmf, or pdf) of rvs X_1, \ldots, X_n be $f(x_1, \ldots, x_n; \theta)$.

When x_1, \ldots, x_n are the observed values (realizations) of the rvs, the **likelihood function** of θ given the data is

$$L(\theta \mid \text{ data }) = f(x_1, \dots, x_n; \theta)$$

- interpretation: It's an overall measure on how likely the observed sample is the current set with the value of θ.
- Often X₁,..., X_n are iid observations (a random sample) from the population with distribution f(x; θ), θ ∈ Ω. If the observed values are x₁,..., x_n, then the likelihood function is

$$L(\theta \mid \text{ data }) = \prod_{i=1}^{n} f(x_i; \theta) = f(x_1; \theta) \dots f(x_n; \theta).$$

Maximum Likelihood Estimator (MLE):

• The **MLE** $\hat{\theta}$ is the value of the population parameter θ that maximizes the likelihood function:

$$L(\hat{ heta} \mid ext{ data }) = \max_{ heta \in \Omega} L(heta \mid ext{ data }).$$

- interpretation: The MLE $\hat{\theta}$ gives the parameter value that agrees most closely with the observed sample (the data).
- Often used procedures:

(1) to maximize $\log L(\theta)$

(2) to obtain the solution to the *likelihood estimating equation* $\partial \log L(\theta) / \partial \theta = 0$

Example 3.7 Let X_1, \ldots, X_n be a random sample from the Bernoulli distn $B(1, \theta)$. What is the MLE of θ ?

Example 3.8 Let iid $X_1, \ldots, X_n \sim f(x; \theta) = \frac{e^{-(x-\theta)}}{(1 + e^{-(x-\theta)})^2}$ for $x \in (-\infty, \infty)$ and $\theta \in (-\infty, \infty)$ (*Logistic Distribution*). What is the MLE of θ ?

3.3.1 Maximum Likelihood Estimation (MLE): Rationale

Assumptions. (Regularity Conditions) Consider $\{f(x; \theta) : \theta \in \Omega\}$.

(R0) If $\theta \neq \theta^*$, $f(\cdot; \theta) \neq f(\cdot; \theta^*)$. (R1) { $f(x; \theta) : \theta \in \Omega$ } have common support. (R2) θ_0 is an interior point in Ω .

Theorem. Consider rv $X \sim f(x; \theta)$ for $\theta \in \Omega$ with a random sample X_1, \ldots, X_n . If θ_0 is the true value of θ , provided (R0)-(R2), for $\theta \in \Omega$

$$\lim_{n\to\infty} P_{\theta_0} \big[L(\theta_0 \mid X_1,\ldots,X_n) > L(\theta \mid X_1,\ldots,X_n) \big] = 1.$$

Definition. (MLE) With the random sample X_1, \ldots, X_n , $\widehat{\theta} = \widehat{\theta}(X_1, \ldots, X_n)$ is the MLE if $\widehat{\theta} = \operatorname{argmax}_{\theta \in \Omega} L(\theta \mid X_1, \ldots, X_n)$.

3.3.1 Maximum Likelihood Estimation (MLE): Properties

Let iid $X_1, \ldots, X_n \sim f(x; \theta), \theta \in \Omega$.

Theorem. (Invariance) Let iid $X_1, \ldots, X_n \sim f(x; \theta), \theta \in \Omega$. If $\widehat{\theta}$ is the MLE of θ , $\widehat{\eta} = g(\widehat{\theta})$ is the MLE of $\eta = g(\theta)$. *Proof:* Note that

$$\max_{\eta} L(\eta | data) = \max_{\theta: \eta = g(\theta)} L(g(\theta) | data) = L(g(\widehat{\theta}) | data).$$

Theorem. Provided (R0)-(R2) and $f(x; \theta)$ is differentiable wrt $\theta \in \Omega$, if θ_0 is the true value, the likelihood equation $\partial L(\theta) / \partial \theta = 0$ or $\partial \log L(\theta) / \partial \theta = 0$ has a solution $\hat{\theta}_n$ such that $\hat{\theta}_n \xrightarrow{P} \theta_0$.

 \implies If the MLE of θ is the solution, it is *consistent*.

3.3.1 Maximum Likelihood Estimation (MLE): Properties

Assumptions. (Additional Regularity Conditions) Consider $\{f(x; \theta) : \theta \in \Omega\}.$

(R3) $f(x;\theta)$ is twice differentiable wrt θ . (R4) $E\left[\partial \log f(X;\theta)/\partial\theta\right]$ and $E\left[\partial^2 \log f(X;\theta)/\partial\theta^2\right]$ exist. (R5) $f(x;\theta)$ is three times differentiable wrt θ . $\left|\partial^3 \log f(X;\theta)/\partial\theta^3\right| \le M(x)$ for $\theta \in (\theta_0 - c, \theta_0 + c)$ and all x in the support of X, and $E_{\theta_0}\left[M(X)\right] < \infty$.

3.3.1 Maximum Likelihood Estimation (MLE): Properties

Definition. (Fisher Information) The Fisher information is $FI(\theta) = E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^2\right]$, provided the expectation exists.

Note that

$$FI(\theta) = Var\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right) = -E\left[\frac{\partial^2 \log f(X;\theta)}{\partial \theta^2}\right]$$

Theorem (Asymptotic Normality) Provided (R0)-(R5) and $0 < FI(\theta_0) < \infty$, the solution $\hat{\theta}_n$ to the likelihood equation $\partial L(\theta) / \partial \theta = 0$ or $\partial \log L(\theta) / \partial \theta = 0$ satisfies $\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{D} N(0, FI(\theta_0)^{-1}).$ *Proof:* Expand $\partial \log L(\theta) / \partial \theta = I'(\theta)$ into the Taylor series of order 2 about θ_0 and evaluate it at $\hat{\theta}_n$:

$$I'(\widehat{\theta}_n) = I'(\theta_0) + (\widehat{\theta}_n - \theta_0)I''(\theta_0) + \frac{1}{2}(\widehat{\theta}_n - \theta_0)^2I'''(\theta_n^*),$$

 $heta_n^*$ in between $heta_0$ and $\widehat{ heta}_n$. Note that $I^{'}(\widehat{ heta}_n)=0$,

$$\frac{1}{\sqrt{n}}I^{'}(\theta_{0}) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\frac{\partial\log f(X_{i};\theta_{0})}{\partial\theta} \xrightarrow{D} N(0,FI(\theta_{0}))$$

by CLT, and

$$-\frac{1}{n}I^{''}(\theta_0) = -\frac{1}{n}\sum_{i=1}^n \frac{\partial^2 \log f(X_i;\theta_0)}{\partial \theta^2} \xrightarrow{P} FI(\theta_0).$$

Further $\left|-\frac{1}{n}I^{'''}(\theta_n^*)\right| \leq \frac{1}{n}\sum_{i=1}^n M(X_i)$, and thus $I^{'''}(\theta_n^*)/n$ is bounded in probability by (R5). Combining the results yields the theorem.

3.3.1 Maximum Likelihood Estimation (MLE): Cramer-Rao Lower Bound and Efficiency

Theorem. (Cramer-Rao Lower Bound) Let iid $X_1, \ldots, X_n \sim f(x; \theta)$ for $\theta \in \Omega$. Assume (R0)-(R4). Let $Y = u(X_1, \ldots, X_n)$ be a statistic and $E(Y) = k(\theta)$. Then

$$Var(Y) \geq rac{\left(k'(heta)
ight)^2}{nFI(heta)}.$$

 \implies $Var(Y) \ge \frac{1}{nFI(\theta)}$ if Y is an unbiased estimator of θ .

Definition. An unbiased estimator Y with a random sample of size *n* is called **efficient** if $Var(Y) = \frac{1}{nFI(\theta)}$.

 \implies The MLE $\hat{\theta}$ is asymptotically efficient.

Example 3.9 (Beta Distribution) Let X_1, \ldots, X_n be a random sample from $f(x; \theta) = \theta x^{\theta-1}$ for 0 < x < 1 and $\theta \in \Omega = (0, \infty)$.

3.3.1 Maximum Likelihood Estimation (MLE): Multiparameter Case Likelihood Function.

Let the joint distribution (pmf, or pdf) of rvs X₁,..., X_n be f(x₁,..., x_n; θ) with θ = (θ₁,..., θ_K)' ∈ Ω ⊆ R^K. When x₁,..., x_n are the observed values (realizations) of the rvs, the **likelihood function** of θ given the data is

$$L(\boldsymbol{ heta} \mid \text{ data }) = f(x_1, \dots, x_n; \boldsymbol{ heta})$$

- interpretation: It's an overall measure on how likely the observed sample is the current set with the value of θ.
- Often X₁,..., X_n are iid observations (a random sample) from the population with distribution f(x; θ), θ ∈ Ω. If the observed values are x₁,..., x_n, then the likelihood function is

$$L(\theta \mid \text{ data }) = \prod_{i=1}^{n} f(x_i; \theta) = f(x_1; \theta) \dots f(x_n; \theta).$$

Maximum Likelihood Estimator (MLE):

• The **MLE** $\hat{\theta}$ is the value of the population parameter θ that maximizes the likelihood function:

$$L(\widehat{oldsymbol{ heta}}\mid ext{ data })=\max_{oldsymbol{ heta}\in\Omega}L(oldsymbol{ heta}\mid ext{ data }).$$

• interpretation: The MLE $\hat{\theta}$ gives the parameter value that agrees most closely with the observed sample (the data).

Often used procedures:

(1) to maximize $\log L(\theta)$.

(2) to obtain the solution to the *likelihood estimating equation*

 $\nabla \log L(\theta) = \partial \log L(\theta) / \partial \theta = \mathbf{0}$. (The gradian $\nabla g(\mathbf{u}) = \frac{\partial g(\mathbf{u})}{\partial \mathbf{u}}$.)

Example 3.10 Suppose iid rvs X_1, \ldots, X_n with the pdf

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta} \exp\{-(\frac{x-\alpha}{\beta})\}, & x \ge \alpha\\ 0, & elsewhere \end{cases}$$

Derive the MLE of the parameter $\theta = (\alpha, \beta)'$ for $\alpha \in (-\infty, \infty)$ and $\beta \in (0, \infty)$. Exponential distn: pdf $f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta} \exp\{-(\frac{x-\alpha}{\beta})\}, & x \ge \alpha \\ 0, & elsewhere \end{cases}$ $X = \beta T + \alpha \text{ with } T \sim NE(1)$

Generate iid x_1, \ldots, x_n from the exponential-distn with $\alpha = 0.3$ and $\beta = 0.8$: $n = 5, 5^2, 5^3, 5^4, 5^5, 5^6$ and repeat each setting 10 times to evaluate the MLE $\hat{\alpha}$ and $\hat{\beta}$

3.3.1 Maximum Likelihood Estimation (MLE): Multiparameter Case

Consider rv $X \sim f(x; \theta)$ with $\theta = (\theta_1, \dots, \theta_K)'$. **Definition.** (Fisher Information) The Fisher information is

$$\mathsf{FI}(oldsymbol{ heta}) = E\Big[\Big(\bigtriangledown \log f(X;oldsymbol{ heta})\Big)\Big(\bigtriangledown \log f(X;oldsymbol{ heta})\Big)'\Big],$$

provided the expectation exists. $FI(\theta)$ is $K \times K$, nonnegative definite.

Note that $E(\bigtriangledown \log f(X; \theta)) = 0$ and then

$$\mathsf{FI}(\boldsymbol{\theta}) = \mathsf{Var}\Big(\bigtriangledown \log f(X; \boldsymbol{\theta}) \Big) = -E\Big[\frac{\partial^2 \log f(X; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^2}\Big].$$

The (j, k)th entry of $FI(\theta)$ for $j, k = 1, \dots, K$:

$$\mathsf{FI}_{jk} = E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta_j}\right)\left(\frac{\partial \log f(X;\theta)}{\partial \theta_k}\right)\right] = Cov\left(\frac{\partial \log f(X;\theta)}{\partial \theta_j}, \frac{\partial \log f(X;\theta)}{\partial \theta_k}\right)$$

Suppose $X_1, \ldots, X_n \sim f(x; \theta)$ iid with $\theta \in \Omega \subseteq \mathcal{R}^K$.

Theorem (Asymptotic Properties) Provided (R0)-(R5) in the multiparameter case hold. Then

1. The likelihood equation $\partial \log L(\theta) / \partial \theta = \mathbf{0}$ has a solution $\hat{\theta}_n$ such that $\hat{\theta}_n \stackrel{P}{\rightarrow} \theta$. 2. For such $\hat{\theta}_n \sqrt{n}(\hat{\theta}_n - \theta) \stackrel{D}{\rightarrow} MN(\mathbf{0}, Fl(\theta)^{-1})$.

Corollary For j = 1, ..., K, the *j*th component of $\hat{\theta}_n$ satisfies

$$\sqrt{n}(\widehat{\theta}_{n,j}-\theta_j) \stackrel{D}{\rightarrow} N(0,[\mathsf{FI}(\boldsymbol{\theta})^{-1}]_{jj}).$$

Example 3.11 Consider an experiment with 3 different types of outcome and the corresponding probabilities $\theta_1, \theta_2, \theta_3$. ($\sum \theta_j = 1$). Let the 3 componets of $\mathbf{X} = (X_1, X_2, X_3)$ be the indicators of the 1st, 2nd, 3rd types: $\mathbf{X} \sim trinomial$ distn:

$$f(\mathbf{x}; \boldsymbol{\theta}) = \theta_1^{x_1} \theta_2^{x_2} \theta_3^{x_3} = \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{1 - x_1 - x_2}.$$

Fisher Information Matrix: $\nabla \log f(\mathbf{x}; \boldsymbol{\theta}) = \left(\frac{x_1}{\theta_1} - \frac{x_3}{\theta_3}, \frac{x_2}{\theta_2} - \frac{x_3}{\theta_3}\right)^T$

$$\frac{\partial^2 \log f(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_1^2} = -\frac{x_1}{\theta_1^2} - \frac{x_3}{\theta_3^2}, \quad \frac{\partial^2 \log f(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_2^2} = -\frac{x_2}{\theta_2^2} - \frac{x_3}{\theta_3^2}, \quad \frac{\partial^2 \log f(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_1 \partial \theta_2} = -\frac{x_3}{\theta_3^2}$$

The entries of $FI(\theta)$ are

F

$$\mathsf{FI}_{11} = \frac{1}{\theta_1} + \frac{1}{\theta_3}, \ \ \mathsf{FI}_{12} = \mathsf{FI}_{21} = \frac{1}{\theta_3}, \ \ \mathsf{FI}_{22} = \frac{1}{\theta_2} + \frac{1}{\theta_3}$$

MLE with $\mathbf{x}_1, \ldots, \mathbf{x}_n$: $L(\boldsymbol{\theta}) = \prod_{i=1}^n f(\mathbf{x}_i; \boldsymbol{\theta}) = \prod_{i=1}^n \theta_1^{\mathbf{x}_{1i}} \theta_2^{\mathbf{x}_{2i}} \theta_3^{\mathbf{x}_{3i}}$.

$$\log L(\theta) = \sum_{i=1}^{n} x_{1i} \log \theta_1 + \sum_{i=1}^{n} x_{2i} \log \theta_2 + \sum_{i=1}^{n} x_{3i} \log \theta_3$$

or $h = 1, 2, \ \frac{\partial \log L(\theta)}{\partial \theta_h} = \frac{\sum_{i=1}^{n} x_{hi}}{\theta_h} - \frac{\sum_{i=1}^{n} x_{3i}}{\theta_3} = 0 \Longrightarrow \widehat{\theta}_j = \frac{\sum_{i=1}^{n} x_{ji}}{n}$ for $= 1, 2, 3$

What will we do next week?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)
 - 3.3.1 Maximum Likelihood Estimation
 - 3.3.2 Likelihood-Based Tests
 - 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11