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3.2 Consistency and Limiting Distributions (Chp 5)
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3.3.1 Maximum Likelihood Estimation (MLE):
Procedure

Recall ... ...
Likelihood Function.

I Let the joint distribution (pmf, or pdf ) of rvs X1, . . . ,Xn be
f (x1, . . . , xn; θ).
When x1, . . . , xn are the observed values (realizations) of the
rvs, the likelihood function of θ given the data is

L(θ | data ) = f (x1, . . . , xn; θ)

I interpretation: It’s an overall measure on how likely the
observed sample is the current set with the value of θ.

I Often X1, . . . ,Xn are iid observations (a random sample) from
the population with distribution f (x ; θ), θ ∈ Ω. If the
observed values are x1, . . . , xn, then the likelihood function is

L(θ | data ) =
n∏

i=1

f (xi ; θ) = f (x1; θ) . . . f (xn; θ).



Maximum Likelihood Estimator (MLE):

I The MLE θ̂ is the value of the population parameter θ that
maximizes the likelihood function:

L(θ̂ | data ) = max
θ∈Ω

L(θ | data ).

I interpretation: The MLE θ̂ gives the parameter value that
agrees most closely with the observed sample (the data).

I Often used procedures:

(1) to maximize log L(θ)
(2) to obtain the solution to the likelihood estimating equation
∂ log L(θ)

/
∂θ = 0



Example 3.7 Let X1, . . . ,Xn be a random sample from the
Bernoulli distn B(1, θ). What is the MLE of θ?

Example 3.8 Let iid
X1, . . . ,Xn ∼ f (x ; θ) = e−(x−θ)

/
(1 + e−(x−θ))2 for x ∈ (−∞,∞)

and θ ∈ (−∞,∞) (Logistic Distribution). What is the MLE of θ?



3.3.1 Maximum Likelihood Estimation (MLE):
Rationale

Assumptions. (Regularity Conditions) Consider {f (x ; θ) : θ ∈ Ω}.

(R0) If θ 6= θ∗, f (·; θ) 6= f (·; θ∗).

(R1) {f (x ; θ) : θ ∈ Ω} have common support.

(R2) θ0 is an interior point in Ω.

Theorem. Consider rv X ∼ f (x ; θ) for θ ∈ Ω with a random
sample X1, . . . ,Xn. If θ0 is the true value of θ, provided (R0)-(R2),
for θ ∈ Ω

lim
n→∞

Pθ0

[
L(θ0 | X1, . . . ,Xn) > L(θ | X1, . . . ,Xn)

]
= 1.

Definition. (MLE) With the random sample X1, . . . ,Xn,
θ̂ = θ̂(X1, . . . ,Xn) is the MLE if θ̂ = argmaxθ∈ΩL(θ | X1, . . . ,Xn).



3.3.1 Maximum Likelihood Estimation (MLE):
Properties

Let iid X1, . . . ,Xn ∼ f (x ; θ), θ ∈ Ω.

Theorem. (Invariance) Let iid X1, . . . ,Xn ∼ f (x ; θ), θ ∈ Ω. If θ̂ is
the MLE of θ, η̂ = g(θ̂) is the MLE of η = g(θ).
Proof: Note that

max
η

L(η|data) = max
θ:η=g(θ)

L(g(θ)|data) = L(g(θ̂)|data).

Theorem. Provided (R0)-(R2) and f (x ; θ) is differentiable wrt
θ ∈ Ω, if θ0 is the true value, the likelihood equation ∂L(θ)

/
∂θ = 0

or ∂ log L(θ)
/
∂θ = 0 has a solution θ̂n such that θ̂n

P→ θ0.

=⇒ If the MLE of θ is the solution, it is consistent.



3.3.1 Maximum Likelihood Estimation (MLE):
Properties

Assumptions. (Additional Regularity Conditions) Consider
{f (x ; θ) : θ ∈ Ω}.

(R3) f (x ; θ) is twice differentiable wrt θ.

(R4) E
[
∂ log f (X ; θ)

/
∂θ
]

and E
[
∂2 log f (X ; θ)

/
∂θ2
]

exist.

(R5) f (x ; θ) is three times differentiable wrt θ.∣∣∣∂3 log f (X ; θ)
/
∂θ3
∣∣∣ ≤ M(x) for θ ∈ (θ0 − c , θ0 + c) and all x

in the support of X , and Eθ0

[
M(X )

]
<∞.



3.3.1 Maximum Likelihood Estimation (MLE):
Properties

Definition. (Fisher Information) The Fisher information is

FI (θ) = E
[(
∂ log f (X ; θ)

/
∂θ
)2
]
, provided the expectation exists.

Note that

FI (θ) = Var
(∂ log f (X ; θ)

∂θ

)
= −E

[∂2 log f (X ; θ)

∂θ2

]
.



Theorem (Asymptotic Normality) Provided (R0)-(R5) and
0 < FI (θ0) <∞, the solution θ̂n to the likelihood equation
∂L(θ)

/
∂θ = 0 or ∂ log L(θ)

/
∂θ = 0 satisfies

√
n(θ̂n − θ0)

D→ N(0,FI (θ0)−1).
Proof: Expand ∂ log L(θ)

/
∂θ = l

′
(θ) into the Taylor series of order 2

about θ0 and evaluate it at θ̂n:

l
′
(θ̂n) = l

′
(θ0) + (θ̂n − θ0)l

′′
(θ0) +

1

2
(θ̂n − θ0)2l

′′′
(θ∗n),

θ∗n in between θ0 and θ̂n. Note that l
′
(θ̂n) = 0,

1√
n
l
′
(θ0) =

1√
n

n∑
i=1

∂ log f (Xi ; θ0)

∂θ

D→ N(0,FI (θ0))

by CLT, and

−1

n
l
′′

(θ0) = −1

n

n∑
i=1

∂2 log f (Xi ; θ0)

∂θ2

P→ FI (θ0).

Further
∣∣∣− 1

n l
′′′

(θ∗n)
∣∣∣ ≤ 1

n

∑n
i=1 M(Xi ), and thus l

′′′
(θ∗n)

/
n is bounded in

probability by (R5). Combining the results yields the theorem.



3.3.1 Maximum Likelihood Estimation (MLE):
Cramer-Rao Lower Bound and Efficiency

Theorem. (Cramer-Rao Lower Bound) Let iid
X1, . . . ,Xn ∼ f (x ; θ) for θ ∈ Ω. Assume (R0)-(R4). Let
Y = u(X1, . . . ,Xn) be a statistic and E (Y ) = k(θ). Then

Var(Y ) ≥
(
k

′
(θ)
)2

nFI (θ)
.

=⇒ Var(Y ) ≥ 1
nFI (θ) if Y is an unbiased estimator of θ.

Definition. An unbiased estimator Y with a random sample of
size n is called efficient if Var(Y ) = 1

nFI (θ) .

=⇒ The MLE θ̂ is asymptotically efficient.



Example 3.9 (Beta Distribution) Let X1, . . . ,Xn be a random
sample from f (x ; θ) = θxθ−1 for 0 < x < 1 and θ ∈ Ω = (0,∞).



3.3.1 Maximum Likelihood Estimation (MLE):
Multiparameter Case

Likelihood Function.
I Let the joint distribution (pmf, or pdf ) of rvs X1, . . . ,Xn be

f (x1, . . . , xn;θ) with θ = (θ1, . . . , θK )
′ ∈ Ω ⊆ RK . When

x1, . . . , xn are the observed values (realizations) of the rvs, the
likelihood function of θ given the data is

L(θ | data ) = f (x1, . . . , xn;θ)

I interpretation: It’s an overall measure on how likely the
observed sample is the current set with the value of θ.

I Often X1, . . . ,Xn are iid observations (a random sample) from
the population with distribution f (x ;θ), θ ∈ Ω. If the
observed values are x1, . . . , xn, then the likelihood function is

L(θ | data ) =
n∏

i=1

f (xi ;θ) = f (x1;θ) . . . f (xn;θ).



Maximum Likelihood Estimator (MLE):

I The MLE θ̂ is the value of the population parameter θ that
maximizes the likelihood function:

L(θ̂ | data ) = max
θ∈Ω

L(θ | data ).

I interpretation: The MLE θ̂ gives the parameter value that
agrees most closely with the observed sample (the data).

I Often used procedures:

(1) to maximize log L(θ).
(2) to obtain the solution to the likelihood estimating equation

5 log L(θ) = ∂ log L(θ)
/
∂θ = 0. (The gradian 5g(u) = ∂g(u)

∂u .)



Example 3.10 Suppose iid rvs X1, . . . ,Xn with the pdf

f (x ;α, β) =

{ 1
β exp{−( x−αβ )}, x ≥ α
0, elsewhere

Derive the MLE of the parameter θ = (α, β)
′

for α ∈ (−∞,∞)
and β ∈ (0,∞).



Exponential distn: pdf

f (x ;α, β) =

{ 1
β exp{−( x−αβ )}, x ≥ α
0, elsewhere

I X = βT + α with T ∼ NE (1)
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Generate iid x1, . . . , xn from the exponential-distn with α = 0.3
and β = 0.8: n = 5, 52, 53, 54, 55, 56 and repeat each setting 10
times to evaluate the MLE α̂ and β̂
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3.3.1 Maximum Likelihood Estimation (MLE):
Multiparameter Case

Consider rv X ∼ f (x ;θ) with θ = (θ1, . . . , θK )
′
.

Definition. (Fisher Information) The Fisher information is

FI(θ) = E
[(
5 log f (X ;θ)

)(
5 log f (X ;θ)

)′]
,

provided the expectation exists. FI(θ) is K × K , nonnegative
definite.

Note that E
(
5 log f (X ;θ)

)
= 0 and then

FI(θ) = Var
(
5 log f (X ;θ)

)
= −E

[∂2 log f (X ;θ)

∂θ2

]
.

The (j , k)th entry of FI(θ) for j , k = 1, . . . ,K :

FIjk = E
[(∂ log f (X ;θ)

∂θj

)(∂ log f (X ;θ)

∂θk

)]
= Cov

(∂ log f (X ;θ)

∂θj
,
∂ log f (X ;θ)

∂θk

)
.



Suppose X1, . . . ,Xn ∼ f (x ;θ) iid with θ ∈ Ω ⊆ RK .

Theorem (Asymptotic Properties) Provided (R0)-(R5) in the
multiparameter case hold. Then

1. The likelihood equation ∂ log L(θ)
/
∂θ = 0 has a solution

θ̂n such that θ̂n
P→ θ.

2. For such θ̂n,
√
n(θ̂n − θ)

D→ MN(0,FI(θ)−1).

Corollary For j = 1, . . . ,K , the jth component of θ̂n satisfies

√
n(θ̂n,j − θj)

D→ N(0, [FI(θ)−1]jj).



Example 3.11 Consider an experiment with 3 different types of outcome
and the corresponding probabilities θ1, θ2, θ3. (

∑
θj = 1). Let the 3

componets of X = (X1,X2,X3) be the indicators of the 1st, 2nd, 3rd
types: X ∼ trinomial distn:

f (x;θ) = θx1
1 θ

x2
2 θ

x3
3 = θx1

1 θ
x2
2 (1− θ1 − θ2)1−x1−x2 .

Fisher Information Matrix: 5 log f (x;θ) =
(

x1

θ1
− x3

θ3
, x2

θ2
− x3

θ3

)′

∂2 log f (x;θ)

∂θ2
1

= −x1

θ2
1

−x3

θ2
3

,
∂2 log f (x;θ)

∂θ2
2

= −x2

θ2
2

−x3

θ2
3

,
∂2 log f (x;θ)

∂θ1∂θ2
= −x3

θ2
3

The entries of FI(θ) are

FI11 =
1

θ1
+

1

θ3
, FI12 = FI21 =

1

θ3
, FI22 =

1

θ2
+

1

θ3
.

MLE with x1, . . . , xn: L(θ) =
∏n

i=1 f (xi ;θ) =
∏n

i=1 θ
x1i
1 θx2i

2 θx3i
3 .

log L(θ) =
n∑

i=1

x1i log θ1 +
n∑

i=1

x2i log θ2 +
n∑

i=1

x3i log θ3

For h = 1, 2, ∂ log L(θ)
∂θh

=
∑n

i=1 xhi
θh

−
∑n

i=1 x3i

θ3
= 0 =⇒ θ̂j =

∑n
i=1 xji
n for

j = 1, 2, 3
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