What to do today (Nov 16, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)
 - 3.3.1 Maximum Likelihood Estimation
 - 3.3.2 Likelihood-Based Tests
 - 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11

3.3.2 Likelihood-Based Tests:

Consider $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$ using a random sample $X_1, \ldots, X_n \sim f(x; \theta)$ for $\theta \in \Omega$ with $\Omega_0, \Omega_1 \subset \Omega$ and $\Omega_0 \bigcap \Omega_1 = \emptyset$.

- Here Ω ⊆ R^K with K positive integer: K = 1 leads to θ a scalar.
- If Ω₀ = {θ₀} (or Ω₁ = {θ₁}): a simple null (alternative) hypothesis; othewise, a composite null (alternative) hypothesis.
- In the case of K = 1, if Ω₀ = {θ₀} and Ω₁ = {θ : θ ≠ θ₀} ⇒ two-sided alternative.

Any systematic procedure for testing hypotheses on a general θ ?

Consider likelihood-based testing procedures ...

3.3.2 Likelihood-Based Tests: Wald-Type Test Consider $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

• If θ is scalar and the MLE $\hat{\theta}$ exists,

$$Z = \frac{\widehat{\theta} - \theta_0}{\sqrt{AV(\widehat{\theta})}} \underset{H_0}{\sim} N(0, 1)$$

approximately when $n \ge 1$. $AV(\hat{\theta}) = [nFI(\theta_0)]^{-1}$ is the asymptotic variance of θ . (Assume the same regularity conditions for the asymptotic normality of MLE.) the *Z*-test! \implies Rejection region with level of α : $\{\mathbf{x} : |Z| > c\}$, the critical value c is $Z_{1-\alpha/2}$ of the standard normal distn.

► If
$$K > 1$$
, $W = (\hat{\theta} - \theta_0)' AV(\hat{\theta})^{-1}(\hat{\theta} - \theta_0)$ is
 $W = (\hat{\theta} - \theta_0)' [n \mathsf{FI}(\theta_0](\hat{\theta} - \theta_0) \underset{H_0}{\sim} \chi^2(K)$

approximately when n >> 1. (Assume the same regularity conditions for the asymptotic normality of MLE.) *the Wald test!* \implies Rejection region with level of α : {**x** : W > c}, the critical value c is $\chi^2(K)_{1-\alpha}$ of the $\chi^2(K)$ -distn.

3.3.2 Likelihood-Based Tests: Wald-Type Test

Comments on Wald-Type Test:

- The construction of the test statistic is intuitive, and the procedure is straightforward.
- What if it is not easy to obtain $\hat{\theta}$, FI(θ)?
- What if the null hypothesis is not a simple hypothesis?
- It requires n >> 1 in general: a large sample based procedure. What if the sample size is not large enough?

3.3.2 Likelihood-Based Tests: Likelihood Ratio Test (LRT)

Consider $H_0: \theta \in \Omega_0$ vs $H_1: \theta \notin \Omega_0$

$$\Lambda = rac{\max_{ heta \in \Omega_0} L(heta)}{\max_{ heta \in \Omega} L(heta)}$$

Provided the same regularity conditions for the asymptotic normality of the MLE, $-2\log(\Lambda) \underset{H_0}{\sim} \chi^2(K-q)$ approximately when n >> 1, if the number of indpt parameters under H_0 is q.

 \implies Rejection region with level of α : $\{\mathbf{x} : -2\log(\Lambda) > c\}$, the critical values c is $\chi^2(K - q)_{1-\alpha}$ of the $\chi^2(K - q)$ -distn.

3.3.2 Likelihood-Based Tests: Likelihood Ratio Test (LRT)

Comments on LRT:

- The test statistic is also constructed intuitively.
- It is easy to carry out, easier than the Wald-type but has "no direction".
- It's also a large sample based procedure but requires relatively less sample size compared to the Wald-type.
- What if $H_1: \theta \in \Omega_1$ with $\Omega_1 \subseteq \Omega_0^c$ but $\neq \Omega_0^c$?
- A 3rd likelihood based test: Score Test.

Example 3.12 Suppose X_1, \ldots, X_n are iid with pdf $f(x; \theta) = \theta^{-1} \exp(-x/\theta)$ for $x, \theta > 0$. Test $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$.

Example 3.13 Suppose X_1, \ldots, X_n are iid from $N(\mu, \sigma^2)$. Test $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$.

What will we do next?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)
 - 3.3.1 Maximum Likelihood Estimation
 - ► 3.3.2 Likelihood-Based Tests
 - 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11