What to do today (Nov 18, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)
 - ▶ 3.3.1 Maximum Likelihood Estimation
 - ▶ 3.3.2 Likelihood-Based Tests
 - 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11

3.3.3 Expectation-Maximization (EM) Algorithm

What does it do?

An iterative procedure (algorithm) to calculate MLEs of the population parameters θ when it is hard to maximize the likelihood function of θ with the available data.

Original References:

- Dempster, Laird, and Rubin (1977). "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B. 39 (1): 1–38.
- C.F. Jeff Wu (1983). "On the Convergence Properties of the EM Algorithm". Annals of Statistics. 11 (1): 95–103.
- B.W. Turbull (1976) "The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data". Journal of the Royal Statistical Society, Series B. 38 (3): 290–295.

3.3.3 Expectation-Maximization (EM) Algorithm Goal: Consider to maximize $L(\theta|\mathbf{X})$, the (observed) likelihood function with the available data \mathbf{X} to obtain the MLE of population parameter θ .

Suppose that it is relatively easier to maximize $L_C(\theta | \mathbf{X}, \mathbf{Z})$, the (complete) likelihood function of θ with the "augmented" data (\mathbf{X}, \mathbf{Z}) .

Define $Q(\theta|\theta_0, \mathbf{x}) = E_{\theta_0} [\log L_C(\theta|\mathbf{X}, \mathbf{Z})|\theta_0, \mathbf{X} = \mathbf{x}].$

EM Algorithm. Let $\hat{\theta}^{(m)}$ be the estimate on the *m*th step with $m \ge 0$. The following compute the estimate on the (m+1)th step:

Expectation-Step. Compute

$$Q(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}^{(m)},\mathbf{x}) = E_{\hat{\boldsymbol{\theta}}^{(m)}} \big[\log L_C(\boldsymbol{\theta}|\mathbf{X},\mathbf{Z}) | \hat{\boldsymbol{\theta}}^{(m)},\mathbf{X} = \mathbf{x} \big].$$

Maximization-Step. Let the updated estimate be

$${\hat{oldsymbol{ heta}}}^{(m+1)} = {\it argmax}_{oldsymbol{ heta} \in \Omega} Q(oldsymbol{ heta}| {\hat{oldsymbol{ heta}}}^{(m)}, {f x}).$$

3.3.3 Expectation-Maximization (EM) Algorithm

- Starting with an initial estimate (guess) of θ, say, θ⁽⁰⁾, repeat the *E-Step* and *M-Step* and record the sequence of estimates {θ^(m) : m = 1, 2, ...}.
- ▶ Under some assumptions, the sequence converges in probability to the MLE $\hat{\theta}$ as $m \to \infty$.
- ► The EM algorithm works to improve Q(θ|θ̂^(m), x). This implies improvements to L(θ|x): L(θ̂^(m+1)|x) ≥ L(θ̂^(m)|x).

EM algorithm has a broad range of applications!

... and a lot of variants, eg MCEM Algorithm, ES Algorithm, ...

Example 3.14 Consider a mixture of normal distributions: $X = (1 - W)Y_1 + WY_2$ with $Y_j \sim N(\mu_j, \sigma_j^2)$ for j = 1, 2 and $W \sim B(1, \epsilon)$. Suppose the observations on a random sample $\mathbf{X}' = (X_1, \dots, X_n)$ from the mixture distn are available.

- Apply the EM algorithm to estimate the parameter θ' = (μ₁, σ₁², μ₂, σ₂², ε)
- Similar to Ex6.6.8, generate data with n = 1000 and $\theta^{'} = (100, 15^2, 200, 10^2, .8)$, and then evaluate the MLE of $\theta^{'}$ by EM algorithm.

Solution. Let $f_j(y)$ be the pdf of Y_j . The log-likelihood functn with the observed data is

$$l(\boldsymbol{ heta}|\mathbf{x}) = \sum_{i=1}^{n} \log \left[(1-\epsilon)f_1(x_i) + \epsilon f_2(x_i) \right].$$

With observations \mathbf{w}' on a random sample W_1, \ldots, W_n from $W \sim B(1, \epsilon)$, the log-likelihood functn with the complete data is

$$I_C(oldsymbol{ heta}|\mathbf{x},\mathbf{w}) = \sum_{i=1}^n \Big\{ \big[(1-w_i)\log f_1(x_i) + w_i\log f_2(x_i) \big] + \big[w_i\log \epsilon + (1-w_i)\log(1-\epsilon) \big] \Big\}.$$

Provided the estimate at the *m*th stage is $\theta^{(m)}$,

E-Step.
$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(m)}, \mathbf{x}) = I_{\mathcal{C}}(\boldsymbol{\theta}|\mathbf{x}, \mathbf{w})\Big|_{\mathbf{w}=\widehat{\mathbf{w}}^{(m)}}$$
 with
 $\hat{w}_{i}^{(m)} = \mathcal{E}(W_{i}|\boldsymbol{\theta}^{(m)}, \mathbf{x}) = \frac{\epsilon^{(m)}f_{2}(x_{i})^{(m)}}{(1-\epsilon^{(m)})f_{1}(x_{i})^{(m)} + \epsilon^{(m)}f_{2}(x_{i})^{(m)}}.$

M-Step. Maximizing $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(m)}, \mathbf{x})$ wrt $\boldsymbol{\theta}$ yields

$$\begin{split} \mu_1^{(m+1)} &= \frac{\sum_{i=1}^n (1 - \hat{w}_i^{(m)}) x_i}{\sum_{i=1}^n (1 - \hat{w}_i^{(m)})}, \quad \sigma_1^{2(m+1)} = \frac{\sum_{i=1}^n (1 - \hat{w}_i^{(m)}) (x_i - \mu_1^{(m+1)})^2}{\sum_{i=1}^n (1 - \hat{w}_i^{(m)})}, \\ \mu_2^{(m+1)} &= \frac{\sum_{i=1}^n \hat{w}_i^{(m)} x_i}{\sum_{i=1}^n \hat{w}_i^{(m)}}, \quad \sigma_2^{2(m+1)} = \frac{\sum_{i=1}^n \hat{w}_i^{(m)} (x_i - \mu_2^{(m+1)})^2}{\sum_{i=1}^n \hat{w}_i^{(m)}}, \\ \text{and } \epsilon^{(m+1)} &= \sum_{i=1}^n \hat{w}_i^{(m)} / n. \end{split}$$

What will we do next week?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11
 - 4.1 Nonparametric and Robust Statistics (Chp 10)
 - ▶ 4.2 Bayesian Procedures (Chp 11.1)