What to do today (Nov 18, 2020)7?

1. Introduction
2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics

3.1 Elementary Statistical Inferences (Chp 4)

3.2 Consistency and Limiting Distributions (Chp 5)
3.3 Maximum Likelihood Methods (Chp 6)

» 3.3.1 Maximum Likelihood Estimation
» 3.3.2 Likelihood-Based Tests
» 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11
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3.3.3 Expectation-Maximization (EM) Algorithm

What does it do?

An iterative procedure (algorithm) to calculate MLEs of the
population parameters @ when it is hard to maximize the likelihood
function of 6 with the available data.

Original References:

> Dempster, Laird, and Rubin (1977). “Maximum Likelihood from
Incomplete Data via the EM Algorithm”. Journal of the Royal
Statistical Society, Series B. 39 (1): 1-38.

> C.F. Jeff Wu (1983). “On the Convergence Properties of the EM
Algorithm". Annals of Statistics. 11 (1): 95-103.

> B.W. Turbull (1976) “The Empirical Distribution Function with
Arbitrarily Grouped, Censored and Truncated Data”. Journal of the
Royal Statistical Society, Series B. 38 (3): 290-295.



3.3.3 Eé)ectation Maximization (EM) Alaorithm
(o]

Goal: Consider to maximize L(68|X), the (observed) likelihood
function with the available data X to obta|n the MLE of
population parameter 6.

Suppose that it is relatively easier to maximize Lc(6|X, Z), the
(complete) likelihood function of @ with the “augmented” data (X, Z).

Define Q(8]60,x) = Eg, [ log Lc(8]X,Z)|60, X = x].

EM Algorithm. Let é(m) be the estimate on the mth step with
m > 0. The following compute the estimate on the (m + 1)th step:

» Expectation-Step. Compute
Q68" x) = Eym [log Lc(81X. )10, X = x].

» Maximization-Step. Let the updated estimate be

A(m+1)

P (m) ).

= argmaxgeq Q(O\B



3.3.3 Expectation-Maximization (EM) Algorithm

~

: : I : 0
» Starting with an initial estimate (guess) of 6, say, 0( ), repeat
the E-Step and M-Step and record the sequence of estimates

B m=12..1.

> Under some assumptions, the sequence converges in
probability to the MLE 8 as m — oc.

> The EM algorithm works to improve @(8]8'™,x). This
implies improvements to L(6|x): L(é(mﬂ)]x) > L(@(m)]x).

EM algorithm has a broad range of applications!

.. and a lot of variants, eg MCEM Algorithm, ES Algorithm, ...



Example 3.14 Consider a mixture of normal distributions:
X=(1-W)Y:s + WY, with Y; ~ N(uj,0 ) for j=1,2 and
W ~ B(1,¢). Suppose the observatlons on a random sample
X' = (Xi,...,X,) from the mixture distn are available.
> Apply the EM algorlthm to estimate the parameter
0 - (,u/150-1 /’L2>U27 )
> Similar to Ex6.6.8, generate data with n = 1000 and
6 = (100,152,200,102,.8), and then evaluate the MLE of 8 by
EM algorithm.

Solution. Let fi(y) be the pdf of Y;. The log-likelihood functn with the
observed data is

0|X Z|Og 17€)fi(xl)+€f2(xl)]

i=1

With observations w' on a random sample Wy, ..., W, from
W ~ B(1,€), the log-likelihood functn with the complete data is

Ic(@|x,w) = Z { [(1—w;) log f(xi)+w; log f2(xi)] +[wi log e+(1—w;) log(1—¢)] }



Provided the estimate at the mth stage is 0(’"),

E-Step. Q(016'™,x) = Ic(0]x,w)| _cm with

_ M (x)m
T (1= M)A ()M elm b (x)m

W™ = E(W;6'™, x)

i

M-Step. Maximizing Q(6]6(™, x) wrt 6 yields

(m+1) 27:1(1 - Wi(m))xi g2(m+1) 27:1(1 - Wi(m))(xi - M(1m+1))2
i = &i=l\m T

n . ) 1 n . )
doia(l— Wi(m)) doia(l— Wi(m))
A (m ~(m m+1
M(m+1) _ i Wi( )Xi g(mﬂ) _ Yis Wi( )(Xi - Mg i ))2
’ S wm i, ’

and ™) =S v“v,(m)/n.
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What will we do next week?

1. Introduction
2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

4. Further Topics, Selected from Chp 7-11
» 4.1 Nonparametric and Robust Statistics (Chp 10)

» 4.2 Bayesian Procedures (Chp 11.1)
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