
What to do today (Nov 18, 2020)?

1. Introduction

2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics

3.1 Elementary Statistical Inferences (Chp 4)

3.2 Consistency and Limiting Distributions (Chp 5)

3.3 Maximum Likelihood Methods (Chp 6)
I 3.3.1 Maximum Likelihood Estimation
I 3.3.2 Likelihood-Based Tests
I 3.3.3 EM Algorithm

4. Further Topics, Selected from Chp 7-11
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3.3.3 Expectation-Maximization (EM) Algorithm

What does it do?
An iterative procedure (algorithm) to calculate MLEs of the
population parameters θ when it is hard to maximize the likelihood
function of θ with the available data.

Original References:

I Dempster, Laird, and Rubin (1977). “Maximum Likelihood from
Incomplete Data via the EM Algorithm”. Journal of the Royal
Statistical Society, Series B. 39 (1): 1–38.

I C.F. Jeff Wu (1983). “On the Convergence Properties of the EM
Algorithm”. Annals of Statistics. 11 (1): 95–103.

I B.W. Turbull (1976) “The Empirical Distribution Function with
Arbitrarily Grouped, Censored and Truncated Data”. Journal of the
Royal Statistical Society, Series B. 38 (3): 290–295.



3.3.3 Expectation-Maximization (EM) Algorithm
Goal: Consider to maximize L(θ|X), the (observed) likelihood
function with the available data X to obtain the MLE of
population parameter θ.
Suppose that it is relatively easier to maximize LC (θ|X,Z), the

(complete) likelihood function of θ with the “augmented” data (X,Z).

Define Q(θ|θ0, x) = Eθ0

[
log LC (θ|X,Z)|θ0,X = x

]
.

EM Algorithm. Let θ̂
(m)

be the estimate on the mth step with
m ≥ 0. The following compute the estimate on the (m + 1)th step:

I Expectation-Step. Compute

Q(θ|θ̂(m)
, x) = E

θ̂
(m)

[
log LC (θ|X,Z)|θ̂(m)

,X = x
]
.

I Maximization-Step. Let the updated estimate be

θ̂
(m+1)

= argmaxθ∈ΩQ(θ|θ̂(m)
, x).



3.3.3 Expectation-Maximization (EM) Algorithm

I Starting with an initial estimate (guess) of θ, say, θ̂
(0)

, repeat
the E-Step and M-Step and record the sequence of estimates{
θ̂

(m)
: m = 1, 2, . . .

}
.

I Under some assumptions, the sequence converges in
probability to the MLE θ̂ as m→∞.

I The EM algorithm works to improve Q(θ|θ̂(m)
, x). This

implies improvements to L(θ|x): L(θ̂
(m+1)|x) ≥ L(θ̂

(m)|x).

EM algorithm has a broad range of applications!

... and a lot of variants, eg MCEM Algorithm, ES Algorithm, ...



Example 3.14 Consider a mixture of normal distributions:
X = (1−W )Y1 + WY2 with Yj ∼ N(µj , σ

2
j ) for j = 1, 2 and

W ∼ B(1, ε). Suppose the observations on a random sample
X

′
= (X1, . . . ,Xn) from the mixture distn are available.

I Apply the EM algorithm to estimate the parameter

θ
′

= (µ1, σ
2
1 , µ2, σ

2
2 , ε)

I Similar to Ex6.6.8, generate data with n = 1000 and

θ
′

= (100, 152, 200, 102, .8), and then evaluate the MLE of θ
′

by
EM algorithm.

Solution. Let fj(y) be the pdf of Yj . The log-likelihood functn with the
observed data is

l(θ|x) =
n∑

i=1

log
[
(1− ε)f1(xi ) + εf2(xi )

]
.

With observations w
′

on a random sample W1, . . . ,Wn from
W ∼ B(1, ε), the log-likelihood functn with the complete data is

lC (θ|x,w) =
n∑

i=1

{[
(1−wi ) log f1(xi )+wi log f2(xi )

]
+
[
wi log ε+(1−wi ) log(1−ε)

]}
.



Provided the estimate at the mth stage is θ(m),

E-Step. Q(θ|θ(m), x) = lC (θ|x,w)
∣∣
w=ŵ(m) with

ŵ
(m)
i = E(Wi |θ(m), x) =

ε(m)f2(xi )
(m)

(1− ε(m))f1(xi )(m) + ε(m)f2(xi )(m)
.

M-Step. Maximizing Q(θ|θ(m), x) wrt θ yields

µ
(m+1)
1 =

∑n
i=1(1− ŵ

(m)
i )xi∑n

i=1(1− ŵ
(m)
i )

, σ2
1

(m+1)
=

∑n
i=1(1− ŵ

(m)
i )(xi − µ(m+1)

1 )2∑n
i=1(1− ŵ

(m)
i )

,

µ
(m+1)
2 =

∑n
i=1 ŵ

(m)
i xi∑n

i=1 ŵ
(m)
i

, σ2
2

(m+1)
=

∑n
i=1 ŵ

(m)
i (xi − µ(m+1)

2 )2∑n
i=1 ŵ

(m)
i

,

and ε(m+1) =
∑n

i=1 ŵ
(m)
i

/
n.



θ(0) = (90, 202, 120, 202, .3); m = 7;

θ̂ = (99.70, 15.482, 199.30, 10.142, 0.79)
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What will we do next week?

1. Introduction

2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

4. Further Topics, Selected from Chp 7-11
I 4.1 Nonparametric and Robust Statistics (Chp 10)

I 4.2 Bayesian Procedures (Chp 11.1)
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