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1.2.7
a)

1
Ck:{x:2—g<x§2} fork=1,23, ..

We have Cy = {z:1<2<2},Co={z:3 <z <2}, ...
From this we can see that the right bound always contains 2 and that the left bound
approaches 2 from below as k — co. So {C}} is nonincreasing.
We thus have that
limp 0o Cr = ﬂﬁi‘iCk = {:L‘ rr = 2}

since the intersection of all the intervals contains 2.

Another way to see this is by first taking some y > 2. Clearly y > 2 is not in any Cj. If
we now take y < 2:

1
27%%2ask%oo

So for some I, y<2f%, soy ¢ (27%,2].
So the intersection of all Cj must be {z : x = 2}.

b)
Ck:{x:2<x§2+%} fork=1,23, ...

We have Cy = {z:2<2<3},Co={z:2<a <32}, ..

From this we can see that the right bound approaches 2 from above as £ — oo while the
left bound is always greater than 2. So {C}} is nonincreasing.

We have that limy_ocCr = N, Cr = (). This is because there is no such set

Cr={z:2<x<2}

c)
1
Ck:{(x,y)ioﬁszryQ < %}forkzl,Q,S,...

We have Cy = {(z,y): 0 < 2?4+ y* <1},Co = {(z,y) : 0 < 22+ y> < 1}, ..

From this we can see that the left bound always contains 0 and that the right bound
approaches 0 from above as k — oo. {Cj} represents a sequence of circles centred at
the origin ((z,y) = (0,0)) whose radius decreases from 1 to 0 as k — oco. So {Cj} is
nonincreasing.

We also have that limy—.oCr = {(z,y) : © = 0,y = 0} because all C}, only contain

{(z,y) : (x,y) = (0,0)}



1.2.11(b)

Q(c) =0 since 0 < z =y < 1 is a line, which has no area.

1.3.3

N

=1

P(C):1+1+3+...:Z(%)$:

1
2 4 8 1-3

The probability P assigns to the elements of C; to the probabilities of 3,3, 1 L1 1

Then 1 1 1 1 1 31
P = — —_ —_ —_ _— = —
CU=3+375 %6 T2 %
The probability P assigns the elements of C5 to the probabilities of é, &. Then
1 1 3
P(Cy) = 39 + 61 61
We have that C1 N Cy = {c: cis TTTTH}. Thus
1
P = —
(C1NCy) 3

Finally we have that C1 UCy = {¢ : ¢cis H,TH,TTH,TTTH,TTTTH,TTTTTH}.

Then 1 1 1 1 1 1 63
P = — — — _— —_ _—= —
(CLucs) s T I1Ts T 2T @

1.3.7

1. P(Cy N Cy) < P(CY)
Proof: Since (C; NCy) C C4, and

P(Cl) _ P[(Cl n 02) U (Cl n Cg)] since they're mqétually exclusive P(Cl n C2) + P(C1 n Cg),

therefore
P(Cy)=P(CiNCy)if andonly if P(CryNCS) =0
SO P(Cl) 2 P(Cl N CQ)

2. P(Cy) < P(CLUCCy)
Proof: Since C; C (Cy UCy), and

P(Ol U 02) _ P[Ol U (C‘f n 02)] since they're m;tually exclusive P(Cl) + P(Clc QOQ),

thus
P(Cy UCy) = P(Cy) only when P(C{NCy) =0
SO P(Cl U Cg) 2 P(Cl)

3. P(C1UCy) < P(Cy) + P(Cy)

" P(C1UCy) = P(Cy) + P(Cy) — P(C1NCy)
- P(CyUCy) = P(Cy) + P(Ca) when P(Cy N Ca) = 0
SO P(Cl U CQ) < P(Cl) + P(CQ)

From parts 1,2, and 3, we have shown that

P(CiNC2) < P(C1) < P(CLUC) < P(Ch) + P(C2)



1.3.22
a)

If Cq, Cy, C3 are mutually exclusive, then

P(UL,Gi) = ZP(Cz‘) <1
The restriction is that 0 < p; +p2 +p3 <1

b)

No, since p1 + p2 + p3 = 12

2> 1.

1.4.12
a)

Since C7 and C are independent,

P(Cl n CQ) = P(Cl)P(CQ) =0.6x0.3=0.18

b)
Since C7 and Cs are independent,

P(Cl U CQ) = P(O1) + P(CQ) — P(Cl n CQ) =0.6+03—-0.18=0.72

P(CLUCS) =1— P[(CLUCS)] =1 — P(CSNCy) =1 — (0.4)(0.3) = 0.88

1.4.25

Since all three events are mutually independent,
P[(CTNC3) UCs] = P(CT N C3) + P(Cs) — P[(CT N C3) N Cs]
= P(CT)P(C3 )+P(C) P(CY)P Cz) ( 3)
() ()13
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1.4.30

If the prize is behind curtain 1 and we condition that the contestant has chosen to switch,
this means that they had either chosen curtain 2 first and Monte opened curtain 3, or that
they had chosen curtain 3 first and Monte opened curtain 2. Monte could not have opened
curtain 1 since the prize was behind it. In both cases, the contestant would win since they
would switch to curtain 1. They would only lose if they chose curtain 1 first. Therefore the
conditional probability of the contestant winning given that they switch is % Similarly, the
same conditional probability would be obtained if the prize was behind curtain 2 or curtain

3. Therefore the contestant should switch curtains.



1.5.4
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b)
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1.5.8

The plot could have either generated using R or drawn by hand (both are accepted). One
possible way to plot F(x) by R is shown below:

x <- seq(-5, 5, 0.01)
F<-(x<-1) x0+

(x>=1) x 1+

(x >= -1 & x < 1) * (x/4+1/2)
plot(x, F, pch=20)
points(-1, y=1/4, pch=19)
points(1l, y=1, pch=19)
points(-1, y=0, pch=21)
points(1,y=3/4,pch=21)
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b)
Since F(x) is continuous for —1 < & < 1,

P(X =0) = F(0) — F(07) =0



d)



