Stat 330 Assignment 1 Solutions

Mandy Yao

September 2020

1.2.7

a)

$$
C_{k}=\left\{x: 2-\frac{1}{k}<x \leq 2\right\} \text { for } k=1,2,3, \ldots
$$

We have $C_{1}=\{x: 1<x \leq 2\}, C_{2}=\left\{x: \frac{3}{2}<x \leq 2\right\}, \ldots$.
From this we can see that the right bound always contains 2 and that the left bound approaches 2 from below as $k \rightarrow \infty$. So $\left\{C_{k}\right\}$ is nonincreasing.

We thus have that

$$
\lim _{k \rightarrow \infty} C_{k}=\cap_{k=1}^{+\infty} C_{k}=\{x: x=2\}
$$

since the intersection of all the intervals contains 2 .
Another way to see this is by first taking some $y>2$. Clearly $y>2$ is not in any C_{k}. If we now take $y<2$:

$$
2-\frac{1}{k} \rightarrow 2 \text { as } k \rightarrow \infty
$$

So for some $l, y<2-\frac{1}{l}$, so $y \notin\left(2-\frac{1}{l}, 2\right]$.
So the intersection of all C_{k} must be $\{x: x=2\}$.

b)

$$
C_{k}=\left\{x: 2<x \leq 2+\frac{1}{k}\right\} \text { for } k=1,2,3, \ldots
$$

We have $C_{1}=\{x: 2<x \leq 3\}, C_{2}=\left\{x: 2<x \leq \frac{5}{2}\right\}, \ldots$.
From this we can see that the right bound approaches 2 from above as $k \rightarrow \infty$ while the left bound is always greater than 2. So $\left\{C_{k}\right\}$ is nonincreasing.

We have that $\lim _{k \rightarrow \infty} C_{k}=\cap_{k=1}^{\infty} C_{k}=\emptyset$. This is because there is no such set

$$
C_{k}=\{x: 2<x \leq 2\}
$$

c)

$$
C_{k}=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq \frac{1}{k}\right\} \text { for } k=1,2,3, \ldots
$$

We have $C_{1}=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq 1\right\}, C_{2}=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq \frac{1}{2}\right\}, \ldots$.
From this we can see that the left bound always contains 0 and that the right bound approaches 0 from above as $k \rightarrow \infty .\left\{C_{k}\right\}$ represents a sequence of circles centred at the origin $((x, y)=(0,0))$ whose radius decreases from 1 to 0 as $k \rightarrow \infty$. So $\left\{C_{k}\right\}$ is nonincreasing.

We also have that $\lim _{k \rightarrow \infty} C_{k}=\{(x, y): x=0, y=0\}$ because all C_{k} only contain

$$
\{(x, y):(x, y)=(0,0)\}
$$

1.2.11(b)

$Q(c)=0$ since $0<x=y<1$ is a line, which has no area.

1.3.3

$$
P(C)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=\sum_{x=1}^{\infty}\left(\frac{1}{2}\right)^{x}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

The probability P assigns to the elements of C_{1} to the probabilities of $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$. Then

$$
P\left(C_{1}\right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=\frac{31}{32}
$$

The probability P assigns the elements of C_{2} to the probabilities of $\frac{1}{32}, \frac{1}{64}$. Then

$$
P\left(C_{2}\right)=\frac{1}{32}+\frac{1}{64}=\frac{3}{64}
$$

We have that $C_{1} \cap C_{2}=\{c: c$ is TTTTH $\}$. Thus

$$
P\left(C_{1} \cap C_{2}\right)=\frac{1}{32}
$$

Finally we have that $C_{1} \cup C_{2}=\{c: c$ is $H, T H, T T H, T T T H, T T T T H, T T T T T H\}$.
Then

$$
P\left(C_{1} \cup C_{2}\right)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{63}{64}
$$

1.3.7

1. $P\left(C_{1} \cap C_{2}\right) \leq P\left(C_{1}\right)$

Proof: Since $\left(C_{1} \cap C_{2}\right) \subseteq C_{1}$, and

$$
P\left(C_{1}\right)=P\left[\left(C_{1} \cap C_{2}\right) \cup\left(C_{1} \cap C_{2}^{c}\right)\right]^{\text {since they're mutually exclusive }} \stackrel{=}{=}\left(C_{1} \cap C_{2}\right)+P\left(C_{1} \cap C_{2}^{c}\right)
$$

therefore

$$
\begin{gathered}
P\left(C_{1}\right)=P\left(C_{1} \cap C_{2}\right) \text { if and only if } P\left(C_{1} \cap C_{2}^{c}\right)=0 \\
\text { so } P\left(C_{1}\right) \geq P\left(C_{1} \cap C_{2}\right)
\end{gathered}
$$

2. $P\left(C_{1}\right) \leq P\left(C_{1} \cup C_{2}\right)$

Proof: Since $C_{1} \subseteq\left(C_{1} \cup C_{2}\right)$, and

$$
P\left(C_{1} \cup C_{2}\right)=P\left[C_{1} \cup\left(C_{1}^{c} \cap C_{2}\right)\right]^{\text {since they're mutually exclusive }} P=\left(C_{1}\right)+P\left(C_{1}^{c} \cap C_{2}\right),
$$

thus

$$
\begin{gathered}
P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right) \text { only when } P\left(C_{1}^{c} \cap C_{2}\right)=0 \\
\text { so } P\left(C_{1} \cup C_{2}\right) \geq P\left(C_{1}\right)
\end{gathered}
$$

3. $P\left(C_{1} \cup C_{2}\right) \leq P\left(C_{1}\right)+P\left(C_{2}\right)$

$$
\begin{gathered}
\because P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right) \\
\therefore P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right) \text { when } P\left(C_{1} \cap C_{2}\right)=0 \\
\text { so } P\left(C_{1} \cup C_{2}\right) \leq P\left(C_{1}\right)+P\left(C_{2}\right)
\end{gathered}
$$

From parts 1,2, and 3, we have shown that

$$
P\left(C_{1} \cap C_{2}\right) \leq P\left(C_{1}\right) \leq P\left(C_{1} \cup C_{2}\right) \leq P\left(C_{1}\right)+P\left(C_{2}\right)
$$

1.3.22

a)

If C_{1}, C_{2}, C_{3} are mutually exclusive, then

$$
P\left(\cup_{i=1}^{3} C_{i}\right)=\sum_{i=1}^{3} P\left(C_{i}\right) \leq 1
$$

The restriction is that $0 \leq p_{1}+p_{2}+p_{3} \leq 1$

b)

No, since $p_{1}+p_{2}+p_{3}=\frac{12}{10}>1$.

1.4.12

a)

Since C_{1} and C_{2} are independent,

$$
P\left(C_{1} \cap C_{2}\right)=P\left(C_{1}\right) P\left(C_{2}\right)=0.6 \times 0.3=0.18
$$

b)

Since C_{1} and C_{2} are independent,

$$
P\left(C_{1} \cup C_{2}\right)=P\left(C_{1}\right)+P\left(C_{2}\right)-P\left(C_{1} \cap C_{2}\right)=0.6+0.3-0.18=0.72
$$

c)

$$
P\left(C_{1} \cup C_{2}^{c}\right)=1-P\left[\left(C_{1} \cup C_{2}^{c}\right)^{c}\right]=1-P\left(C_{1}^{c} \cap C_{2}\right)=1-(0.4)(0.3)=0.88
$$

1.4.25

Since all three events are mutually independent,

$$
\begin{gathered}
P\left[\left(C_{1}^{c} \cap C_{2}^{c}\right) \cup C_{3}\right]=P\left(C_{1}^{c} \cap C_{2}^{c}\right)+P\left(C_{3}\right)-P\left[\left(C_{1}^{c} \cap C_{2}^{c}\right) \cap C_{3}\right] \\
=P\left(C_{1}^{c}\right) P\left(C_{2}^{c}\right)+P\left(C_{3}\right)-P\left(C_{1}^{c}\right) P\left(C_{2}^{c}\right) P\left(C_{3}\right) \\
=\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)+\frac{1}{4}-\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{1}{4}\right)=\frac{43}{64}
\end{gathered}
$$

1.4.30

If the prize is behind curtain 1 and we condition that the contestant has chosen to switch, this means that they had either chosen curtain 2 first and Monte opened curtain 3, or that they had chosen curtain 3 first and Monte opened curtain 2. Monte could not have opened curtain 1 since the prize was behind it. In both cases, the contestant would win since they would switch to curtain 1 . They would only lose if they chose curtain 1 first. Therefore the conditional probability of the contestant winning given that they switch is $\frac{2}{3}$. Similarly, the same conditional probability would be obtained if the prize was behind curtain 2 or curtain 3. Therefore the contestant should switch curtains.

1.5.4

a)

$$
F(x)= \begin{cases}0 & x<0 \\ 1 & x \geq 0\end{cases}
$$

b)

$$
F(x)= \begin{cases}0 & x<-1 \\ \frac{1}{3} & -1 \leq x<0 \\ \frac{2}{3} & 0 \leq x<1 \\ 1 & x \geq 1\end{cases}
$$

c)

$$
F(x)= \begin{cases}0 & x<1 \\ \frac{1}{15} & 1 \leq x<2 \\ \frac{3}{15} & 2 \leq x<3 \\ \frac{6}{15} & 3 \leq x<4 \\ \frac{10}{15} & 4 \leq x<5 \\ 1 & x \geq 5\end{cases}
$$

1.5.8

The plot could have either generated using R or drawn by hand (both are accepted). One possible way to plot $\mathrm{F}(\mathrm{x})$ by R is shown below:

```
x <- seq(-5, 5, 0.01)
F <- (x < -1) * 0 +
    (x >= 1) * 1 +
    (x >= -1 & x < 1) * (x/4+1/2)
plot(x, F, pch=20)
points(-1, y=1/4, pch=19)
points(1, y=1, pch=19)
points(-1, y=0, pch=21)
points(1,y=3/4,pch=21)
```


a)

$$
P\left(-\frac{1}{2}<X \leq \frac{1}{2}\right)=F\left(\frac{1}{2}\right)-F\left(-\frac{1}{2}\right)=\frac{5 / 2}{4}-\frac{3 / 2}{4}=\frac{1}{4}
$$

b)

Since $\mathrm{F}(\mathrm{x})$ is continuous for $-1<x<1$,

$$
P(X=0)=F(0)-F\left(0^{-}\right)=0
$$

c)

$$
P(X=1)=F(1)-F\left(1^{-}\right)=1-\frac{3}{4}=\frac{1}{4}
$$

d)

$$
P(2<X \leq 3)=F(3)-F(2)=1-1=0
$$

