Stat 330 Assignment 1 Solutions

Mandy Yao

September 2020

1.2.7

a)

$$C_k = \left\{ x : 2 - \frac{1}{k} < x \le 2 \right\}$$
 for $k = 1, 2, 3, ...$

We have $C_1 = \{x : 1 < x \le 2\}, C_2 = \{x : \frac{3}{2} < x \le 2\}, \dots$

From this we can see that the right bound always contains 2 and that the left bound approaches 2 from below as $k \to \infty$. So $\{C_k\}$ is nonincreasing.

We thus have that

$$\lim_{k \to \infty} C_k = \bigcap_{k=1}^{+\infty} C_k = \{x : x = 2\}$$

since the intersection of all the intervals contains 2.

Another way to see this is by first taking some y > 2. Clearly y > 2 is not in any C_k . If we now take y < 2:

$$2 - \frac{1}{k} \to 2 \ as \ k \to \infty$$

So for some $l, y < 2 - \frac{1}{l}$, so $y \notin (2 - \frac{1}{l}, 2]$.

So the intersection of all C_k must be $\{x : x = 2\}$.

b)

$$C_k = \left\{ x : 2 < x \le 2 + \frac{1}{k} \right\} for \ k = 1, 2, 3, \dots$$

We have $C_1 = \{x : 2 < x \le 3\}, C_2 = \{x : 2 < x \le \frac{5}{2}\}, \dots$

From this we can see that the right bound approaches 2 from above as $k \to \infty$ while the left bound is always greater than 2. So $\{C_k\}$ is nonincreasing.

We have that $\lim_{k\to\infty} C_k = \bigcap_{k=1}^{\infty} C_k = \emptyset$. This is because there is no such set

$$C_k = \{ x : 2 < x \le 2 \}$$

C	۱
U	,

$$C_k = \left\{ (x, y) : 0 \le x^2 + y^2 \le \frac{1}{k} \right\} \text{ for } k = 1, 2, 3, \dots$$

We have $C_1 = \{(x, y) : 0 \le x^2 + y^2 \le 1\}, C_2 = \{(x, y) : 0 \le x^2 + y^2 \le \frac{1}{2}\}, \dots$

From this we can see that the left bound always contains 0 and that the right bound approaches 0 from above as $k \to \infty$. $\{C_k\}$ represents a sequence of circles centred at the origin ((x, y) = (0, 0)) whose radius decreases from 1 to 0 as $k \to \infty$. So $\{C_k\}$ is nonincreasing.

We also have that $\lim_{k\to\infty} C_k = \{(x, y) : x = 0, y = 0\}$ because all C_k only contain

$$\{(x,y): (x,y) = (0,0)\}$$

1.2.11(b)

Q(c) = 0 since 0 < x = y < 1 is a line, which has no area.

1.3.3

$$P(C) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \sum_{x=1}^{\infty} (\frac{1}{2})^x = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

The probability P assigns to the elements of C_1 to the probabilities of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$. Then

$$P(C_1) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = \frac{31}{32}$$

The probability P assigns the elements of C_2 to the probabilities of $\frac{1}{32}, \frac{1}{64}$. Then

$$P(C_2) = \frac{1}{32} + \frac{1}{64} = \frac{3}{64}$$

We have that $C_1 \cap C_2 = \{c : c \text{ is } TTTTH\}$. Thus

$$P(C_1 \cap C_2) = \frac{1}{32}$$

Finally we have that $C_1 \cup C_2 = \{c : c \text{ is } H, TH, TTH, TTTH, TTTTH, TTTTH\}$. Then

$$P(C_1 \cup C_2) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} = \frac{63}{64}$$

1.3.7

1. $P(C_1 \cap C_2) \le P(C_1)$

Proof: Since $(C_1 \cap C_2) \subseteq C_1$, and

$$P(C_1) = P[(C_1 \cap C_2) \cup (C_1 \cap C_2^c)] \stackrel{since they're mutually exclusive}{=} P(C_1 \cap C_2) + P(C_1 \cap C_2^c),$$

therefore
$$P(C_1) = P(C_1 \cap C_2) \text{ if and only if } P(C_1 \cap C_2^c) = 0$$

$$P(C_1) = P(C_1 \cap C_2) \text{ if and only if } P(C_1 \cap C_2^c) = 0$$

so $P(C_1) \ge P(C_1 \cap C_2).$

2. $P(C_1) \leq P(C_1 \cup C_2)$

Proof: Since $C_1 \subseteq (C_1 \cup C_2)$, and

$$P(C_1 \cup C_2) = P[C_1 \cup (C_1^c \cap C_2)] \stackrel{since \ they're \ mutually \ exclusive}{=} P(C_1) + P(C_1^c \cap C_2),$$

thus

$$P(C_1 \cup C_2) = P(C_1) \text{ only when } P(C_1^c \cap C_2) = 0$$

so $P(C_1 \cup C_2) \ge P(C_1)$

3. $P(C_1 \cup C_2) \leq P(C_1) + P(C_2)$ ∴ $P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1 \cap C_2)$ ∴ $P(C_1 \cup C_2) = P(C_1) + P(C_2)$ when $P(C_1 \cap C_2) = 0$ so $P(C_1 \cup C_2) \leq P(C_1) + P(C_2)$

From parts 1,2, and 3, we have shown that

$$P(C_1 \cap C_2) \le P(C_1) \le P(C_1 \cup C_2) \le P(C_1) + P(C_2)$$

1.3.22

a)

If C_1, C_2, C_3 are mutually exclusive, then

$$P\left(\cup_{i=1}^{3} C_{i}\right) = \sum_{i=1}^{3} P(C_{i}) \le 1$$

The restriction is that $0 \le p_1 + p_2 + p_3 \le 1$

b)

No, since $p_1 + p_2 + p_3 = \frac{12}{10} > 1$.

1.4.12

a)

Since C_1 and C_2 are independent,

$$P(C_1 \cap C_2) = P(C_1)P(C_2) = 0.6 \times 0.3 = 0.18$$

b)

Since C_1 and C_2 are independent,

$$P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1 \cap C_2) = 0.6 + 0.3 - 0.18 = 0.72$$

c)

$$P(C_1 \cup C_2^c) = 1 - P[(C_1 \cup C_2^c)^c] = 1 - P(C_1^c \cap C_2) = 1 - (0.4)(0.3) = 0.88$$

1.4.25

Since all three events are mutually independent,

$$P[(C_1^c \cap C_2^c) \cup C_3] = P(C_1^c \cap C_2^c) + P(C_3) - P[(C_1^c \cap C_2^c) \cap C_3]$$
$$= P(C_1^c)P(C_2^c) + P(C_3) - P(C_1^c)P(C_2^c)P(C_3)$$
$$= \left(\frac{3}{4}\right) \left(\frac{3}{4}\right) + \frac{1}{4} - \left(\frac{3}{4}\right) \left(\frac{3}{4}\right) \left(\frac{1}{4}\right) = \frac{43}{64}$$

1.4.30

If the prize is behind curtain 1 and we condition that the contestant has chosen to switch, this means that they had either chosen curtain 2 first and Monte opened curtain 3, or that they had chosen curtain 3 first and Monte opened curtain 2. Monte could not have opened curtain 1 since the prize was behind it. In both cases, the contestant would win since they would switch to curtain 1. They would only lose if they chose curtain 1 first. Therefore the conditional probability of the contestant winning given that they switch is $\frac{2}{3}$. Similarly, the same conditional probability would be obtained if the prize was behind curtain 2 or curtain 3. Therefore the contestant should switch curtains.

1.5.4

a)

$$F(x) = \begin{cases} 0 & x < 0\\ 1 & x \ge 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < -1 \\ \frac{1}{3} & -1 \le x < 0 \\ \frac{2}{3} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

c)

1.5.8

The plot could have either generated using R or drawn by hand (both are accepted). One possible way to plot F(x) by R is shown below:

```
x <- seq(-5, 5, 0.01)
F <- (x < -1) * 0 +
    (x >= 1) * 1 +
    (x >= -1 & x < 1) * (x/4+1/2)
plot(x, F, pch=20)
points(-1, y=1/4, pch=19)
points(1, y=1, pch=19)
points(-1, y=0, pch=21)
points(1,y=3/4,pch=21)</pre>
```


a)

$$P\left(-\frac{1}{2} < X \le \frac{1}{2}\right) = F\left(\frac{1}{2}\right) - F\left(-\frac{1}{2}\right) = \frac{5/2}{4} - \frac{3/2}{4} = \frac{1}{4}$$

b)

Since F(x) is continuous for -1 < x < 1,

$$P(X = 0) = F(0) - F(0^{-}) = 0$$

c)

$$P(X = 1) = F(1) - F(1^{-}) = 1 - \frac{3}{4} = \frac{1}{4}$$

d)

$$P(2 < X \le 3) = F(3) - F(2) = 1 - 1 = 0$$