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1.6.9

We have

P (Y = 1) = P (X2 = 1) = P (X = 1) + P (X = −1) =
1

3
+

1

3
=

2

3

P (Y = 0) = P (X2 = 0) = P (X = 0) =
1

3

Therefore

p(y) =


1
3 y = 0
2
3 y = 1

0 otherwise

1.7.18

We want to find an m such that P (X > m) = 0.05. This means that

1− P (X ≤ m) = 0.05⇒ P (X ≤ m) = 0.95

P (X ≤ m) =

∫ m

0

12x(1000− x)2

1012
dx

The integral is
6m210002 − 4m32000 + 3m4

1012
= 0.95

Solving the equation above for m we get

m = 751.40 or m = −326.19

Since m needs to be non-negative, we conclude that the store should have 752 gallons of ice
cream on hand every day.

1.8.6

a)

E(X2) =
∑

x:x=−1,0,1
x2p(x) = (−1)2p(−1) + 0(p(0)) + (1)2p(1) = p(−1) + p(1)

Since p(−1) + p(0) + p(1) = 1 and p(0) = 1
4 ,

p(−1) + p(1) = 1− 1

4
=

3

4

Therefore E(X2) = 3
4 .
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b)

E(X) = −1(p(−1)) + 0(p(0)) + 1(p(1)) = p(1)− p(−1)

Since p(−1) + p(0) + p(1) = 1 and p(0) = 1
4 ,

p(−1) + p(1) = 1− 1

4
=

3

4

Therefore, p(−1) = 3
4 − p(1), so

E(X) =
1

4
= p(1)−

(
3

4
− p(1)

)
⇒ 1 = p(1) + p(1)⇒ p(1) =

1

2

From this and the fact that p(−1) = 3
4 − p(1), we get

p(−1) =
3

4
− 1

2
=

1

4

1.9.7

M(t) = E(etX) =

∫ 2

−1

etx

3
dx =

etx

3t

∣∣∣2
−1

=
e2t − e−t

3t
when t 6= 0

When t = 0, by L’Hopital’s Rule,

limt→0
e2t − e−t

3t
= limt→0

2e2t + e−t

3
= 1

Therefore

M(t) =

{
e2t−e−t

3t t 6= 0

1 t = 0

1.10.2

We know Markov’s Inequality:

P (X ≥ c) ≤ E(X)

c

when X is a non-negative random variable, E(X) exists, and c is a positive constant. These
conditions hold for our problem. X is positive as P (X ≤ 0) = 0, and E(X) = µ exists. If
we take c = 2µ, c is positive since µ = E(X) is positive (X is positive). Therefore, when we
take c = 2µ and E(X) = µ,

P (X ≥ 2µ) ≤ µ

2µ
=

1

2

2.1.7

First, we can compute P (Z ≤ z):

F (z) = P (Z ≤ z) =

∫ z

0

∫ z−x

0

e−x−ydydx = 1− e−z − ze−z for 0 < z <∞

Using the above, we have
P (Z ≤ 0) = F (0) = 0

P (Z ≤ 6) = F (6) = 1− e−6 − 6e−6 = 1− 7e−6

f(z) =
d

dx
F (z) =

{
ze−z 0 < z <∞
0 otherwise
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2.1.10

a)

b)

P (X1 +X2 = 1)
∵X1,X2=0 or 1

= P (X1 = 1, X2 = 0) + P (X1 = 0, X2 = 1) =
2

12
+

3

12
=

5

12

2.2.8

a)

CDF method

F (w) = P (W ≤ w) =

∫ w
w1

0

∫ w−w1x1
w2

0

e−x1−x2dx2dx1

= 1− e
−w
w1 +

w2

w2 − w1
e

−w
w1 − w2

w2 − w1
e

−w
w2 = 1− 1

w2 − w1
(w2e

−w
w2 − w1e

−w
w1 ) for w > 0
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From this we get

f(w) =
d

dw
F (w) = − 1

w2 − w1
(−e

−w
w2 + e

−w
w1 ) =

1

w1 − w2
(e

−w
w1 − e

−w
w2 ) for w > 0

Transformation method

Let the dummy variable Z = w1X1. Then X1 = Z
w1

and X2 = W−Z
w2

. The Jacobian is

J =

[
0 1

w1

1
w2

−1
w2

]
=
−1

w1w2

Then we have

f(w, z) = fX1X2

(
z

w1
,
w − z
w2

)
|J |

=
e

−z
w1
− (w−z)

w2

w1w2
for

z

w1
> 0→ z > 0 and

w − z
w2

> 0→ w > z

From this we get

f(w) =

∫ w

0

e
−z
w1
− (w−z)

w2

w1w2
dz =

1

w1 − w2
(e

−w
w1 − e

−w
w2 ) for w > 0

Therefore

fW (w) =

{
1

w1−w2
(e

−w
w1 − e

−w
w2 ) w > 0

0 elsewhere

b)

Case 1: w1 > w2

We have that 1
w1−w2

> 0 and e
−w
w1 − e

−w
w2 > 0 so f(w) > 0.

Case 2: w1 < w2

We have that 1
w1−w2

< 0 and e
−w
w1 − e

−w
w2 < 0 so f(w) > 0.

Therefore f(w) > 0 when w > 0.

c)

Since h = w1 − w2, w2 = w1 − h, and when w1 = w2, h = 0, by L’Hopital’s Rule

limh→0
1

h
(e

−w
w1 − e

−w
w1−h ) = limh→0

w
(w1−h)2 e

−w
w1−h

1
=

w

w2
1

e
−w
w1 when w1 = w2

Therefore

fW (w) =

{
w
w2

1
e

−w
w1 w > 0

0 elsewhere

2.3.6

a)

f(x) =

∫ ∞
0

2

(1 + x+ y)3
dy =

1

(1 + x)2
for x > 0

f(y|x) =
f(x, y)

f(x)
=

2(1 + x)2

(1 + y + x)3
for x > 0, y > 0
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b)

E(1 +X + Y |X = x) = 1 + x+ E(Y |X = x)

= 1 + x+

∫ ∞
0

yf(x|y)dy = 1 + x+ 1 + x = 2(1 + x) for x > 0

From this we have already calculated

E(Y |X = x) = 1 + x for x > 0

2.5.2

a)

µ1 =
1

15
(1(2) + 1(4) + 1(3) + 2(1) + 2(1) + 2(4)) = 1.4

µ2 =
1

15
(1(2) + 2(4) + 3(3) + 1(1) + 2(1) + 3(4)) = 2.26̄

σ2
1 =

1

15
(1(2) + 1(4) + 1(3) + 22(1) + 22(1) + 22(4))− µ2 =

33

15
− 1.42 = 0.24

σ2
2 =

1

15
(1(2) + 22(4) + 32(3) + 1(1) + 22(1) + 32(4))− µ2 =

86

15
− 2.272 =

134

225

We also have

E(XY ) =
1

15
(1(1)(2) + 1(2)(4) + 1(3)(3) + 2(1)(1) + 2(2)(1) + 2(3)(4)) =

49

15

so

Cov(X,Y ) = E(XY )− µ1µ2 =
49

15
− (1.4)(2.26̄)

Therefore

ρ =
Cov(X,Y )

σ1σ2
=

49
15 − (1.4)(2.26̄)
√

0.24
√

134
225

= 0.25

b)

We have that

p(x = 1) =
1

15
(2 + 4 + 3) =

9

15

p(x = 2) =
1

15
(1 + 1 + 4) =

6

15
so

E(Y |X = 1) =

3∑
y=1

yp(y|x = 1) =

3∑
y=1

yp(1, y)

p(x = 1)
=

19

9

E(Y |X = 2) =

3∑
y=1

yp(y|x = 2) =

3∑
y=1

yp(2, y)

p(x = 2)
=

15

6

The line

µ2 + ρ(
σ2
σ1

)(x− µ1) = 2.26̄ + 0.25


√

134
225√

0.24

 (x− 1.4)
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Plugging in x = 1 and x = 2, we find that

E(Y |X = 1) = 2.26̄ + 0.25


√

134
225√

0.24

 (1− 1.4)

E(Y |X = 2) = 2.26̄ + 0.25


√

134
225√

0.24

 (2− 1.4)

Therefore the points [k,E(Y |X = k)], k = 1, 2 lie on this line.

2.6.3

P (Y ≤ y) = P (min(X1, ..., X4) ≤ y) = 1−P (min(X1, ..., X4) > y) = 1−P (X1 > y, ...,X4 > y)

Since X1, X2, X3, X4 are independent,

P (Y ≤ y) = 1− [1− P (Xi ≤ y)]4 = 1− [1− FXi
(y)]4

We have that

F (x) =

∫ x

0

3(1− x)2dx = 1− (1− x)3 for 0 < x < 1

so
F (y) = 1− [1− (1− (1− y)3)]4 = 1− (1− y)12 for 0 < y < 1

Therefore

F (y) =

{
1− (1− y)12 0 < y < 1

0 elsewhere

From this we get

f(y) =
d

dy
F (y) = 12(1− y)11 for 0 < y < 1

Therefore

f(y) =

{
12(1− y)11 0 < y < 1

0 elsewhere

3.1.7

P (X1 = X2) = P (X1 = 0, X2 = 0)+P (X1 = 1, X2 = 1)+P (X1 = 2, X2 = 2)+P (X1 = 3, X2 = 3)

Since X1 and X2 are independent, this is equal to

P (X1 = 0)P (X2 = 0)+P (X1 = 1)P (X2 = 1)+P (X1 = 2)P (X2 = 2)+P (X1 = 3)P (X2 = 3)

We calculate the probabilities in the above formula using the binomial pmf to get

P (X1 = X2) = 0.0023 + 0.0556 + 0.1667 + 0.074 = 0.2986

3.2.17

MY (t) = eµ(e
t−1) = E(et(X1+X2)) = eµ1(e

t−1)MX2
(t)

since X1 and X2 are independent. From this we get

MX2
(t) = e(µ−µ1)(e

t−1)

By the uniqueness of mgfs, X2 ∼ Poisson(µ− µ1).
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3.4.17

Skewness

First, we have that

E(X3) =

3∑
j=0

(
3

j

)
σjE(Zj)µ3−j = µ3 + 3σµ2E(Z) + 3σ2µE(Z2) + σ3E(Z3) = µ3 + 3σ2µ

So the measure of skewness is

E((X − µ)3)

σ3
=

1

σ3
E(X3 − 3µX2 + 3µ2X − µ3) =

1

σ3
(E(X3)− 3µE(X2) + 3µ2E(X)− µ3)

=
1

σ3
(µ3 + 3σ2µ− 3µ(µ2 + σ2) + 2µ3) = 0

Kurtosis

First, we have that

E(X4) =

4∑
j=0

(
4

j

)
σjE(Zj)µ4−j = µ4 + 4σµ3E(Z) + 6σ2µ2E(Z2) + 4σ3µE(Z3) + σ4E(Z4)

= σ4 + 6σ2µ2 + 3σ4

So the measure of kurtosis is

E((X − µ)4)

σ4
=

1

σ4
E(X4 − 4µX3 + 6µ2X2 − 4µ3X + µ4)

=
1

σ4
(E(X4)− 4µE(X3) + 6µ2E(X2)− 4µ3E(X) + µ4)

=
1

σ4
(µ4 + 6σ2µ2 + 3σ4 − 4µ(µ3 + 3µσ2) + 6µ2(µ2 + σ2)− 4µ4 + µ4) = 3

3.4.16 (7th edition of textbook)

P (exactly 2 of 3 random variables are < 0)

= P (X1, X2 < 0, X3 > 0) + P (X1, X3 < 0, X2 > 0) + P (X2, X3 < 0, X1 > 0)

= P (X1 < 0)P (X2 < 0)P (X3 < 0) + ... = Φ(
0− 0

1
)Φ(

0− 2√
4

)Φ(
0 + 1

1
) + ... = 0.433

3.6.16

a)

We have that X1 = Y1Y2

1+Y1
and X2 = Y2

1+Y1
.

Calculating the Jacobian, we get J = Y2

(1+Y1)2
. Then we have

fY1Y2
(y1, y2) = |J |fX1,X2

(
y1y2

1 + y1
,

y2
1 + y1

) =
y

r1
2 −1
1

(1 + y1)
r1+r2

2

× y
r1+r2

2 −1
2 e

−y2
2

2
1
2 (r1+r2)Γ( r12 )Γ( r22 )

= f(y1)×f(y2)

Since f(y1, y2) = f(y1)f(y2), we have shown that Y1 and Y2 are independent. Also, since
f(y2) is the pdf of χ2

(r1+r2)
, we have that Y2 ∼ χ2

(r1+r2)
.
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b)

Let W = X1/r1
X2/r2

. Since X1 and X2 are independent chi-square variables, W ∼ F (r1, r2).

Let Z = X3/r3
(X1+X2)/(r1+r2)

. Since X1 +X2 ∼ χ2
(r1+r2)

, Z ∼ F (r3, r1 + r2).

1

In part a), we have shown that W = Y1( r2r1 ) and Y2 = X1 +X2 are independent. Therefore

W and 1
Y2/(r1+r2)

are independent.

2

Since X3 is independent of X1 and X2, W must be independent of X3/r3.

3

Combining (1) and (2), we find that W is independent of X3/r3
Y2/(r1+r2)

, which means that W

and Z are independent.
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