Stat 330 Assignment 2 Solutions

Mandy Yao

October 2020

1.6.9

We have

$$
\begin{gathered}
P(Y=1)=P\left(X^{2}=1\right)=P(X=1)+P(X=-1)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3} \\
P(Y=0)=P\left(X^{2}=0\right)=P(X=0)=\frac{1}{3}
\end{gathered}
$$

Therefore

$$
p(y)= \begin{cases}\frac{1}{3} & y=0 \\ \frac{2}{3} & y=1 \\ 0 & \text { otherwise }\end{cases}
$$

1.7.18

We want to find an m such that $P(X>m)=0.05$. This means that

$$
\begin{gathered}
1-P(X \leq m)=0.05 \Rightarrow P(X \leq m)=0.95 \\
P(X \leq m)=\int_{0}^{m} \frac{12 x(1000-x)^{2}}{10^{12}} d x
\end{gathered}
$$

The integral is

$$
\frac{6 m^{2} 1000^{2}-4 m^{3} 2000+3 m^{4}}{10^{12}}=0.95
$$

Solving the equation above for m we get

$$
m=751.40 \text { or } m=-326.19
$$

Since m needs to be non-negative, we conclude that the store should have 752 gallons of ice cream on hand every day.

1.8.6

a)

$$
E\left(X^{2}\right)=\sum_{x: x=-1,0,1} x^{2} p(x)=(-1)^{2} p(-1)+0(p(0))+(1)^{2} p(1)=p(-1)+p(1)
$$

Since $p(-1)+p(0)+p(1)=1$ and $p(0)=\frac{1}{4}$,

$$
p(-1)+p(1)=1-\frac{1}{4}=\frac{3}{4}
$$

Therefore $E\left(X^{2}\right)=\frac{3}{4}$.

b)

$$
E(X)=-1(p(-1))+0(p(0))+1(p(1))=p(1)-p(-1)
$$

Since $p(-1)+p(0)+p(1)=1$ and $p(0)=\frac{1}{4}$,

$$
p(-1)+p(1)=1-\frac{1}{4}=\frac{3}{4}
$$

Therefore, $p(-1)=\frac{3}{4}-p(1)$, so

$$
E(X)=\frac{1}{4}=p(1)-\left(\frac{3}{4}-p(1)\right) \Rightarrow 1=p(1)+p(1) \Rightarrow p(1)=\frac{1}{2}
$$

From this and the fact that $p(-1)=\frac{3}{4}-p(1)$, we get

$$
p(-1)=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}
$$

1.9.7

$$
M(t)=E\left(e^{t X}\right)=\int_{-1}^{2} \frac{e^{t x}}{3} d x=\left.\frac{e^{t x}}{3 t}\right|_{-1} ^{2}=\frac{e^{2 t}-e^{-t}}{3 t} \text { when } t \neq 0
$$

When $t=0$, by L'Hopital's Rule,

$$
\lim _{t \rightarrow 0} \frac{e^{2 t}-e^{-t}}{3 t}=\lim _{t \rightarrow 0} \frac{2 e^{2 t}+e^{-t}}{3}=1
$$

Therefore

$$
M(t)= \begin{cases}\frac{e^{2 t}-e^{-t}}{3 t} & t \neq 0 \\ 1 & t=0\end{cases}
$$

1.10.2

We know Markov's Inequality:

$$
P(X \geq c) \leq \frac{E(X)}{c}
$$

when X is a non-negative random variable, $E(X)$ exists, and c is a positive constant. These conditions hold for our problem. X is positive as $P(X \leq 0)=0$, and $E(X)=\mu$ exists. If we take $c=2 \mu$, c is positive since $\mu=E(X)$ is positive (X is positive). Therefore, when we take $c=2 \mu$ and $E(X)=\mu$,

$$
P(X \geq 2 \mu) \leq \frac{\mu}{2 \mu}=\frac{1}{2}
$$

2.1.7

First, we can compute $P(Z \leq z)$:

$$
F(z)=P(Z \leq z)=\int_{0}^{z} \int_{0}^{z-x} e^{-x-y} d y d x=1-e^{-z}-z e^{-z} \text { for } 0<z<\infty
$$

Using the above, we have

$$
\begin{gathered}
P(Z \leq 0)=F(0)=0 \\
P(Z \leq 6)=F(6)=1-e^{-6}-6 e^{-6}=1-7 e^{-6} \\
f(z)=\frac{d}{d x} F(z)= \begin{cases}z e^{-z} & 0<z<\infty \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

2.1.10

a)

b)

$$
P\left(X_{1}+X_{2}=1\right) \stackrel{\because X_{1}, X_{2}=0 \text { or } 1}{=} P\left(X_{1}=1, X_{2}=0\right)+P\left(X_{1}=0, X_{2}=1\right)=\frac{2}{12}+\frac{3}{12}=\frac{5}{12}
$$

2.2.8

a)

CDF method

$$
F(w)=P(W \leq w)=\int_{0}^{\frac{w}{w_{1}}} \int_{0}^{\frac{w-w_{1} x_{1}}{w_{2}}} e^{-x_{1}-x_{2}} d x_{2} d x_{1}
$$

$$
=1-e^{\frac{-w}{w_{1}}}+\frac{w_{2}}{w_{2}-w_{1}} e^{\frac{-w}{w_{1}}}-\frac{w_{2}}{w_{2}-w_{1}} e^{\frac{-w}{w_{2}}}=1-\frac{1}{w_{2}-w_{1}}\left(w_{2} e^{\frac{-w}{w_{2}}}-w_{1} e^{\frac{-w}{w_{1}}}\right) \text { for } w>0
$$

From this we get

$$
f(w)=\frac{d}{d w} F(w)=-\frac{1}{w_{2}-w_{1}}\left(-e^{\frac{-w}{w_{2}}}+e^{\frac{-w}{w_{1}}}\right)=\frac{1}{w_{1}-w_{2}}\left(e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{2}}}\right) \text { for } w>0
$$

Transformation method

Let the dummy variable $Z=w_{1} X_{1}$. Then $X_{1}=\frac{Z}{w_{1}}$ and $X_{2}=\frac{W-Z}{w_{2}}$. The Jacobian is

$$
\mathbf{J}=\left[\begin{array}{cc}
0 & \frac{1}{w_{1}} \\
\frac{1}{w_{2}} & \frac{-1}{w_{2}}
\end{array}\right]=\frac{-1}{w_{1} w_{2}}
$$

Then we have

$$
\begin{gathered}
f(w, z)=f_{X_{1} X_{2}}\left(\frac{z}{w_{1}}, \frac{w-z}{w_{2}}\right)|J| \\
=\frac{e^{\frac{-z}{w_{1}}-\frac{(w-z)}{w_{2}}}}{w_{1} w_{2}} \text { for } \frac{z}{w_{1}}>0 \rightarrow z>0 \text { and } \frac{w-z}{w_{2}}>0 \rightarrow w>z
\end{gathered}
$$

From this we get

$$
f(w)=\int_{0}^{w} \frac{e^{\frac{-z}{w_{1}}-\frac{(w-z)}{w_{2}}}}{w_{1} w_{2}} d z=\frac{1}{w_{1}-w_{2}}\left(e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{2}}}\right) \text { for } w>0
$$

Therefore

$$
f_{W}(w)= \begin{cases}\frac{1}{w_{1}-w_{2}}\left(e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{2}}}\right) & w>0 \\ 0 & \text { elsewhere }\end{cases}
$$

b)

Case 1: $w_{1}>w_{2}$
We have that $\frac{1}{w_{1}-w_{2}}>0$ and $e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{2}}}>0$ so $f(w)>0$.
Case 2: $w_{1}<w_{2}$
We have that $\frac{1}{w_{1}-w_{2}}<0$ and $e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{2}}}<0$ so $f(w)>0$.
Therefore $f(w)>0$ when $w>0$.
c)

Since $h=w_{1}-w_{2}, w_{2}=w_{1}-h$, and when $w_{1}=w_{2}, h=0$, by L'Hopital's Rule

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left(e^{\frac{-w}{w_{1}}}-e^{\frac{-w}{w_{1}-h}}\right)=\lim _{h \rightarrow 0} \frac{\frac{w}{\left(w_{1}-h\right)^{2}} e^{\frac{-w}{w_{1}-h}}}{1}=\frac{w}{w_{1}^{2}} e^{\frac{-w}{w_{1}}} \text { when } w_{1}=w_{2}
$$

Therefore

$$
f_{W}(w)= \begin{cases}\frac{w}{w_{1}^{2}} e^{\frac{-w}{w_{1}}} & w>0 \\ 0 & \text { elsewhere }\end{cases}
$$

2.3.6

a)

$$
\begin{aligned}
& f(x)=\int_{0}^{\infty} \frac{2}{(1+x+y)^{3}} d y=\frac{1}{(1+x)^{2}} \text { for } x>0 \\
& f(y \mid x)=\frac{f(x, y)}{f(x)}=\frac{2(1+x)^{2}}{(1+y+x)^{3}} \text { for } x>0, y>0
\end{aligned}
$$

b)

$$
\begin{gathered}
E(1+X+Y \mid X=x)=1+x+E(Y \mid X=x) \\
=1+x+\int_{0}^{\infty} y f(x \mid y) d y=1+x+1+x=2(1+x) \text { for } x>0
\end{gathered}
$$

From this we have already calculated

$$
E(Y \mid X=x)=1+x \text { for } x>0
$$

2.5.2

a)

$$
\begin{gathered}
\mu_{1}=\frac{1}{15}(1(2)+1(4)+1(3)+2(1)+2(1)+2(4))=1.4 \\
\mu_{2}=\frac{1}{15}(1(2)+2(4)+3(3)+1(1)+2(1)+3(4))=2.2 \overline{6} \\
\sigma_{1}^{2}=\frac{1}{15}\left(1(2)+1(4)+1(3)+2^{2}(1)+2^{2}(1)+2^{2}(4)\right)-\mu^{2}=\frac{33}{15}-1.4^{2}=0.24 \\
\sigma_{2}^{2}=\frac{1}{15}\left(1(2)+2^{2}(4)+3^{2}(3)+1(1)+2^{2}(1)+3^{2}(4)\right)-\mu^{2}=\frac{86}{15}-2.27^{2}=\frac{134}{225}
\end{gathered}
$$

We also have

$$
E(X Y)=\frac{1}{15}(1(1)(2)+1(2)(4)+1(3)(3)+2(1)(1)+2(2)(1)+2(3)(4))=\frac{49}{15}
$$

so

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=E(X Y)-\mu_{1} \mu_{2}=\frac{49}{15}-(1.4) \tag{6}
\end{equation*}
$$

Therefore

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{1} \sigma_{2}}=\frac{\frac{49}{15}-(1.4)(2.2 \overline{6})}{\sqrt{0.24} \sqrt{\frac{134}{225}}}=0.25
$$

b)

We have that

$$
\begin{aligned}
& p(x=1)=\frac{1}{15}(2+4+3)=\frac{9}{15} \\
& p(x=2)=\frac{1}{15}(1+1+4)=\frac{6}{15}
\end{aligned}
$$

so

$$
\begin{aligned}
& E(Y \mid X=1)=\sum_{y=1}^{3} y p(y \mid x=1)=\sum_{y=1}^{3} \frac{y p(1, y)}{p(x=1)}=\frac{19}{9} \\
& E(Y \mid X=2)=\sum_{y=1}^{3} y p(y \mid x=2)=\sum_{y=1}^{3} \frac{y p(2, y)}{p(x=2)}=\frac{15}{6}
\end{aligned}
$$

The line

$$
\mu_{2}+\rho\left(\frac{\sigma_{2}}{\sigma_{1}}\right)\left(x-\mu_{1}\right)=2.2 \overline{6}+0.25\left(\frac{\sqrt{\frac{134}{225}}}{\sqrt{0.24}}\right)(x-1.4)
$$

Plugging in $x=1$ and $x=2$, we find that

$$
\begin{aligned}
& E(Y \mid X=1)=2.2 \overline{6}+0.25\left(\frac{\sqrt{\frac{134}{225}}}{\sqrt{0.24}}\right)(1-1.4) \\
& E(Y \mid X=2)=2.2 \overline{6}+0.25\left(\frac{\sqrt{\frac{134}{225}}}{\sqrt{0.24}}\right)(2-1.4)
\end{aligned}
$$

Therefore the points $[k, E(Y \mid X=k)], k=1,2$ lie on this line.

2.6.3

$P(Y \leq y)=P\left(\min \left(X_{1}, \ldots, X_{4}\right) \leq y\right)=1-P\left(\min \left(X_{1}, \ldots, X_{4}\right)>y\right)=1-P\left(X_{1}>y, \ldots, X_{4}>y\right)$
Since $X_{1}, X_{2}, X_{3}, X_{4}$ are independent,

$$
P(Y \leq y)=1-\left[1-P\left(X_{i} \leq y\right)\right]^{4}=1-\left[1-F_{X_{i}}(y)\right]^{4}
$$

We have that

$$
F(x)=\int_{0}^{x} 3(1-x)^{2} d x=1-(1-x)^{3} \text { for } 0<x<1
$$

so

$$
F(y)=1-\left[1-\left(1-(1-y)^{3}\right)\right]^{4}=1-(1-y)^{12} \text { for } 0<y<1
$$

Therefore

$$
F(y)= \begin{cases}1-(1-y)^{12} & 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

From this we get

$$
f(y)=\frac{d}{d y} F(y)=12(1-y)^{11} \text { for } 0<y<1
$$

Therefore

$$
f(y)= \begin{cases}12(1-y)^{11} & 0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

3.1.7

$P\left(X_{1}=X_{2}\right)=P\left(X_{1}=0, X_{2}=0\right)+P\left(X_{1}=1, X_{2}=1\right)+P\left(X_{1}=2, X_{2}=2\right)+P\left(X_{1}=3, X_{2}=3\right)$
Since X_{1} and X_{2} are independent, this is equal to

$$
P\left(X_{1}=0\right) P\left(X_{2}=0\right)+P\left(X_{1}=1\right) P\left(X_{2}=1\right)+P\left(X_{1}=2\right) P\left(X_{2}=2\right)+P\left(X_{1}=3\right) P\left(X_{2}=3\right)
$$

We calculate the probabilities in the above formula using the binomial pmf to get

$$
P\left(X_{1}=X_{2}\right)=0.0023+0.0556+0.1667+0.074=0.2986
$$

3.2.17

$$
M_{Y}(t)=e^{\mu\left(e^{t}-1\right)}=E\left(e^{t\left(X_{1}+X_{2}\right)}\right)=e^{\mu_{1}\left(e^{t}-1\right)} M_{X_{2}}(t)
$$

since X_{1} and X_{2} are independent. From this we get

$$
M_{X_{2}}(t)=e^{\left(\mu-\mu_{1}\right)\left(e^{t}-1\right)}
$$

By the uniqueness of mgfs, $X_{2} \sim \operatorname{Poisson}\left(\mu-\mu_{1}\right)$.

3.4.17

Skewness

First, we have that

$$
E\left(X^{3}\right)=\sum_{j=0}^{3}\binom{3}{j} \sigma^{j} E\left(Z^{j}\right) \mu^{3-j}=\mu^{3}+3 \sigma \mu^{2} E(Z)+3 \sigma^{2} \mu E\left(Z^{2}\right)+\sigma^{3} E\left(Z^{3}\right)=\mu^{3}+3 \sigma^{2} \mu
$$

So the measure of skewness is

$$
\begin{gathered}
\frac{E\left((X-\mu)^{3}\right)}{\sigma^{3}}=\frac{1}{\sigma^{3}} E\left(X^{3}-3 \mu X^{2}+3 \mu^{2} X-\mu^{3}\right)=\frac{1}{\sigma^{3}}\left(E\left(X^{3}\right)-3 \mu E\left(X^{2}\right)+3 \mu^{2} E(X)-\mu^{3}\right) \\
=\frac{1}{\sigma^{3}}\left(\mu^{3}+3 \sigma^{2} \mu-3 \mu\left(\mu^{2}+\sigma^{2}\right)+2 \mu^{3}\right)=0
\end{gathered}
$$

Kurtosis

First, we have that

$$
\begin{gathered}
E\left(X^{4}\right)=\sum_{j=0}^{4}\binom{4}{j} \sigma^{j} E\left(Z^{j}\right) \mu^{4-j}=\mu^{4}+4 \sigma \mu^{3} E(Z)+6 \sigma^{2} \mu^{2} E\left(Z^{2}\right)+4 \sigma^{3} \mu E\left(Z^{3}\right)+\sigma^{4} E\left(Z^{4}\right) \\
=\sigma^{4}+6 \sigma^{2} \mu^{2}+3 \sigma^{4}
\end{gathered}
$$

So the measure of kurtosis is

$$
\begin{gathered}
\frac{E\left((X-\mu)^{4}\right)}{\sigma^{4}}=\frac{1}{\sigma^{4}} E\left(X^{4}-4 \mu X^{3}+6 \mu^{2} X^{2}-4 \mu^{3} X+\mu^{4}\right) \\
=\frac{1}{\sigma^{4}}\left(E\left(X^{4}\right)-4 \mu E\left(X^{3}\right)+6 \mu^{2} E\left(X^{2}\right)-4 \mu^{3} E(X)+\mu^{4}\right) \\
=\frac{1}{\sigma^{4}}\left(\mu^{4}+6 \sigma^{2} \mu^{2}+3 \sigma^{4}-4 \mu\left(\mu^{3}+3 \mu \sigma^{2}\right)+6 \mu^{2}\left(\mu^{2}+\sigma^{2}\right)-4 \mu^{4}+\mu^{4}\right)=3
\end{gathered}
$$

3.4.16 (7th edition of textbook)

$$
\begin{gathered}
P(\text { exactly } 2 \text { of } 3 \text { random variables are }<0) \\
=P\left(X_{1}, X_{2}<0, X_{3}>0\right)+P\left(X_{1}, X_{3}<0, X_{2}>0\right)+P\left(X_{2}, X_{3}<0, X_{1}>0\right) \\
=P\left(X_{1}<0\right) P\left(X_{2}<0\right) P\left(X_{3}<0\right)+\ldots=\Phi\left(\frac{0-0}{1}\right) \Phi\left(\frac{0-2}{\sqrt{4}}\right) \Phi\left(\frac{0+1}{1}\right)+\ldots=0.433
\end{gathered}
$$

3.6.16

a)

We have that $X_{1}=\frac{Y_{1} Y_{2}}{1+Y_{1}}$ and $X_{2}=\frac{Y_{2}}{1+Y_{1}}$.
Calculating the Jacobian, we get $J=\frac{Y_{2}}{\left(1+Y_{1}\right)^{2}}$. Then we have
$f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)=|J| f_{X_{1}, X_{2}}\left(\frac{y_{1} y_{2}}{1+y_{1}}, \frac{y_{2}}{1+y_{1}}\right)=\frac{y_{1}^{\frac{r_{1}}{2}-1}}{\left(1+y_{1}\right)^{\frac{r_{1}+r_{2}}{2}}} \times \frac{y_{2}^{\frac{r_{1}+r_{2}}{2}-1} e^{\frac{-y_{2}}{2}}}{2^{\frac{1}{2}\left(r_{1}+r_{2}\right)} \Gamma\left(\frac{r_{1}}{2}\right) \Gamma\left(\frac{r_{2}}{2}\right)}=f\left(y_{1}\right) \times f\left(y_{2}\right)$
Since $f\left(y_{1}, y_{2}\right)=f\left(y_{1}\right) f\left(y_{2}\right)$, we have shown that Y_{1} and Y_{2} are independent. Also, since $f\left(y_{2}\right)$ is the pdf of $\chi_{\left(r_{1}+r_{2}\right)}^{2}$, we have that $Y_{2} \sim \chi_{\left(r_{1}+r_{2}\right)}^{2}$.

b)

Let $W=\frac{X_{1} / r_{1}}{X_{2} / r_{2}}$. Since X_{1} and X_{2} are independent chi-square variables, $W \sim F\left(r_{1}, r_{2}\right)$.
Let $Z=\frac{X_{3} / r_{3}}{\left(X_{1}+X_{2}\right) /\left(r_{1}+r_{2}\right)}$. Since $X_{1}+X_{2} \sim \chi_{\left(r_{1}+r_{2}\right)}^{2}, Z \sim F\left(r_{3}, r_{1}+r_{2}\right)$.

1
In part a), we have shown that $W=Y_{1}\left(\frac{r_{2}}{r_{1}}\right)$ and $Y_{2}=X_{1}+X_{2}$ are independent. Therefore W and $\frac{1}{Y_{2} /\left(r_{1}+r_{2}\right)}$ are independent.

2
Since X_{3} is independent of X_{1} and X_{2}, W must be independent of X_{3} / r_{3}.

3
Combining (1) and (2), we find that W is independent of $\frac{X_{3} / r_{3}}{Y_{2} /\left(r_{1}+r_{2}\right)}$, which means that W and Z are independent.

