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3.1.29

X1 and X5 are independent, with X; ~ Bin(nq, 2) and X5 ~ Bin(na, 2) We want to show
that Y = X7 — X3 + n2 ~ Bin(n; + na, 2) We have that
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By the uniqueness of MGFs, Y ~ Bin(n; + na, %)

3.5.6

We have that
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Since U and V are independent,
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This means that we need to find
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We can transform the exponent:
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where 01 = 09 = Wit With parameters p; = pp = 0,01 = 09 = (1 — t2)"1/2, p = ¢, the
integral of the bivariate normal pdf is
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Then we have that
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Since 1 — 2 > 0, we require that —1 < ¢ < 1.

3.5.6 (7th Edition of Textbook)
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We have that (X,Y) ~ BN(u,X), with p = (N2> = (40), Y= (3.6 1) From this,

we get that
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Then the shortest interval for which P(Y|X = 22) = 0.90 is

P(Y|X =22) = E(Y|X = 22) £ 1.645(2)/1 — 0.62 = 40.8 + 2.6 = (38.2,43.4)

3.6.11

We have that T = W//V/r, W and V are independent, W ~ N(0,1), and V ~ X%’r‘)’ We
want to show that T2 ~ F(1,r). First, we can see that

T2 = (WY =

By theorem 3.4.1 in the textbook, W2 ~ X%l)' Therefore, since W2 and V are independent,
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We have that g(0) ~ I'(a, B), so
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Therefore the compound (marginal) pdf of X is that of Burr.

4.1.5
a)

Since any continuous CDF has a Unif(0,1) distribution, F(X;) ~ Unif(0,1) and
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Similarly
P(X; < X;,i=1,2,..,n) = E[P(X; < X;,i=1,2,...,n|X})]
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b)
We have that

PY=j-1)=P(X; < X9,...X1 <X;_1,X1 > X;) = E[(1 - F(X1)) ?F(X;)]
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Therefore both the mean and variance of Y do not exist.

Var(Y) =

M)

4.2.8

We want to find n so that

— 1
P(X—f<u<X+§)=0.954



From this we get that o = 0.046 and (using a table) z,/o = 1.995. The confidence interval
is

(f - Za/2o'/\/?la§+ Za/QO'/\/ﬁ)'

From this we get

1
Za 20 /NN = 3= 1.995 x V10 x 2 = v/n = n = 159.201.

Therefore > the value of n so that the probability is approximately 0.954 that the random
interval (X — 1, X — 3) includes p is 160.

4.2.18
a)
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Since n = 9 and s? = 7.93,

P <(8)(293) <o?< (8)27693)) =0.95,

where b = X?8,0.975) =17.535 and a = X%S,O.OQS) = 2.18. Therefore the interval
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= (3.618,29.101).
b a 17.535 2.18) (8.618,29.101)

c)
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If p is known, we know that » ., (M) ~ an). Then
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4.4.6
a)

Let m be the median of the distribution. Then

F(m):P(XSm):/ 2zdr = m? = 0.5.
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Now
F(Xq)) = P(min(X1, X2, X3) < y)

=1-P((X1,X2,X3)>y)=1—P(X; >y)P(Xo >y)P(X3>y)=1—(1—2%>

From this we get
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First, we find that
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Now we get that
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4.4.22
a)
We have that P
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From this we get

Z Z3 A
Zy=(n—-1)(Y, — — Yy = —
2= (Y n): 2 n71+n
Similarly,
Zs3 Zs Z " Z;
Ys = — . ...Y, = _—
3 n—2+n—1+n’ o —n—itl



Therefore we get the jacobian

L0 o0 o0 0
L1 0 o0 0
1
R R
1 1
We also know that
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Now we have
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From this we can see that the Z!s are clearly independent since
f(z1y oy 2n) = f(z1) - -+ - f(zn), and that each Z; has the exponential distribution.

b)

Z%‘Yi =a1Y1 +aYo + ...+ a, Y.

i=1
In part a, we have shown that Z; = nY1,Z, = (n — 1)(Y2 — Y1),...,.Z, = Y, — Y,,_1 are
independent. We also had that
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Therefore we can see that all Y7, ..., Y, can be expressed as linear functions of independent
random variables, since in part a we have already shown that 7y, ..., Z,, are independent.

4.5.3

We have that ;
1(68) = Py((X1, X5) € C) = Py (X1X2 > 4) |

Now
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So we get
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~(1) is the significance, and (2) is the power when 6 = 2.



