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3.1.29

X1 and X2 are independent, with X1 ∼ Bin(n1,
1
2 ) and X2 ∼ Bin(n2,

1
2 ). We want to show

that Y = X1 −X2 + n2 ∼ Bin(n1 + n2,
1
2 ). We have that

MY (t) = E(etY ) = E(et(X1−X2+n2)) = E(etX1)E(e−tX2)E(etn2) = E(etX1)E(e−tX2)etn2
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By the uniqueness of MGFs, Y ∼ Bin(n1 + n2,
1
2 ).

3.5.6

We have that

E(etUV ) =

∫ +∞

−∞

∫ +∞

−∞
etuvfU,V (u, v)dudv.

Since U and V are independent,

fU,V (u, v) = fU (u)fV (v) =
1

2π
e−(u

2+v2)/2.

This means that we need to find

E(etUV ) =

∫ +∞

−∞

∫ +∞

−∞

1

2π
etuv−u

2/2−v2/2dudv.

We can transform the exponent:

tuv − u2

2
− v2

2
= −1

2
(u2 − 2tuv + v2) = − 1

2(1− t2)
(u2(1− t2)− 2tuv(1− t2) + v2(1− t2))

= − 1
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.

Denote

− 1
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)2

− 2t

(
u
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)(
v
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)
+

(
v

σ2

)2 ]
= −q

2
,

where σ1 = σ2 = 1√
1−t2 . With parameters µ1 = µ2 = 0, σ1 = σ2 = (1 − t2)−1/2, ρ = t, the

integral of the bivariate normal pdf is∫ +∞

−∞

∫ +∞

−∞

1

2πσ1σ2
√

1− t2
e−q/2dudv = 1
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Then we have that

E(etUV ) =

∫ +∞

−∞

∫ +∞

−∞

1

2π
e−q/2dudv = σ1σ2

√
1− t2

∫ +∞

−∞

∫ +∞

−∞

1

2πσ1σ2
√

1− t2
e−q/2dudv

= σ1σ2
√

1− t2 =
1√

1− t2
1√

1− t2
√

1− t2 = (1− t2)−1/2.

Since 1− t2 > 0, we require that −1 < t < 1.

3.5.6 (7th Edition of Textbook)

We have that (X,Y ) ∼ BN(
¯
µ,Σ), with

¯
µ =

(
µ1

µ2

)
=

(
20
40

)
, Σ =

(
9 3.6

3.6 4

)
. From this,

we get that

E(Y |X = 22) = µ1 + ρ
σ2
σ1

(x− µ1) = 40 +

(
6

10

)(
2

3

)
(22− 20) = 40.8

Then the shortest interval for which P (Y |X = 22) = 0.90 is

P (Y |X = 22) = E(Y |X = 22)± 1.645(2)
√

1− 0.62 = 40.8± 2.6 = (38.2, 43.4)

3.6.11

We have that T = W/
√
V/r, W and V are independent, W ∼ N(0, 1), and V ∼ χ2

(r). We

want to show that T 2 ∼ F (1, r). First, we can see that

T 2 = (W/
√
V/r)2 =

W 2

V/r
.

By theorem 3.4.1 in the textbook, W 2 ∼ χ2
(1). Therefore, since W 2 and V are independent,

T 2 =
W 2/1

V/r
∼ F (1, r).

3.7.13

We have that g(θ) ∼ Γ(α, β), so

f(x, θ) = f(x|θ)g(θ) = θτxτ−1e−θx
τ 1

Γ(α)βα
θα−1e−θ/β =

θατxτ−1e−θ(x
τ+β−1)

Γ(α)βα
.

From this we get

f(x) =

∫ ∞
0

θατxτ−1e−θ(x
τ+β−1)

Γ(α)βα
dθ

= (xτ + β−1)−(α+1) × τxτ−1Γ(α+ 1)

βαΓ(α)

∫ ∞
0

θαe−θ(x
τ+β−1)

Γ(α+ 1)(xτ + β−1)−(α+1)
dθ.

Since
θαe−θ(x

τ+β−1)

Γ(α+ 1)(xτ + β−1)−(α+1)
∼ Γ

(
α+ 1,

(
1

β
(βxτ + 1)

)−1)
,

We have that ∫ ∞
0

θαe−θ(x
τ+β−1)

Γ(α+ 1)(xτ + β−1)−(α+1)
dθ = 1.
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Therefore

f(x) = (xτ + β−1)−(α+1) × τxτ−1Γ(α+ 1)

βαΓ(α)
=

ατxτ−1(
1
β

)α+1

(1 + βxτ )α+1βα

=
αβτxτ−1

(1 + βxτ )α+1
.

Therefore the compound (marginal) pdf of X is that of Burr.

4.1.5

a)

Since any continuous CDF has a Unif(0,1) distribution, F (X1) ∼ Unif(0, 1) and

P (X1 ≤ X2) = E[P (X1 ≤ X2|X1)] = E[(1− FX2(X1))] =

∫ 1

0

udu =
1

2
.

Similarly
P (X1 ≤ Xi, i = 1, 2, ..., n) = E[P (X1 ≤ Xi, i = 1, 2, ..., n|X1)]

= E[(1− F (X1))n−1] =

∫ 1

0

un−1du =
1

n
.

b)

We have that

P (Y = j − 1) = P (X1 ≤ X2, ..., X1 ≤ Xj−1, X1 > Xj) = E[(1− F (X1))j−2F (X1)]

=

∫ 1

0

uj−2(1− u)du =
1

j(j − 1)
.

Therefore

P (Y = y) =
1

y(y + 1)
, y = 1, 2, 3, ....

c)

E(Y ) =

∞∑
y=1

y

y(y + 1)
=

∞∑
y=1

1

y + 1
=∞.

V ar(Y ) =

∞∑
y=1

y

y + 1
−

( ∞∑
y=1

1

1 + y

)2

=∞

Therefore both the mean and variance of Y do not exist.

4.2.8

We want to find n so that

P (X − 1

2
< µ < X +

1

2
) = 0.954
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From this we get that α = 0.046 and (using a table) zα/2 = 1.995. The confidence interval
is

(x− zα/2σ/
√
n, x+ zα/2σ/

√
n).

From this we get

zα/2σ/
√
n =

1

2
⇒ 1.995×

√
10× 2 =

√
n⇒ n = 159.201.

Therefore the value of n so that the probability is approximately 0.954 that the random
interval (X − 1

2 , X −
1
2 ) includes µ is 160.

4.2.18

a)

P (a < (n− 1)S2/σ2 < b) = P

(
1

b
<

σ2

(n− 1)S2
<

1

a

)
= P

(
(n− 1)S2

b
< σ2 <

(n− 1)S2

a

)
= 0.95

b)

Since n = 9 and s2 = 7.93,

P

(
(8)(7.93)

b
< σ2 <

(8)(7.93)

a

)
= 0.95,

where b = χ2
(8,0.975) = 17.535 and a = χ2

(8,0.025) = 2.18. Therefore the interval(
(8)(7.93)

b
,

(8)(7.93)

a

)
=

(
(8)(7.93)

17.535
,

(8)(7.93)

2.18

)
= (3.618, 29.101).

c)

If µ is known, we know that
∑n
i=1

(
Xi−µ
σ

)2
∼ χ2

(n). Then

P

(
χ2
(n,a) <

n∑
i=1

(
Xi − µ
σ

)2

< χ2
(n,b)

)
= P

(
1

χ2
(n,b)

<
σ2∑n

i=1(Xi − µ)2
<

1

χ2
(n,a)

)

= P

(∑n
i=1(Xi − µ)2

χ2
(n,b)

< σ2 <

∑n
i=1(Xi − µ)2

χ2
(n,a)

)

4.4.6

a)

Let m be the median of the distribution. Then

F (m) = P (X ≤ m) =

∫ m

0

2xdx = m2 = 0.5.

⇒ m =

√
1

2
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Now
F (X(1)) = P (min(X1, X2, X3) ≤ y)

= 1− P ((X1, X2, X3) > y) = 1− P (X1 > y)P (X2 > y)P (X3 > y) = 1− (1− x2)3.

From this we get

P

(
X(1) >

√
1

2

)
= 1− P

(
X(1) ≤

√
1

2

)
= 1−

1−

(
1−

√
1

2

2)3
 =

1

8
.

b)

First, we find that

f(y2) = 3!(y22)(1− y22)3−2(2y2) = 12y32(1− y22) for 0 < y2 < 1

f(y3) = 3(y23)3−1(1− y23)3−32y3 = 6y53 for 0 < y3 < 1

f(y2, y3) = 3!(y22)2−1(y23 − y22)0(1− y23)02y22y3 = 24y32y3 for 0 < y2 ≤ y3 < 1

Now we get that

E(Y2) =

∫ 1

0

12y42(1− y22)dy2 =
24

35

E(Y3) =

∫ 1

0

6y63dy3 =
6

7

V ar(Y2) =
1

2
−
(

24

35

)2

V ar(Y3) =
3

4
−
(

6

7

)2

E(Y2Y3) =

∫ 1

0

∫ y3

0

24y42y
2
3dy2dy3 =

3

5

Therefore

ρ(Y2, Y3) =
cov(Y2, Y3)√

V ar(Y2)V ar(Y3)
= 0.5734

4.4.22

a)

We have that

Y1 =
Z1

n

From this we get

Z2 = (n− 1)(Y2 −
Z1

n
)⇒ Y2 =

Z2

n− 1
+
Z1

n

Similarly,

Y3 =
Z3

n− 2
+

Z2

n− 1
+
Z1

n
, ..., Yn =

n∑
i=1

Zi
n− i+ 1
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Therefore we get the jacobian

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n 0 0 0 · · · 0

1
n

1
n−1 0 0 · · · 0

1
n

1
n−1

1
n−2 0 · · · 0

...
...

...
. . .

...

1
n 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

n!
.

We also know that

f(y1, y2, ..., yn) = n!f(y1) · · · · · f(yn) = n!e−
∑n
i=1 yi for 0 < y1 < ... < yn <∞.

Now we have

f(z1, z2, ..., zn) = |J |f(y1, y2, ..., yn) =
n!

n!
f(y1)f(y2) · · · · · f(yn) for 0 < y1 < ... < yn

= e−
z1
n e−

z2
n−1−

z1
n ·· · ··e−

∑n
i=1

zi
n−i+1 = e−

∑n
i=1

z1
n −

∑n−1
i=1

z2
n−1−...−zn = e−z1−z2−...−zn for zi > 0.

From this we can see that the Z ′is are clearly independent since
f(z1, ..., zn) = f(z1) · · · · · f(zn), and that each Zi has the exponential distribution.

b)
n∑
i=1

aiYi = a1Y1 + a2Y2 + ...+ anYn.

In part a, we have shown that Z1 = nY1, Z2 = (n − 1)(Y2 − Y1), ..., Zn = Yn − Yn−1 are
independent. We also had that

Y1 =
Z1

n
, Y2 =

Z2

n− 1
+
Z1

n
, ..., Yn = Zn + ...+

Z1

n
.

Now
n∑
i=1

aiYi = a1

(
Z1

n

)
+ a2

(
Z2

n− 1
+
Z1

n

)
+ ...+ an

(
Zn + ...+

Z1

n

)
.

Therefore we can see that all Y1, ..., Yn can be expressed as linear functions of independent
random variables, since in part a we have already shown that Z1, ..., Zn are independent.

4.5.3

We have that

γ(θ) = Pθ((X1, X2) ∈ C) = Pθ

(
X1X2 ≥

3

4

)
.

Now

∵ X1X2 ≥
3

4
⇒ X2 ≥

3

4X1
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So we get

γ(θ) =

∫ 1

3
4

∫ 1

3
4x1

θ2(x1x2)θ−1dx2dx1 =

∫ 1

3
4

θxθ−11 − θ

x1

(
3

4

)θ
dx1 =

= 1−
(

3

4

)θ
+ θ

(
3

4

)θ
log

(
3

4

)
for θ = 1, 2.

γ(1) is the significance, and γ(2) is the power when θ = 2.
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