Stat 330 Assignment 3 Solutions

Mandy Yao

October 2020

3.1.29

X_{1} and X_{2} are independent, with $X_{1} \sim \operatorname{Bin}\left(n_{1}, \frac{1}{2}\right)$ and $X_{2} \sim \operatorname{Bin}\left(n_{2}, \frac{1}{2}\right)$. We want to show that $Y=X_{1}-X_{2}+n_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, \frac{1}{2}\right)$. We have that

$$
\begin{aligned}
& M_{Y}(t)=E\left(e^{t Y}\right)=E\left(e^{t\left(X_{1}-X_{2}+n_{2}\right)}\right)=E\left(e^{t X_{1}}\right) E\left(e^{-t X_{2}}\right) E\left(e^{t n_{2}}\right)=E\left(e^{t X_{1}}\right) E\left(e^{-t X_{2}}\right) e^{t n_{2}} \\
& =e^{t n_{2}}\left(\frac{1}{2}+\frac{1}{2} e^{t}\right)^{n_{1}}\left(\frac{1}{2}+\frac{1}{2} e^{-t}\right)^{n_{2}}=\left(\frac{1}{2}+\frac{1}{2} e^{t}\right)^{n_{1}}\left(\frac{1}{2} e^{t}+\frac{1}{2}\right)^{n_{2}}=\left(\frac{1}{2}+\frac{1}{2} e^{t}\right)^{n_{1}+n_{2}}
\end{aligned}
$$

By the uniqueness of MGFs, $Y \sim \operatorname{Bin}\left(n_{1}+n_{2}, \frac{1}{2}\right)$.

3.5.6

We have that

$$
E\left(e^{t U V}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{t u v} f_{U, V}(u, v) d u d v
$$

Since U and V are independent,

$$
f_{U, V}(u, v)=f_{U}(u) f_{V}(v)=\frac{1}{2 \pi} e^{-\left(u^{2}+v^{2}\right) / 2}
$$

This means that we need to find

$$
E\left(e^{t U V}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2 \pi} e^{t u v-u^{2} / 2-v^{2} / 2} d u d v
$$

We can transform the exponent:

$$
\begin{aligned}
t u v & -\frac{u^{2}}{2}-\frac{v^{2}}{2}=-\frac{1}{2}\left(u^{2}-2 t u v+v^{2}\right)=-\frac{1}{2\left(1-t^{2}\right)}\left(u^{2}\left(1-t^{2}\right)-2 t u v\left(1-t^{2}\right)+v^{2}\left(1-t^{2}\right)\right) \\
& =-\frac{1}{2\left(1-t^{2}\right)}\left[\left(\frac{u}{1 / \sqrt{1-t^{2}}}\right)^{2}-2 t\left(\frac{u}{1 / \sqrt{1-t^{2}}}\right)\left(\frac{v}{1 / \sqrt{1-t^{2}}}\right)+\left(\frac{v}{1 / \sqrt{1-t^{2}}}\right)^{2}\right]
\end{aligned}
$$

Denote

$$
-\frac{1}{2\left(1-t^{2}\right)}\left[\left(\frac{u}{\sigma_{1}}\right)^{2}-2 t\left(\frac{u}{\sigma_{1}}\right)\left(\frac{v}{\sigma_{2}}\right)+\left(\frac{v}{\sigma_{2}}\right)^{2}\right]=-\frac{q}{2}
$$

where $\sigma_{1}=\sigma_{2}=\frac{1}{\sqrt{1-t^{2}}}$. With parameters $\mu_{1}=\mu_{2}=0, \sigma_{1}=\sigma_{2}=\left(1-t^{2}\right)^{-1 / 2}, \rho=t$, the integral of the bivariate normal pdf is

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-t^{2}}} e^{-q / 2} d u d v=1
$$

Then we have that

$$
\begin{gathered}
E\left(e^{t U V}\right)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2 \pi} e^{-q / 2} d u d v=\sigma_{1} \sigma_{2} \sqrt{1-t^{2}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-t^{2}}} e^{-q / 2} d u d v \\
=\sigma_{1} \sigma_{2} \sqrt{1-t^{2}}=\frac{1}{\sqrt{1-t^{2}}} \frac{1}{\sqrt{1-t^{2}}} \sqrt{1-t^{2}}=\left(1-t^{2}\right)^{-1 / 2}
\end{gathered}
$$

Since $1-t^{2}>0$, we require that $-1<t<1$.

3.5.6 (7th Edition of Textbook)

We have that $(X, Y) \sim B N(\underline{\mu}, \Sigma)$, with $\underline{\mu}=\binom{\mu_{1}}{\mu_{2}}=\binom{20}{40}, \Sigma=\left(\begin{array}{cc}9 & 3.6 \\ 3.6 & 4\end{array}\right)$. From this, we get that

$$
E(Y \mid X=22)=\mu_{1}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)=40+\left(\frac{6}{10}\right)\left(\frac{2}{3}\right)(22-20)=40.8
$$

Then the shortest interval for which $P(Y \mid X=22)=0.90$ is

$$
P(Y \mid X=22)=E(Y \mid X=22) \pm 1.645(2) \sqrt{1-0.6^{2}}=40.8 \pm 2.6=(38.2,43.4)
$$

3.6.11

We have that $T=W / \sqrt{V / r}, \mathrm{~W}$ and V are independent, $W \sim N(0,1)$, and $V \sim \chi_{(r)}^{2}$. We want to show that $T^{2} \sim F(1, r)$. First, we can see that

$$
T^{2}=(W / \sqrt{V / r})^{2}=\frac{W^{2}}{V / r}
$$

By theorem 3.4.1 in the textbook, $W^{2} \sim \chi_{(1)}^{2}$. Therefore, since W^{2} and V are independent,

$$
T^{2}=\frac{W^{2} / 1}{V / r} \sim F(1, r)
$$

3.7.13

We have that $g(\theta) \sim \Gamma(\alpha, \beta)$, so

$$
f(x, \theta)=f(x \mid \theta) g(\theta)=\theta \tau x^{\tau-1} e^{-\theta x^{\tau}} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \theta^{\alpha-1} e^{-\theta / \beta}=\frac{\theta^{\alpha} \tau x^{\tau-1} e^{-\theta\left(x^{\tau}+\beta^{-1}\right)}}{\Gamma(\alpha) \beta^{\alpha}}
$$

From this we get

$$
\begin{gathered}
f(x)=\int_{0}^{\infty} \frac{\left.\theta^{\alpha} \tau x^{\tau-1} e^{-\theta\left(x^{\tau}+\beta^{-1}\right.}\right)}{\Gamma(\alpha) \beta^{\alpha}} d \theta \\
=\left(x^{\tau}+\beta^{-1}\right)^{-(\alpha+1)} \times \frac{\tau x^{\tau-1} \Gamma(\alpha+1)}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} \frac{\theta^{\alpha} e^{-\theta\left(x^{\tau}+\beta^{-1}\right)}}{\Gamma(\alpha+1)\left(x^{\tau}+\beta^{-1}\right)^{-(\alpha+1)}} d \theta
\end{gathered}
$$

Since

$$
\frac{\theta^{\alpha} e^{-\theta\left(x^{\tau}+\beta^{-1}\right)}}{\Gamma(\alpha+1)\left(x^{\tau}+\beta^{-1}\right)^{-(\alpha+1)}} \sim \Gamma\left(\alpha+1,\left(\frac{1}{\beta}\left(\beta x^{\tau}+1\right)\right)^{-1}\right)
$$

We have that

$$
\int_{0}^{\infty} \frac{\theta^{\alpha} e^{-\theta\left(x^{\tau}+\beta^{-1}\right)}}{\Gamma(\alpha+1)\left(x^{\tau}+\beta^{-1}\right)^{-(\alpha+1)}} d \theta=1
$$

Therefore

$$
\begin{aligned}
f(x)=\left(x^{\tau}+\beta^{-1}\right)^{-(\alpha+1)} \times & \frac{\tau x^{\tau-1} \Gamma(\alpha+1)}{\beta^{\alpha} \Gamma(\alpha)}=\frac{\alpha \tau x^{\tau-1}}{\left(\frac{1}{\beta}\right)^{\alpha+1}\left(1+\beta x^{\tau}\right)^{\alpha+1} \beta^{\alpha}} \\
& =\frac{\alpha \beta \tau x^{\tau-1}}{\left(1+\beta x^{\tau}\right)^{\alpha+1}}
\end{aligned}
$$

Therefore the compound (marginal) pdf of X is that of Burr.

4.1.5

a)

Since any continuous CDF has a $\operatorname{Unif}(0,1)$ distribution, $F\left(X_{1}\right) \sim \operatorname{Unif}(0,1)$ and

$$
P\left(X_{1} \leq X_{2}\right)=E\left[P\left(X_{1} \leq X_{2} \mid X_{1}\right)\right]=E\left[\left(1-F_{X_{2}}\left(X_{1}\right)\right)\right]=\int_{0}^{1} u d u=\frac{1}{2}
$$

Similarly

$$
\begin{gathered}
P\left(X_{1} \leq X_{i}, i=1,2, \ldots, n\right)=E\left[P\left(X_{1} \leq X_{i}, i=1,2, \ldots, n \mid X_{1}\right)\right] \\
=E\left[\left(1-F\left(X_{1}\right)\right)^{n-1}\right]=\int_{0}^{1} u^{n-1} d u=\frac{1}{n}
\end{gathered}
$$

b)

We have that

$$
\begin{aligned}
P(Y=j-1)=P\left(X_{1} \leq\right. & \left.X_{2}, \ldots, X_{1} \leq X_{j-1}, X_{1}>X_{j}\right)=E\left[\left(1-F\left(X_{1}\right)\right)^{j-2} F\left(X_{1}\right)\right] \\
& =\int_{0}^{1} u^{j-2}(1-u) d u=\frac{1}{j(j-1)}
\end{aligned}
$$

Therefore

$$
P(Y=y)=\frac{1}{y(y+1)}, y=1,2,3, \ldots
$$

c)

$$
\begin{gathered}
E(Y)=\sum_{y=1}^{\infty} \frac{y}{y(y+1)}=\sum_{y=1}^{\infty} \frac{1}{y+1}=\infty \\
\operatorname{Var}(Y)=\sum_{y=1}^{\infty} \frac{y}{y+1}-\left(\sum_{y=1}^{\infty} \frac{1}{1+y}\right)^{2}=\infty
\end{gathered}
$$

Therefore both the mean and variance of Y do not exist.

4.2.8

We want to find n so that

$$
P\left(\bar{X}-\frac{1}{2}<\mu<\bar{X}+\frac{1}{2}\right)=0.954
$$

From this we get that $\alpha=0.046$ and (using a table) $z_{\alpha / 2}=1.995$. The confidence interval is

$$
\left(\bar{x}-z_{\alpha / 2} \sigma / \sqrt{n}, \bar{x}+z_{\alpha / 2} \sigma / \sqrt{n}\right)
$$

From this we get

$$
z_{\alpha / 2} \sigma / \sqrt{n}=\frac{1}{2} \Rightarrow 1.995 \times \sqrt{10} \times 2=\sqrt{n} \Rightarrow n=159.201
$$

Therefore the value of n so that the probability is approximately 0.954 that the random interval ($\bar{X}-\frac{1}{2}, \bar{X}-\frac{1}{2}$) includes μ is 160 .

4.2.18

a)

$$
\begin{aligned}
P(a & \left.<(n-1) S^{2} / \sigma^{2}<b\right)=P\left(\frac{1}{b}<\frac{\sigma^{2}}{(n-1) S^{2}}<\frac{1}{a}\right) \\
& =P\left(\frac{(n-1) S^{2}}{b}<\sigma^{2}<\frac{(n-1) S^{2}}{a}\right)=0.95
\end{aligned}
$$

b)

Since $n=9$ and $s^{2}=7.93$,

$$
P\left(\frac{(8)(7.93)}{b}<\sigma^{2}<\frac{(8)(7.93)}{a}\right)=0.95
$$

where $b=\chi_{(8,0.975)}^{2}=17.535$ and $a=\chi_{(8,0.025)}^{2}=2.18$. Therefore the interval

$$
\left(\frac{(8)(7.93)}{b}, \frac{(8)(7.93)}{a}\right)=\left(\frac{(8)(7.93)}{17.535}, \frac{(8)(7.93)}{2.18}\right)=(3.618,29.101)
$$

c)

If μ is known, we know that $\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \chi_{(n)}^{2}$. Then

$$
\begin{gathered}
P\left(\chi_{(n, a)}^{2}<\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}<\chi_{(n, b)}^{2}\right)=P\left(\frac{1}{\chi_{(n, b)}^{2}}<\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}<\frac{1}{\chi_{(n, a)}^{2}}\right) \\
=P\left(\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{(n, b)}^{2}}<\sigma^{2}<\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\chi_{(n, a)}^{2}}\right)
\end{gathered}
$$

4.4.6

a)

Let m be the median of the distribution. Then

$$
\begin{gathered}
F(m)=P(X \leq m)=\int_{0}^{m} 2 x d x=m^{2}=0.5 \\
\Rightarrow m=\sqrt{\frac{1}{2}}
\end{gathered}
$$

Now

$$
\begin{gathered}
F\left(X_{(1)}\right)=P\left(\min \left(X_{1}, X_{2}, X_{3}\right) \leq y\right) \\
=1-P\left(\left(X_{1}, X_{2}, X_{3}\right)>y\right)=1-P\left(X_{1}>y\right) P\left(X_{2}>y\right) P\left(X_{3}>y\right)=1-\left(1-x^{2}\right)^{3} .
\end{gathered}
$$

From this we get

$$
P\left(X_{(1)}>\sqrt{\frac{1}{2}}\right)=1-P\left(X_{(1)} \leq \sqrt{\frac{1}{2}}\right)=1-\left(1-\left(1-\sqrt{\frac{1}{2}}^{2}\right)^{3}\right)=\frac{1}{8} .
$$

b)

First, we find that

$$
\begin{gathered}
f\left(y_{2}\right)=3!\left(y_{2}^{2}\right)\left(1-y_{2}^{2}\right)^{3-2}\left(2 y_{2}\right)=12 y_{2}^{3}\left(1-y_{2}^{2}\right) \text { for } 0<y_{2}<1 \\
f\left(y_{3}\right)=3\left(y_{3}^{2}\right)^{3-1}\left(1-y_{3}^{2}\right)^{3-3} 2 y_{3}=6 y_{3}^{5} \text { for } 0<y_{3}<1 \\
f\left(y_{2}, y_{3}\right)=3!\left(y_{2}^{2}\right)^{2-1}\left(y_{3}^{2}-y_{2}^{2}\right)^{0}\left(1-y_{3}^{2}\right)^{0} 2 y_{2} 2 y_{3}=24 y_{2}^{3} y_{3} \text { for } 0<y_{2} \leq y_{3}<1
\end{gathered}
$$

Now we get that

$$
\begin{gathered}
E\left(Y_{2}\right)=\int_{0}^{1} 12 y_{2}^{4}\left(1-y_{2}^{2}\right) d y_{2}=\frac{24}{35} \\
E\left(Y_{3}\right)=\int_{0}^{1} 6 y_{3}^{6} d y_{3}=\frac{6}{7} \\
\operatorname{Var}\left(Y_{2}\right)=\frac{1}{2}-\left(\frac{24}{35}\right)^{2} \\
\operatorname{Var}\left(Y_{3}\right)=\frac{3}{4}-\left(\frac{6}{7}\right)^{2} \\
E\left(Y_{2} Y_{3}\right)=\int_{0}^{1} \int_{0}^{y_{3}} 24 y_{2}^{4} y_{3}^{2} d y_{2} d y_{3}=\frac{3}{5}
\end{gathered}
$$

Therefore

$$
\rho\left(Y_{2}, Y_{3}\right)=\frac{\operatorname{cov}\left(Y_{2}, Y_{3}\right)}{\sqrt{\operatorname{Var}\left(Y_{2}\right) \operatorname{Var}\left(Y_{3}\right)}}=0.5734
$$

4.4.22

a)

We have that

$$
Y_{1}=\frac{Z_{1}}{n}
$$

From this we get

$$
Z_{2}=(n-1)\left(Y_{2}-\frac{Z_{1}}{n}\right) \Rightarrow Y_{2}=\frac{Z_{2}}{n-1}+\frac{Z_{1}}{n}
$$

Similarly,

$$
Y_{3}=\frac{Z_{3}}{n-2}+\frac{Z_{2}}{n-1}+\frac{Z_{1}}{n}, \ldots, Y_{n}=\sum_{i=1}^{n} \frac{Z_{i}}{n-i+1}
$$

Therefore we get the jacobian

$$
\mathbb{J}=\left|\begin{array}{cccccc}
\frac{1}{n} & 0 & 0 & 0 & \cdots & 0 \\
\frac{1}{n} & \frac{1}{n-1} & 0 & 0 & \cdots & 0 \\
\frac{1}{n} & \frac{1}{n-1} & \frac{1}{n-2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & & \vdots \\
\frac{1}{n} & & & & & 1
\end{array}\right|=\frac{1}{n!} .
$$

We also know that

$$
f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=n!f\left(y_{1}\right) \cdots f\left(y_{n}\right)=n!e^{-\sum_{i=1}^{n} y_{i}} \text { for } 0<y_{1}<\ldots<y_{n}<\infty
$$

Now we have

$$
\begin{aligned}
& f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=|J| f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\frac{n!}{n!} f\left(y_{1}\right) f\left(y_{2}\right) \cdots f\left(y_{n}\right) \text { for } 0<y_{1}<\ldots<y_{n} \\
= & e^{-\frac{z_{1}}{n}} e^{-\frac{z_{2}}{n-1}-\frac{z_{1}}{n} \cdots \cdots e^{-\sum_{i=1}^{n} \frac{z_{i}}{n-i+1}}=e^{-\sum_{i=1}^{n} \frac{z_{1}}{n}-\sum_{i=1}^{n-1} \frac{z_{2}}{n-1}-\ldots-z_{n}}=e^{-z_{1}-z_{2}-\ldots-z_{n}} \text { for } z_{i}>0 .}
\end{aligned}
$$

From this we can see that the $Z_{i}^{\prime} s$ are clearly independent since $f\left(z_{1}, \ldots, z_{n}\right)=f\left(z_{1}\right) \cdots f\left(z_{n}\right)$, and that each Z_{i} has the exponential distribution.
b)

$$
\sum_{i=1}^{n} a_{i} Y_{i}=a_{1} Y_{1}+a_{2} Y_{2}+\ldots+a_{n} Y_{n}
$$

In part a, we have shown that $Z_{1}=n Y_{1}, Z_{2}=(n-1)\left(Y_{2}-Y_{1}\right), \ldots, Z_{n}=Y_{n}-Y_{n-1}$ are independent. We also had that

$$
Y_{1}=\frac{Z_{1}}{n}, Y_{2}=\frac{Z_{2}}{n-1}+\frac{Z_{1}}{n}, \ldots, Y_{n}=Z_{n}+\ldots+\frac{Z_{1}}{n}
$$

Now

$$
\sum_{i=1}^{n} a_{i} Y_{i}=a_{1}\left(\frac{Z_{1}}{n}\right)+a_{2}\left(\frac{Z_{2}}{n-1}+\frac{Z_{1}}{n}\right)+\ldots+a_{n}\left(Z_{n}+\ldots+\frac{Z_{1}}{n}\right)
$$

Therefore we can see that all Y_{1}, \ldots, Y_{n} can be expressed as linear functions of independent random variables, since in part a we have already shown that Z_{1}, \ldots, Z_{n} are independent.

4.5.3

We have that

$$
\gamma(\theta)=P_{\theta}\left(\left(X_{1}, X_{2}\right) \in C\right)=P_{\theta}\left(X_{1} X_{2} \geq \frac{3}{4}\right)
$$

Now

$$
\because X_{1} X_{2} \geq \frac{3}{4} \Rightarrow X_{2} \geq \frac{3}{4 X_{1}}
$$

So we get

$$
\begin{gathered}
\gamma(\theta)=\int_{\frac{3}{4}}^{1} \int_{\frac{3}{4 x_{1}}}^{1} \theta^{2}\left(x_{1} x_{2}\right)^{\theta-1} d x_{2} d x_{1}=\int_{\frac{3}{4}}^{1} \theta x_{1}^{\theta-1}-\frac{\theta}{x_{1}}\left(\frac{3}{4}\right)^{\theta} d x_{1}= \\
=1-\left(\frac{3}{4}\right)^{\theta}+\theta\left(\frac{3}{4}\right)^{\theta} \log \left(\frac{3}{4}\right) \text { for } \theta=1,2
\end{gathered}
$$

$\gamma(1)$ is the significance, and $\gamma(2)$ is the power when $\theta=2$.

