Stat 330 Assignment 4 Solutions

Mandy Yao

November 2020

4.2.22

We want to find a_{L} and a_{U} such that

$$
P\left(a_{L}<p_{1}-p_{2}<a_{U}\right)=90 \%
$$

From equation 4.2.14, we have that

$$
\hat{p_{1}}-\hat{p_{2}} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p_{1}}\left(1-\hat{p_{1}}\right)}{n_{1}}+\frac{\hat{p_{2}}\left(1-\hat{p_{2}}\right)}{n_{1}}}
$$

where $\hat{p_{1}}=\frac{50}{100}, \hat{p_{2}}=\frac{40}{100}, z_{\alpha / 2}=1.645$. Then

$$
0.5-0.4 \pm 1.645 \sqrt{\frac{0.5(1-0.5)}{100}+\frac{0.4(1-0.4)}{100}}=0.1 \pm 0.11515
$$

Therefore an approximate 90% interval for $p_{1}-p_{2}$ is $(-0.015,0.215)$.

4.2.27

a)

Note that $W_{1}=\frac{(m-1) s_{2}^{2}}{\sigma_{2}^{2}} \sim \chi_{(m-1)}^{2}$ and $W_{2}=\frac{(n-1) s_{1}^{2}}{\sigma_{1}^{2}} \sim \chi_{(n-1)}^{2}$, and they are independent since X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are independent sequences. Therefore

$$
F=\frac{W_{1} /(m-1)}{W_{2} /(n-1)}=\frac{\frac{(m-1) s_{2}^{2}}{\sigma_{2}^{2}} /(m-1)}{\frac{(n-1) s_{1}^{2}}{\sigma_{1}^{2}} /(n-1)}=\frac{s_{2}^{2} / \sigma_{2}^{2}}{s_{1}^{2} / \sigma_{1}^{2}} \sim F_{(m-1, n-1)}
$$

b)

$P(F<b)=0.975$ and $P(a<F<b)=0.95, P(F<a)=0.025$. We have thus that $a=F_{(m-1, n-1,0.025)}$ and $b=F_{(m-1, n-1,0.975)}$.
c)

Since $F=\frac{s_{2}^{2} / \sigma_{2}^{2}}{s_{1}^{2} / \sigma_{1}^{2}} \sim F(m-1, n-1)$,

$$
\begin{gathered}
0.95=P\left(a<\frac{s_{2}^{2} / \sigma_{2}^{2}}{s_{1}^{2} / \sigma_{1}^{2}}<b\right)=P\left(F_{(m-1, n-1,0.025)}<\frac{s_{2}^{2} / \sigma_{2}^{2}}{s_{1}^{2} / \sigma_{1}^{2}}<F_{(m-1, n-1,0.975)}\right) \\
\\
=P\left(\frac{s_{1}^{2}}{s_{2}^{2}} F_{(m-1, n-1,0.025)}<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\frac{s_{1}^{2}}{s_{2}^{2}} F_{(m-1, n-1,0.975)}\right)
\end{gathered}
$$

4.4.28

a)

Let $Y_{1}=\min \left(X_{1}, X_{2}\right)$ and $Y_{2}=\max \left(X_{1}, X_{2}\right)$.
First, we know that

$$
\begin{gathered}
F_{Y_{1}}\left(y_{1}\right)=P\left(\min \left(X_{1}, X_{2}\right) \leq y_{1}\right)=1-P\left(\left(X_{1}, X_{2}\right)>y_{1}\right)=1-P\left(X_{1}>y_{1}\right) P\left(X_{2}>y_{2}\right) \\
=1-\left(1-F_{X}\left(y_{1}\right)\right)^{2} \text { for }-\infty<y_{1}<\infty \\
F_{Y_{2}}\left(y_{2}\right)=P\left(\max \left(X_{1}, X_{2}\right) \leq y_{2}\right)=P\left(X_{1} \leq y_{2}\right) P\left(X_{2} \leq y_{2}\right)=F_{X}\left(y_{2}\right)^{2} \text { for }-\infty<y_{2}<\infty
\end{gathered}
$$

Since

$$
\begin{gathered}
F_{X}(\mu)=P(X \leq \mu)=P\left(\frac{X-\mu}{\sigma} \leq 0\right)=\Phi(0)=\frac{1}{2} \\
P\left(Y_{1}<\mu<Y_{2}\right)=P\left(\mu<Y_{2}\right)-P\left(\mu<Y_{1}\right)=\left(1-F_{Y_{2}}(\mu)\right)-\left(1-F_{Y_{1}}(\mu)\right) \\
=\left(1-F_{X}(\mu)^{2}\right)-\left(1-\left\{1-\left(1-F_{X}(\mu)\right)^{2}\right\}\right)=\left(1-\left(\frac{1}{2}\right)^{2}\right)-\left(1-\left\{1-\left(1-\left(\frac{1}{2}\right)\right)^{2}\right\}\right)=\frac{1}{2}
\end{gathered}
$$

Therefore $P\left(Y_{1}<\mu<Y_{2}\right)=\frac{1}{2}$.
Now we need to find $E\left(Y_{2}-Y_{1}\right)=E\left(\left|X_{2}-X_{1}\right|\right)=E[|Z|]$ where $X_{1} \sim N\left(\mu, \sigma^{2}\right)$, $X_{2} \sim N\left(\mu, \sigma^{2}\right)$ and $Z=X_{1}-X_{2} \sim N\left(0,2 \sigma^{2}\right)$. Thus

$$
\begin{gathered}
E\left(Y_{2}-Y_{1}\right)=E[|Z|]=\int_{-\infty}^{\infty} \frac{|z|}{\sqrt{2 \pi 2 \sigma^{2}}} e^{\frac{-1}{2\left(2 \sigma^{2}\right)} z^{2}} d z=2 \int_{0}^{\infty} \frac{z}{\sqrt{4 \pi \sigma^{2}}} e^{\frac{-1}{4 \sigma^{2}} z^{2}} d z \\
=\int_{0}^{\infty} \frac{1}{\sqrt{4 \pi \sigma^{2}}} e^{\frac{-1}{4 \sigma^{2}} u} d u=\frac{2 \sigma}{\sqrt{\pi}}=1.13 \sigma
\end{gathered}
$$

b)

We have that $c \sigma=z_{\alpha / 2} \sigma / \sqrt{n}, \mathrm{n}=2$, and $\alpha=0.5$. Then

$$
c=z_{\alpha / 2} / \sqrt{n}=0.674 / \sqrt{2}=0.477
$$

Therefore the length is $2 c \sigma=0.95 \sigma$. This can be compared with the expected value of the length in part a, which is 1.13σ.

4.5.5

First, we have

$$
z=\frac{f\left(x_{1} ; 2\right) f\left(x_{2} ; 2\right)}{f\left(x_{1} ; 1\right) f\left(x_{2} ; 1\right)} \leq \frac{1}{2}
$$

Then

$$
z=\frac{1}{2} e^{\frac{-x_{1}}{2}} \frac{1}{2} e^{\frac{-x_{2}}{2}} / e^{-x_{1}-x_{2}}=\frac{1}{4} \exp \left\{\frac{x_{1}+x_{2}}{2}\right\} \leq \frac{1}{2} \Rightarrow \frac{x_{1}+x_{2}}{2} \leq \log (2)
$$

Therefore the critical region is $x_{1}+x_{2} \leq 2 \log (2)$. Then, since $X_{1}+X_{2} \sim \Gamma(2, \theta)$ is the sum of two $\Gamma(1,2)$ random variables,

$$
\gamma(\theta)=P\left(X_{1}+X_{2} \leq 2 \log (2)\right)=\int_{0}^{2 \log (2)} \frac{1}{\theta^{2}} x e^{\frac{-x}{\theta}}=-\frac{1}{\theta} 2 \times 4^{\frac{-1}{\theta}} \log (2)-4^{\frac{-1}{\theta}}+1
$$

Therefore the significance level is $\gamma(2) \approx 0.15$ and the power is $\gamma(1) \approx 0.4$.

4.5.11

a)

First we know that

$$
F_{Y_{4}}\left(y_{4}\right)=F_{X}\left(y_{4}\right)^{4}=\left(\frac{y_{4}}{\theta}\right)^{4}
$$

and

$$
F_{X}(x)=\int_{0}^{x} \frac{1}{\theta} d x=\frac{x}{\theta}, 0<x<\theta .
$$

Then

$$
\gamma(\theta)=P\left(Y_{4} \geq c\right)=1-P\left(Y_{4}<c\right)=1-\left(\frac{c}{\theta}\right)^{4} .
$$

and the significance level is 0.05 when

$$
\gamma(1)=1-c^{4}=0.05 \Rightarrow c=(0.95)^{\frac{1}{4}}
$$

b)

From part a,

$$
\gamma(\theta)=1-\left(\frac{0.95^{\frac{1}{4}}}{\theta}\right)^{4}=1-\frac{0.95}{\theta^{4}} \text { for } \alpha=0.05 .
$$

4.6.7

a)

The test statistic is

$$
t=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\left(1 / n_{1}\right)+\left(1 / n_{2}\right)}} .
$$

The critical value can be found using $1-\alpha=0.95$ and

$$
d f=n+m-2=13+16-2=27 .
$$

Using a Student t -distribution table, we get $t=1.703$. Since the test is left-tailed, the critical region contains all values below -1.703.
b)

$$
S_{p}=\sqrt{\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}}=\sqrt{\frac{(13-1) 25.6^{2}+(16-1) 28.3^{2}}{13+16-2}} \approx 27.133 .
$$

The test statistic is

$$
t=\frac{\bar{X}-\bar{Y}}{S_{p} \sqrt{\left(1 / n_{1}\right)+\left(1 / n_{2}\right)}}=\frac{72.9-81.7}{27.133 \sqrt{\frac{1}{13}+\frac{1}{16}}} \approx-0.869 .
$$

We fail to reject the null hypothesis at level 0.05 since $-0.869>-1.703$.

4.7.8

The expected value of each cell is $\frac{60 \times 45}{180}=15$. The critical value can be found using $1-\alpha=0.95$ and

$$
d f=(a-1)(b-1)=(3-1)(4-1)=6 .
$$

Using a chi-square distribution table, we get $\chi_{0.95}^{2}=12.6$. We have that the random variable

$$
\begin{gathered}
W=\sum_{j=1}^{b} \sum_{i=1}^{a} \frac{\left(X_{i j}-n\left(X_{i . /}\right)\left(X_{. j} / n\right)\right)^{2}}{n\left(X_{i . / n}\right)\left(X_{. j} / n\right)} \stackrel{H_{0}}{=} \chi^{2}(6), \text { approximately. } \\
W_{\text {obs }}=2 \frac{(15-3 k-15)^{2}}{15}+2 \frac{(15-k-15)^{2}}{15}+2 \frac{(15+k-15)^{2}}{15}+2 \frac{(15+3 k-15)^{2}}{15}+4 \frac{(15-15)^{2}}{15} \\
=\frac{8 k^{2}}{3} .
\end{gathered}
$$

The rejection of independence occurs when

$$
\frac{8 k^{2}}{3} \geq 12.6 \Rightarrow k \geq \sqrt{(3 / 8)(12.6)}=2.16 .
$$

Therefore the smallest value of k that leads to the rejection of independence is 3 .

4.8.4

First, we get

$$
z=\frac{x-a}{b} .
$$

The target pdf is

$$
f_{X}(x)=\frac{1}{b} f_{Z}((x-a) / b) .
$$

From this we would randomly generate observations from $f_{Z}(z)$ and save them. Then we would divide each of the observations by b to obtain the observations from $f_{X}(x)$.

4.8.21

First, we know that

$$
F_{U, V \mid W \leq 1}(u, v \mid w \leq 1)=\frac{P(U \leq u, V \leq v, W \leq 1)}{P(W \leq 1)} .
$$

Now, $P(W \leq 1)=\frac{\pi}{4}$ since the probability of falling within a circle with radius 1
($W=U^{2}+V^{2}=1$) within a square of area 4 with sides with range of U and V from
-1 to 1 , is $\frac{\pi}{4}$. Therefore

$$
F_{U, V \mid W \leq 1}(u, v \mid w \leq 1)=\frac{\frac{u}{2} \times \frac{v}{2}}{\frac{\pi}{4}}=\frac{u v}{\pi},
$$

so

$$
f_{U, V \mid W \leq 1}(u, v \mid w \leq 1)=\frac{\delta F}{\delta u \delta v}=\frac{1}{\pi}, u^{2}+v^{2} \leq 1
$$

Transforming to polar coordinates, we have $u=r \sin \theta, v=r \cos \theta$, radius r where $0<r<1$, $0<\theta<2 \pi$. Then the Jacobian is

$$
|\mathbf{J}|=\left|\begin{array}{cc}
\frac{\delta u}{\delta r} & \frac{\delta u}{\delta \theta} \\
\frac{\delta v}{\delta r} & \frac{\delta v}{\delta \theta}
\end{array}\right|=\left|\begin{array}{cc}
\sin \theta & r \cos \theta \\
\cos \theta & -r \sin \theta
\end{array}\right|=r .
$$

Then

$$
f_{R, \Theta}(r, \theta \mid w \leq 1)=r f_{U, V}(u, v)=\frac{r}{\pi}, 0<\theta<2 \pi, 0<r<1
$$

We have that

$$
x_{1}=u z=r \sin \theta \sqrt{\frac{-2 \log \left(r^{2}\right)}{r^{2}}}=r \sin \theta \sqrt{\frac{-4 \log (r)}{r^{2}}},-\infty<x_{1}<\infty
$$

Similarly,

$$
x_{2}=r \cos \theta \sqrt{\frac{-4 \log (r)}{r^{2}}},-\infty<x_{2}<\infty
$$

so

$$
x_{1}^{2}+x_{2}^{2}=r^{2}\left(\frac{-4 \log (r)}{r^{2}}\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-4 \log (r) \Rightarrow r=e^{-\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)}
$$

Also,

$$
\frac{x_{1}}{x_{2}}=\tan \theta \Rightarrow \theta=\arctan \left(\frac{x_{1}}{x_{2}}\right)
$$

so the Jacobian is

$$
|\mathbf{J}|=\left|\begin{array}{cc}
\frac{\delta \theta}{\delta x_{1}} & \frac{\delta \theta}{\delta x_{2}} \\
\frac{\delta r}{\delta x_{1}} & \frac{\delta r}{\delta x_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{x_{2}}{x_{1}^{2}+x_{2}^{2}} & \frac{-x_{1}}{x_{1}^{2}+x_{2}^{2}} \\
-\frac{1}{2} x_{1} r & -\frac{1}{2} x_{2} r
\end{array}\right|=\frac{r}{2}
$$

Finally

$$
\begin{gathered}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{R, \Theta}\left(e^{\frac{-1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)}, \arctan \left(\frac{x_{1}}{x_{2}}\right)\right)|J|=\frac{1}{\pi} e^{\frac{-1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)} \times \frac{1}{2} e^{\frac{-1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)} \\
=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{1}^{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{2}^{2}},-\infty<x_{1}<\infty,-\infty<x_{2}<\infty
\end{gathered}
$$

Therefore we have shown that the random variables X_{1} and X_{2} are iid with a common $\mathrm{N}(0,1)$ distribution.

4.9.2

a)

1. The x_{i}^{*} 's are drawn with replacement, so they are independent.
2. Since they are drawn with replacement, they have equal probability of being drawn, so $P\left(X_{i}^{*}=x_{m}\right)=P\left(X_{j}^{*}=x_{m}\right)$ for any $m=1, \ldots, n$ and $i \neq j$. Thus they are identically distributed.
3.

$$
\hat{F}_{n}(t)=P\left(X_{i}^{*} \leq t\right)=\frac{\#\left\{x_{j}: x_{j} \leq t\right\}}{n}=\frac{1}{n} \sum_{j=1}^{n} 1\left(x_{j}: x_{j} \leq t\right)
$$

which is the empirical cdf of x_{1}, \ldots, x_{n}.
b)

$$
E\left(X_{i}^{*}\right)=\sum_{j=1}^{n} x_{j} P\left(X_{i}^{*}=x_{j}\right)=\sum_{j=1}^{n} x_{j} \frac{1}{n}=\bar{x}
$$

c)

Note that

$$
\begin{gathered}
P\left(X_{i}^{*}<x_{((n+1) / 2)}\right)=\frac{1}{n} \times\left(\frac{(n+1)}{2}-1\right)=\frac{n-1}{2 n}, \text { and } \\
P\left(X_{i}^{*}>x_{((n+1) / 2)}\right)=1-\frac{1}{n} \times\left(\frac{(n+1)}{2}\right)=\frac{n-1}{2 n} .
\end{gathered}
$$

Since $P\left(X_{i}^{*}<x_{((n+1) / 2)}\right)=P\left(X_{i}^{*}>x_{((n+1) / 2)}\right)$. Thus $x_{((n+1) / 2)}$ is the median.
d)

$$
\operatorname{Var}\left(X_{i}^{*}\right)=\sum_{i=1}^{n}\left(x_{i}-E\left(X_{i}^{*}\right)\right)^{2} P\left(X_{i}^{*}=x_{i}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \frac{1}{n}
$$

