Stat 330 Assignment 6 Solutions

Mandy Yao

November 2020

6.4.3

We have that

$$
\begin{gathered}
L\left(\theta_{1}, \theta_{2}\right)=\prod_{i=1}^{n}\left\{\frac{1}{\theta_{2}} e^{-\left(x_{i}-\theta_{1}\right) / \theta_{2}} \mathbb{1}\left(x_{i} \geq \theta_{1}\right)\right\} \\
=\frac{1}{\theta_{2}^{n}} \exp \left\{\frac{-1}{\theta_{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)\right\} \mathbb{1}\left(\min \left(x_{1}, \ldots, x_{n}\right) \geq \theta_{1}\right) \\
=\frac{1}{\theta_{2}^{n}} \exp \left\{\frac{-1}{\theta_{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)\right\} \mathbb{1}\left(x_{(1)} \geq \theta_{1}\right) .
\end{gathered}
$$

Thus θ_{1} 's largest possible value is at $x_{(1)}$, and with a fixed $\theta_{2}^{*}, L\left(\theta_{1}, \theta_{2}\right)$ is maximized at $\hat{\theta}_{1}=x_{(1)}$ since $L\left(\theta_{1}, \theta_{2}\right)$ is a monotone increasing function of θ_{1}. To find $\hat{\theta}_{2}$, we have

$$
\begin{aligned}
l\left(\theta_{1}, \theta_{2}\right) & =-n \log \theta_{2}-\frac{1}{\theta_{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right) \\
\frac{\partial l}{\partial \theta_{2}} & =\frac{-n}{\theta_{2}}+\frac{1}{\theta_{2}^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)
\end{aligned}
$$

Setting this to 0 , we get

$$
\hat{\theta_{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{1}\right)}{n}
$$

Since the mle of θ_{1} is $x_{(1)}$, the mle of θ_{2} is $\frac{\sum_{i=1}^{n}\left(x_{i}-x_{(1)}\right)}{n}$.

6.5.4

The mle for θ_{1} is \bar{x} under H_{0} and H_{1}. The mle for θ_{2}, after plugging in $\hat{\theta}_{1}$, is $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}{n}$. Then we get the likelihood ratio

$$
\Lambda=\frac{\frac{1}{\left(2 \pi \theta_{2}^{\prime}\right)^{\frac{n}{2}}} \exp \left(\frac{-n \hat{\theta}_{2}}{2 \theta_{2}^{\prime}}\right)}{\frac{1}{\left(2 \pi \hat{\theta}_{2}\right)^{\frac{n}{2}}} \exp \left(\frac{-n \hat{\theta}_{2}}{2 \hat{\theta}_{2}}\right)}=\left(\sqrt{\frac{\hat{\theta}_{2}}{\theta_{2}^{\prime}}} \exp \left(\frac{-\hat{\theta_{2}}}{2 \theta_{2}^{\prime}}\right)\right)^{n} e^{\frac{n}{2}}
$$

We reject the null hypothesis when $\Lambda \leq c$ for some constant c. Since Λ is small when the value of $\frac{\hat{\theta}_{2}}{\theta_{2}^{\prime}}$ is either very small or very large, it is also small when the value of $n \hat{\theta}_{2}=$ $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is very small or very large. Therefore the test rejects the null hypothesis when $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \leq c_{1}$ or when $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \geq c_{2}$ for appropriately selected constants c_{1} and c_{2}.

6.6.6

We have

$$
\begin{gathered}
L(\theta \mid \mathbf{x})=[F(a-\theta)]^{n_{2}} \prod_{i=1}^{n_{1}} f\left(x_{i}-\theta\right) \\
L^{c}(\theta \mid \mathbf{x}, \mathbf{z})=\prod_{i=1}^{n_{1}} f\left(x_{i}-\theta\right) \prod_{i=1}^{n_{2}} f\left(z_{i}-\theta\right)
\end{gathered}
$$

The conditional distribution \mathbf{X} given \mathbf{Z} is
$k(\mathbf{z} \mid \theta, \mathbf{x})=\frac{\prod_{i=1}^{n_{1}} f\left(x_{i}-\theta\right) \prod_{i=1}^{n_{2}} f\left(z_{i}-\theta\right)}{[F(a-\theta)]^{n_{2}} \prod_{i=1}^{n_{2}} f\left(x_{i}-\theta\right)}=[F(a-\theta)]^{-n_{2}} \prod_{i=1}^{n_{2}} f\left(z_{i}-\theta\right), \quad z_{i}<a \quad i=1, \ldots, n_{2}$
Thus \mathbf{Z} and \mathbf{X} are independent and $Z_{1}, \ldots, Z_{n_{2}}$ are iid with the common pdf $f(z-\theta) / F(a-\theta)$, for $z<a$. So

$$
\begin{gathered}
Q\left(\theta \mid \theta_{0}, \mathbf{x}\right)=E_{\theta_{0}}\left[\log L^{c}(\theta \mid \mathbf{x}, \mathbf{Z})\right]=E_{\theta_{0}}\left[\sum_{1}^{n_{1}} \log f\left(x_{i}-\theta\right)+\sum_{1}^{n_{2}} \log f\left(Z_{i}-\theta\right)\right] \\
=\sum_{1}^{n_{1}} \log f\left(x_{i}-\theta\right)+n_{2} E_{\theta_{0}}[\log f(Z-\theta)]=\sum_{1}^{n_{1}} \log f\left(x_{i}-\theta\right)+n_{2} \int_{-\infty}^{a} \log f(z-\theta) \frac{f\left(z-\theta_{0}\right)}{F\left(a-\theta_{0}\right)} d z
\end{gathered}
$$

The last result is the E step of the EM algorithm. For the M step, we need the partial derivative of $Q\left(\theta \mid \theta_{0}, \mathbf{x}\right)$ with respect to θ :

$$
\frac{\partial Q}{\partial \theta}=-\left\{\sum_{i=1}^{n_{1}} \frac{f^{\prime}\left(x_{i}-\theta\right)}{f\left(x_{i}-\theta\right)}+n_{2} \int_{-\infty}^{a} \frac{f^{\prime}\left(x_{i}-\theta\right)}{f\left(x_{i}-\theta\right)} \frac{f\left(z-\theta_{0}\right)}{F\left(a-\theta_{0}\right)} d z\right\}
$$

From example 6.6.1, we are given $f(x)=\phi(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$ and $f^{\prime}(x) / f(x)=-x$. So

$$
\begin{aligned}
\frac{\partial Q}{\partial \theta} & =\sum_{i=1}^{n_{1}}\left(x_{i}-\theta\right)+n_{2} \int_{-\infty}^{a}(z-\theta) \frac{1}{\sqrt{2 \pi}} \frac{\exp \left\{-\frac{1}{2}\left(z-\theta_{0}\right)^{2}\right\}}{\Phi\left(a-\theta_{0}\right)} d z \\
= & n_{1}(\bar{x}-\theta)+n_{2} \int_{-\infty}^{a} \frac{z-\theta_{0}}{\sqrt{2 \pi}} \frac{e^{-\frac{1}{2}\left(z-\theta_{0}\right)^{2}}}{\Phi\left(a-\theta_{0}\right)} d z-n_{2}\left(\theta-\theta_{0}\right) \\
& =n_{1}(\bar{x}-\theta)+\frac{n_{2}}{\Phi\left(a-\theta_{0}\right)}\left[-\Phi\left(a-\theta_{0}\right)\right]-n_{2}\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Setting the last equation to 0 and solving gives the M step estimates. In particular, given $\hat{\theta}^{(m)}$ is the EM estimate from the $m^{t h}$ step, the $(m+1)^{t h}$ step estimate is

$$
\hat{\theta}^{(m+1)}=\left(\frac{n_{1}}{n}\right) \bar{x}+\left(\frac{n_{2}}{n}\right) \hat{\theta}^{(m)}+\frac{\left(\frac{n_{2}}{n}\right)\left(-\phi\left(a-\hat{\theta}^{(m)}\right)\right)}{\Phi\left(a-\hat{\theta}^{(m)}\right)} .
$$

10.2.3

a)

Using R, the level of the test is

$$
P_{H_{0}}(S \geq 16)=P(\operatorname{bin}(25,0.5) \geq 16)=1-P(\operatorname{bin}(25,0.5)<15)=0.1148
$$

b)

The probability of success is

$$
p=P(X>0)=P\left(\frac{X-0.5}{1}>\frac{0-0.5}{1}\right)=P(Z>-0.5)=P(Z<0.5)=0.6915
$$

Therefore the power of the sign test is

$$
P_{0.6915}(S \geq 16)=P(\operatorname{bin}(25,0.6915) \geq 16)=1-P(\operatorname{bin}(25,0.6915)<15)=0.7836
$$

c)

First, given $\sigma=1$ and $n=25$, we need to solve the following equation for k :

$$
P_{H_{0}}[\bar{X} /(1 / \sqrt{25}) \geq k]=P_{H_{0}}\left[\frac{\bar{X}-0}{(1 / \sqrt{25})} \geq k-0\right]=P[Z \geq k]=0.1148
$$

where $Z \sim N(0,1)$. Solving the equation, we get $k=1.20$. Now, to determine the power of this test for the situation in part (b), we get

$$
\begin{aligned}
P_{\mu=0.5}[\bar{X} /(1 / \sqrt{25}) \geq 1.20] & =P_{H_{0}}\left[\frac{\bar{X}-0.5}{(1 / \sqrt{25})} \geq 1.20-\frac{0.5}{(1 / \sqrt{25})}\right]=P[Z \geq-1.30] \\
& =P[Z<1.30]=0.9032
\end{aligned}
$$

10.3.2

a)

Assume that $\theta=0$. Since X_{i} are symmetrically iid about 0 ,

$$
\hat{\theta}=\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)=\hat{\theta}\left(-X_{1}, \ldots,-X_{n}\right)
$$

is iid. Let $\mathrm{G}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ be the cdf and pdf of $\hat{\theta}(X)$, respectively. From definition 10.1.1, $T\left(G_{\hat{\theta}}\right)=E(\hat{\theta})$ is a location functional. By theorem 10.1.1, since $\mathrm{g}(\mathrm{x})$ is symmetric about 0 ,

$$
T\left(G_{\hat{\theta}}\right)=E(\hat{\theta})=0=\theta
$$

Therefore $\hat{\theta}$ is an unbiased estimator of θ.

b)

Since $\hat{\theta}_{i}$ are iid, $\hat{\theta}_{i}^{2}$ are iid. Then by the Weak Law of Large numbers, with our assumption that the true $\theta=0$,

$$
\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \hat{\theta}_{i}^{2} \xrightarrow{\mathrm{p}} E\left(\hat{\theta}^{2}\right)=V(\hat{\theta})+(E(\hat{\theta}))^{2}=V(\hat{\theta})+\theta^{2}=V(\hat{\theta})+0^{2}=V(\hat{\theta})
$$

since by part a), $\hat{\theta}$ is unbiased.

10.4.9

a)

We get the following boxplots:

Comparing Group 1 and Group 2

b)

Showing that the difference in sample means is 3.11 is easily done using R :
$\mathrm{x}=\mathbf{c}(2.3,0.3,5.2,3.1,1.1,0.9,2.0,0.7,1.4,0.3)$
$\mathrm{y}=\mathbf{c}(0.8,2.8,4.0,2.4,1.2,0.0,6.2,1.5,28.8,0.7)$
$\operatorname{mean}(y)-\operatorname{mean}(x)$
[1] 3.11
This is much larger than the MWW estimate of shift, which is 0.50 , as shown in example 10.4.3 of the textbook.

Pairwise Differences

We can see from the boxplot above that there are many outliers in the pairwise differences, which would explain the discrepancy. A solution for this would be to consider the median of the differences instead, since that would be more robust to outliers.

c)

We can get the confidence interval using R:

```
library(distributions3)
T_18<-StudentsT (df=18)
Sp2=(9*\operatorname{var}(\textrm{x})+9*\operatorname{var}(y))/18
c1 = mean(y)-mean(x) - (quantile(T_18, 0.975) * sqrt(Sp2) *(1/ sqrt (5)))
c2 = mean(y)-mean(x) +(quantile(T_18, 0.975) * sqrt(Sp2) *sqrt(1/5))
c(c1,c2)
```

[1] -2.701728 8.921728

This is much larger than the MWW confidence interval, which is ($-0.80,2.90$), as shown in example 10.4.3 of the textbook. This is also due to the outliers, since the confidence interval for t is not robust to outliers, while the MWW confidence interval is.

d)

We can find the value of the t-test statistic using R:

```
tstat = (mean(y)-mean(x))/(sqrt(Sp2)*sqrit(1/5))
```

tstat
[1] 1.124256
We can also find the p -value with R :

```
\(p_{-}\)value \(=2 * \mathbf{p t}(-\mathbf{a b s}(\) tstat \(), \mathbf{d f}=18)\)
p_value
```

[1] 0.2756746
Considering the boxplots above, the p-value is lower than warranted. This is because the outliers impair the t-test.

11.1.1

We have

$$
\begin{gathered}
P(\theta=0.3 \mid Y=9)=\frac{P(\theta=0.3, Y=9)}{P(Y=9)} \\
=\frac{\binom{20}{9}(0.3)^{9}(0.7)^{11}\left(\frac{2}{3}\right)}{\left(\frac{2}{3}\right)\binom{20}{9}(0.3)^{9}(0.7)^{11}+\left(\frac{1}{3}\right)\binom{20}{9}(0.5)^{9}(0.5)^{11}}=0.449
\end{gathered}
$$

and

$$
\begin{gathered}
P(\theta=0.5 \mid Y=9)=\frac{P(\theta=0.5, Y=9)}{P(Y=9)} \\
=\frac{\binom{20}{9}(0.5)^{9}(0.5)^{11}\left(\frac{1}{3}\right)}{\left(\frac{2}{3}\right)\binom{20}{9}(0.3)^{9}(0.7)^{11}+\left(\frac{1}{3}\right)\binom{20}{9}(0.5)^{9}(0.5)^{11}}=0.55 .
\end{gathered}
$$

11.1.4

We have $Y=\sum X_{i} \sim \operatorname{Poisson}(n \theta)$, and

$$
h(\theta)=\frac{\theta^{\alpha-1} e^{-\theta / \beta}}{\Gamma(\alpha) \beta^{\alpha}} \Rightarrow \Theta \sim \Gamma(\alpha, \beta) .
$$

Then

$$
g(y \mid \theta)=\frac{e^{-n \theta}(n \theta)^{y}}{y!}
$$

so we get

$$
k(\theta \mid y)=\frac{g(y \mid \theta) h(\theta)}{h(y)}=\frac{\theta^{y+\alpha-1} n^{y} e^{-n \theta-\theta / \beta}}{y!\Gamma(\alpha) \beta^{\alpha} h(y)} .
$$

Also,

$$
\begin{gathered}
h(y)=\frac{n^{y}}{y!\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \theta^{y+\alpha-1} e^{-n \theta-\theta / \beta} d \theta=\frac{n^{y}}{y!\Gamma(\alpha) \beta^{\alpha}} \int_{0}^{\infty} \theta^{y+\alpha-1} e^{-\theta\left(\frac{n \beta+1}{\beta}\right)} d \theta \\
=\frac{n^{y} \Gamma(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)^{(y+\alpha)}}{y!\Gamma(\alpha) \beta^{\alpha}} .
\end{gathered}
$$

Therefore

$$
k(\theta \mid y)=\frac{\theta^{y+\alpha-1} e^{-\theta\left(n+\frac{1}{\beta}\right)}}{\Gamma(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)^{\alpha+y}} \sim \Gamma\left(y+\alpha, \frac{\beta}{n \beta+1}\right)
$$

From this, we get that the Bayesian point estimate $\delta(y)$ is the mean of the $\Gamma\left(y+\alpha, \frac{\beta}{n \beta+1}\right)$ distribution, so

$$
\delta(y)=(y+\alpha)\left(\frac{\beta}{n \beta+1}\right)
$$

11.1.5

We have that

$$
F\left(y_{n}\right)=F(x)^{n}=\left(\int_{0}^{y} \frac{1}{\theta} d x\right)^{n}=\left(\frac{y}{\theta}\right)^{n} \Rightarrow f\left(y_{n} \mid \theta\right)=\frac{n y^{n-1}}{\theta^{n}} .
$$

Then

$$
k\left(\theta \mid y_{n}\right)=\frac{n y^{n-1} \beta \alpha^{\beta} \theta^{-n-(\beta+1)}}{h(y)}
$$

where

$$
h(y)=n y^{n-1} \beta \alpha^{\beta} \int_{\alpha}^{\infty} \theta^{-(n+\beta+1)} d \theta=\frac{n y^{n-1} \beta \alpha^{\beta}}{(n+\beta) \alpha^{(n+\beta)}} .
$$

Then

$$
k\left(\theta \mid y_{n}\right)=\frac{(n+\beta) \alpha^{n+\beta}}{\theta^{n+\beta+1}} \sim \operatorname{Pareto}(\alpha, n+\beta)
$$

Taking the mean of the $\operatorname{Pareto}(\alpha, n+\beta)$ distribution, we get

$$
\delta\left(y_{n}\right)=\frac{(n+\beta) \alpha}{n+\beta-1}
$$

11.1.8

a)

We have that $\Theta \sim \operatorname{beta}(10,5)$ and $Y=\sum X_{i} \sim \operatorname{bin}(30, \theta)$. Then

$$
\begin{gathered}
E\left[\left(\theta-\frac{10+Y}{45}\right)^{2}\right]=E\left[\theta^{2}-2 \theta\left(\frac{10+Y}{45}\right)+\left(\frac{10+Y}{45}\right)^{2}\right] \\
=\theta^{2}-\frac{2 \theta}{45} E(10+Y)+E\left[\left(\frac{10}{45}\right)^{2}+2\left(\frac{10}{45}\right)\left(\frac{Y}{45}\right)+\frac{Y^{2}}{45^{2}}\right] \\
=\theta^{2}-\frac{2 \theta}{45}(10+30 \theta)+\left(\frac{10}{45}\right)^{2}+\frac{20}{45^{2}}(30 \theta)+\frac{1}{45^{2}}\left(300(1-\theta)+30^{2} \theta^{2}\right) \\
=\left(\theta-\frac{10+30 \theta}{45}\right)^{2}+\left(\frac{1}{45}\right)^{2} 30 \theta(1-\theta) .
\end{gathered}
$$

b)

We need to find values of θ for which

$$
\begin{aligned}
& E\left[\left(\theta-\frac{10+Y}{45}\right)^{2}\right]<\frac{\theta(1-\theta)}{30} \Rightarrow\left(\theta-\frac{10+30 \theta}{45}\right)^{2}+\left(\frac{1}{45}\right)^{2} 30 \theta(1-\theta)<\frac{\theta(1-\theta)}{30} \\
& \Rightarrow\left(\frac{\theta}{3}-\frac{2}{9}\right)^{2}+\left(\frac{30}{45^{2}}-\frac{1}{30}\right) \theta(1-\theta)<0 \\
& \Rightarrow 0.463<\theta<0.823 .
\end{aligned}
$$

