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6.4.3

We have that

L(θ1, θ2) =

n∏
i=1

{ 1

θ2
e−(xi−θ1)/θ21(xi ≥ θ1)

}

=
1

θn2
exp
{−1

θ2

n∑
i=1

(xi − θ1)
}
1(min(x1, ..., xn) ≥ θ1)

=
1

θn2
exp
{−1

θ2

n∑
i=1

(xi − θ1)
}
1(x(1) ≥ θ1).

Thus θ1’s largest possible value is at x(1), and with a fixed θ∗2 , L(θ1, θ2) is maximized at

θ̂1 = x(1) since L(θ1, θ2) is a monotone increasing function of θ1. To find θ̂2, we have

l(θ1, θ2) = −nlogθ2 −
1

θ2

n∑
i=1

(xi − θ1)

∂l

∂θ2
=
−n
θ2

+
1

θ2
2

n∑
i=1

(xi − θ1)

Setting this to 0, we get

θ̂2 =

∑n
i=1(xi − θ̂1)

n

Since the mle of θ1 is x(1), the mle of θ2 is
∑n
i=1(xi−x(1))

n .

6.5.4

The mle for θ1 is x̄ under H0 and H1. The mle for θ2, after plugging in θ̂1, is
∑n
i=1(xi−x̄)

n .
Then we get the likelihood ratio

Λ =

1

(2πθ′2)
n
2
exp(−nθ̂22θ′2

)

1

(2πθ̂2)
n
2
exp(−nθ̂2

2θ̂2
)

=

√ θ̂2

θ′2
exp(

−θ̂2

2θ′2
)

n

e
n
2 .

We reject the null hypothesis when Λ ≤ c for some constant c. Since Λ is small when

the value of θ̂2
θ′2

is either very small or very large, it is also small when the value of nθ̂2 =∑n
i=1(xi − x̄)2 is very small or very large. Therefore the test rejects the null hypothesis

when
∑n
i=1(xi − x̄)2 ≤ c1 or when

∑n
i=1(xi − x̄)2 ≥ c2 for appropriately selected constants

c1 and c2.
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6.6.6

We have

L(θ|x) = [F (a− θ)]n2

n1∏
i=1

f(xi − θ)

Lc(θ|x, z) =

n1∏
i=1

f(xi − θ)
n2∏
i=1

f(zi − θ)

The conditional distribution X given Z is

k(z|θ,x) =

∏n1

i=1 f(xi − θ)
∏n2

i=1 f(zi − θ)
[F (a− θ)]n2

∏n2

i=1 f(xi − θ)
= [F (a−θ)]−n2

n2∏
i=1

f(zi−θ), zi < a i = 1, ..., n2

Thus Z and X are independent and Z1, ..., Zn2
are iid with the common pdf f(z−θ)/F (a−θ),

for z < a. So

Q(θ|θ0,x) = Eθ0 [logLc(θ|x,Z)] = Eθ0 [

n1∑
1

logf(xi − θ) +

n2∑
1

logf(Zi − θ)]

=

n1∑
1

logf(xi−θ)+n2Eθ0 [logf(Z−θ)] =

n1∑
1

logf(xi−θ)+n2

∫ a

−∞
logf(z−θ) f(z − θ0)

F (a− θ0)
dz

The last result is the E step of the EM algorithm. For the M step, we need the partial
derivative of Q(θ|θ0,x) with respect to θ:

∂Q

∂θ
= −{

n1∑
i=1

f ′(xi − θ)
f(xi − θ)

+ n2

∫ a

−∞

f ′(xi − θ)
f(xi − θ)

f(z − θ0)

F (a− θ0)
dz}

From example 6.6.1, we are given f(x) = φ(x) = (2π)−1/2e−x
2/2 and f ′(x)/f(x) = −x. So

∂Q

∂θ
=

n1∑
i=1

(xi − θ) + n2

∫ a

−∞
(z − θ) 1√

2π

exp{− 1
2 (z − θ0)2}

Φ(a− θ0)
dz

= n1(x̄− θ) + n2

∫ a

−∞

z − θ0√
2π

e−
1
2 (z−θ0)2

Φ(a− θ0)
dz − n2(θ − θ0)

= n1(x̄− θ) +
n2

Φ(a− θ0)
[−Φ(a− θ0)]− n2(θ − θ0)

Setting the last equation to 0 and solving gives the M step estimates. In particular, given
θ̂(m) is the EM estimate from the mth step, the (m+ 1)th step estimate is

θ̂(m+1) = (
n1

n
)x̄+ (

n2

n
)θ̂(m) +

(n2

n )(−φ(a− θ̂(m)))

Φ(a− θ̂(m))
.

10.2.3

a)

Using R, the level of the test is

PH0(S ≥ 16) = P (bin(25, 0.5) ≥ 16) = 1− P (bin(25, 0.5) < 15) = 0.1148
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b)

The probability of success is

p = P (X > 0) = P (
X − 0.5

1
>

0− 0.5

1
) = P (Z > −0.5) = P (Z < 0.5) = 0.6915

Therefore the power of the sign test is

P0.6915(S ≥ 16) = P (bin(25, 0.6915) ≥ 16) = 1− P (bin(25, 0.6915) < 15) = 0.7836.

c)

First, given σ = 1 and n = 25, we need to solve the following equation for k:

PH0 [X/(1/
√

25) ≥ k] = PH0 [
X − 0

(1/
√

25)
≥ k − 0] = P [Z ≥ k] = 0.1148

where Z ∼ N(0, 1). Solving the equation, we get k = 1.20. Now, to determine the power of
this test for the situation in part (b), we get

Pµ=0.5[X/(1/
√

25) ≥ 1.20] = PH0
[
X − 0.5

(1/
√

25)
≥ 1.20− 0.5

(1/
√

25)
] = P [Z ≥ −1.30]

= P [Z < 1.30] = 0.9032.

10.3.2

a)

Assume that θ = 0. Since Xi are symmetrically iid about 0,

θ̂ = θ̂(X1, ..., Xn) = θ̂(−X1, ...,−Xn)

is iid. Let G(x) and g(x) be the cdf and pdf of θ̂(X), respectively. From definition 10.1.1,

T (Gθ̂) = E(θ̂) is a location functional. By theorem 10.1.1, since g(x) is symmetric about 0,

T (Gθ̂) = E(θ̂) = 0 = θ.

Therefore θ̂ is an unbiased estimator of θ.

b)

Since θ̂i are iid, θ̂2
i are iid. Then by the Weak Law of Large numbers, with our assumption

that the true θ = 0,

1

ns

ns∑
i=1

θ̂2
i

p−→ E(θ̂2) = V (θ̂) + (E(θ̂))2 = V (θ̂) + θ2 = V (θ̂) + 02 = V (θ̂)

since by part a), θ̂ is unbiased.
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10.4.9

a)

We get the following boxplots:

b)

Showing that the difference in sample means is 3.11 is easily done using R:

x=c ( 2 . 3 , 0 . 3 , 5 . 2 , 3 . 1 , 1 . 1 , 0 . 9 , 2 . 0 , 0 . 7 , 1 . 4 , 0 . 3 )
y=c ( 0 . 8 , 2 . 8 , 4 . 0 , 2 . 4 , 1 . 2 , 0 . 0 , 6 . 2 , 1 . 5 , 28 . 8 , 0 . 7 )
mean( y)−mean( x )

[1] 3.11

This is much larger than the MWW estimate of shift, which is 0.50, as shown in example
10.4.3 of the textbook.
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We can see from the boxplot above that there are many outliers in the pairwise differ-
ences, which would explain the discrepancy. A solution for this would be to consider the
median of the differences instead, since that would be more robust to outliers.

c)

We can get the confidence interval using R:

l ibrary ( d i s t r i b u t i o n s 3 )
T 18 <− StudentsT (df = 18)
Sp2=(9∗var ( x)+9∗var ( y ) )/18
c1 = mean( y)−mean( x ) − ( quantile (T 18 , 0 . 975 ) ∗ sqrt ( Sp2 ) ∗(1/ sqrt ( 5 ) ) )
c2 = mean( y)−mean( x ) + ( quantile (T 18 , 0 . 975 ) ∗ sqrt ( Sp2 ) ∗sqrt (1/5) )
c ( c1 , c2 )

[1] -2.701728 8.921728

This is much larger than the MWW confidence interval, which is (-0.80,2.90), as shown in
example 10.4.3 of the textbook. This is also due to the outliers, since the confidence interval
for t is not robust to outliers, while the MWW confidence interval is.

d)

We can find the value of the t-test statistic using R:

t s t a t = (mean( y)−mean( x ) )/ ( sqrt ( Sp2 )∗sqrt (1/5) )
t s t a t

[1] 1.124256

We can also find the p-value with R:

p value=2∗pt(−abs ( t s t a t ) , df=18)
p value
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[1] 0.2756746

Considering the boxplots above, the p-value is lower than warranted. This is because the
outliers impair the t-test.

11.1.1

We have

P (θ = 0.3|Y = 9) =
P (θ = 0.3, Y = 9)

P (Y = 9)

=

(
20
9

)
(0.3)9(0.7)11( 2

3 )

( 2
3 )
(

20
9

)
(0.3)9(0.7)11 + ( 1

3 )
(

20
9

)
(0.5)9(0.5)11

= 0.449

and

P (θ = 0.5|Y = 9) =
P (θ = 0.5, Y = 9)

P (Y = 9)

=

(
20
9

)
(0.5)9(0.5)11( 1

3 )

( 2
3 )
(

20
9

)
(0.3)9(0.7)11 + ( 1

3 )
(

20
9

)
(0.5)9(0.5)11

= 0.55.

11.1.4

We have Y =
∑
Xi ∼ Poisson(nθ), and

h(θ) =
θα−1e−θ/β

Γ(α)βα
⇒ Θ ∼ Γ(α, β).

Then

g(y|θ) =
e−nθ(nθ)y

y!

so we get

k(θ|y) =
g(y|θ)h(θ)

h(y)
=
θy+α−1nye−nθ−θ/β

y!Γ(α)βαh(y)
.

Also,

h(y) =
ny

y!Γ(α)βα

∫ ∞
0

θy+α−1e−nθ−θ/βdθ =
ny

y!Γ(α)βα

∫ ∞
0

θy+α−1e−θ(
nβ+1
β )dθ

=
nyΓ(y + α)( β

nβ+1 )(y+α)

y!Γ(α)βα
.

Therefore

k(θ|y) =
θy+α−1e−θ(n+ 1

β )

Γ(y + α)( β
nβ+1 )α+y

∼ Γ(y + α,
β

nβ + 1
).

From this, we get that the Bayesian point estimate δ(y) is the mean of the Γ(y + α, β
nβ+1 )

distribution, so

δ(y) = (y + α)(
β

nβ + 1
).
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11.1.5

We have that

F (yn) = F (x)n = (

∫ y

0

1

θ
dx)n = (

y

θ
)n ⇒ f(yn|θ) =

nyn−1

θn
.

Then

k(θ|yn) =
nyn−1βαβθ−n−(β+1)

h(y)

where

h(y) = nyn−1βαβ
∫ ∞
α

θ−(n+β+1)dθ =
nyn−1βαβ

(n+ β)α(n+β)
.

Then

k(θ|yn) =
(n+ β)αn+β

θn+β+1
∼ Pareto(α, n+ β).

Taking the mean of the Pareto(α, n+ β) distribution, we get

δ(yn) =
(n+ β)α

n+ β − 1
.

11.1.8

a)

We have that Θ ∼ beta(10, 5) and Y =
∑
Xi ∼ bin(30, θ). Then

E[(θ − 10 + Y

45
)2] = E[θ2 − 2θ(

10 + Y

45
) + (

10 + Y

45
)2]

= θ2 − 2θ

45
E(10 + Y ) + E[(

10

45
)2 + 2(

10

45
)(
Y

45
) +

Y 2

452
]

= θ2 − 2θ

45
(10 + 30θ) + (

10

45
)2 +

20

452
(30θ) +

1

452
(300(1− θ) + 302θ2)

= (θ − 10 + 30θ

45
)2 + (

1

45
)230θ(1− θ).

b)

We need to find values of θ for which

E[(θ − 10 + Y

45
)2] <

θ(1− θ)
30

⇒ (θ − 10 + 30θ

45
)2 + (

1

45
)230θ(1− θ) < θ(1− θ)

30

⇒ (
θ

3
− 2

9
)2 + (

30

452
− 1

30
)θ(1− θ) < 0

⇒ 0.463 < θ < 0.823.
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