Introduction to Mathematical Statistics

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

Fall 2020

Department of Statistics and Actuarial Science Simon Fraser University

What to do today?

A. Course Syllabus

B. Introduction to STAT-330

Department of Statistics and Actuarial Science Simon Fraser University

STAT-330: Introduction to Mathematical Statistics

Instructor: X. Joan Hu (http://www.sfu.ca/~joanh/; email: joanh@stat.sfu.ca)

Lecture:

Mon 10:30 - 12:20 (PDT/PST); Wed 10:30 - 11:20 (PDT/PST) (Remote Learning)

- An outline of each lecture will be posted in the course's webpage and canvas-page before the meeting time.
- A live lecture will be delivered during the scheduled time for each lecture via Bb Collaborate Ultra (https://canvas. sfu.ca/courses/56956/external_tools/3544).
- The live lecture will be recorded and then posted in the course's webpage and canvas-page througout the whole following week.

Course Webpage:

http://www.sfu.ca/~joanh/stat330web

Course Canvas-page:

https://canvas.sfu.ca/courses/56956

Office Hour:

Wed 11:30 - 12:20 (PDT/PST) via Zoom (https://sfu.zoom.us/j/95177443430; Password: 892882) or by appointment

Teaching Assistant:

Molly Cen (mca173@sfu.ca) for tutorial, and Mandy Yao (mya107@sfu.ca) for marking

Tutorials: (starting from the week of Sep 14 2020)

- D101: Mon 8:30 9:20; D102: Mon 9:30 10:20; D103: Wed 9:30 - 10:20
- Each tutorial will take place during the scheduled time via Bb Collaborate Ultra (https://canvas.sfu.ca/courses/56956/external_tools/3544).

Textbook:

 "Introduction to Mathematical Statistics (8th Edn)" by Hogg, McKean and Craig. Publisher: PEARSON

References:

- "Probability and Statistical Inference," by Hogg and Tanis
- "A Course in Probability Theory," by K.L. Chung
- "Statistical Inference," by Casella and Berger

Computer Software: *R* and *SAS* are recommended; *R* will be used in class (http://www.r-project.org/)

Course Outline

1. Introduction

2. Probability and Distributions (Chp 1-3)

- 2.1 Probability
- 2.2 Random Variables and Distributions
- 2.3 Multivariate Distributions
- 2.4 Some Important Distributions

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11

Course Evaluation – Grading Scheme:

- Homework 20% (six assignments: 5% per homework, and the four highest marks to be used)
- Midterm 40% (two midterms: 20% per test)
- ► Final 40%

Remarks: Medical document is required to evidence the missing of a homework due time, a midterm, or the final is due to illness. When applied, the credit will then be recovered by re-weighting the score at the final exam.

Course Evaluation – Homework (20%: six assignments)

- To be assigned in Weeks 2, 4, 6, 8, 10, 12: the assignments will be posted at the course's webpage and canvas-page, and emailed to the class's email list.
- ► To be collected by 17:30 on Wednesday of Weeks 3, 5, 7, 9, 11, and 13 via the course's canvas-page.
 - Late homework is not accepted: if the delay is due to illness, provide med note and hand in the homework at a later time for credit.
- Marked HW will be returned by the tutorials of the following week: key answers to the homework questions will be posted in the course web page before the tutorials if needed

Course Evaluation – Midterm (40%: two midterms; 20% per test)

- Midterm 1 covers Chp 1-4; Midterm 2, Chp 1-6.
- The test questions will be available in Week 5 for Midterm 1 or Week 10 for Midterm 2, during Wednesday 11:30 to Thursday 11:20.
- You have 2 hours (120 minutes) for each of the midterms: the clock starts right after you open the question sheets.

Remarks:

- Open-book, and calculators allowed; collaboration not allowed for working on the test questions.
- No practice midterm is provided.
- No makeups for midterms: if the missing is due to illness, provide a med note to recover the credit by re-weighting the final score accordingly.

Course Evaluation – Final Exam (40%)

- December TBA, 2020
- You have 4 hours (240 minutes) for the final exam: the clock starts right after you open the question sheets.
- Remarks:
 - Final exam covers all the material studied.
 - No practice exam is provided.
 - Open-book, and calculators allowed; collaboration not allowed for working on the exam questions.
 - Time to Review the Final Exam Papers: 10:00-13:00 (PST) Fri Jan 8, 2021

Course Evaluation

Evaluation options:

Option 1. 4 *HWs* + 2 *Midterms* + *FinalExam* Option 2. 4 *HWs* + 1 *Midterm* + *FinalExam* * 1.5 Option 3. 2 *Midterms* + *FinalExam* * 1.5

The highest of the scores obtained by the three options will be used as the final one.

B. Introduction to STAT-330: Why to study it?

- **Data** are everywhere in this modern world.
- "Statistics is the science of learning from data."
 - By processing/summarizing the data: tabulating/plotting (*Descriptive Analysis*)
 - ► By making inferences with the data ⇒ go beyond the data: to understand uncertainties using the limited information (*Statistical Inference*)
- Do the methods studied before, say, from STAT-270/STAT-285, work for us all the time?
 - to choose an appropriate approach from the available ones?
 - to develop an appropriate approach when needed?

B. Introduction to STAT-330: What to study in it?

STAT-330 provides a systematic and in-depth coverage of the material in STAT-270 and STAT-285.

Course Outline

- 1. Introduction
- 2. Probability and Distributions (Chp 1-3)
 - 2.1 Probability
 - 2.2 Random Variables and Distributions
 - 2.3 Multivariate Distributions
 - 2.4 Some Important Distributions

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11

What will we study in the next week?

- 1. Introduction
- Probability and Distributions
 2.1 Probability (Chp1.1-4)
 2.2 Random Variables and Distributions (Chp1.5-10)

2.3 Multivariate Distributions (Chp2)2.4 Some Important Distributions (Chp3)

- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11