STAT 330. Midterm 1 - Question 2
(October 7-9, 2020)
Name:
Student ID:

Q2.[20 points] Consider the experiment of flipping an uneven coin twice independently. Suppose the probability of getting a head with one flip is $1 / 3$. Answer the following questions.
[5] (i) Write down the sample space of the experiement.
$\{5\}$ (ii) Let X_{1} be the number of heads from the first flip; X_{2}, the second flip. Give the joint mf of $\left(X_{1}, X_{2}\right)$.
[5] (iii) Let Y be the number of heads from the experiement: $Y=X_{1}+X_{2}$. Obtain $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$.
[5] (iv) If $W=X_{1} X_{2}$, what is $\operatorname{Cov}(Y, W)$?
Solution (i) $S=\{(H, H),(H, T),(T, H),(T, T)\}$
(ii) All the possible values of X_{1}, X_{2} are 0,1

The following table gives-ike joint pouf of x_{1} and x_{2} :

$$
\begin{aligned}
& x_{1} x_{2} \quad 0 \quad P(1,1)=\frac{1}{9} \\
& p(1,0)=p(0,1)=\frac{2}{q} \\
& p(0,0)=\frac{4}{9} \\
& E\left(x_{1}\right)=E\left(x_{2}\right)=1\left(\frac{1}{3}\right)+0\left(\frac{2}{3}\right)=\frac{1}{3} \\
& V\left(x_{1}\right)=V\left(x_{2}\right)=1\left(\frac{1}{3}\right)-\left(\frac{1}{3}\right)^{2}=\frac{1}{3}\left(\frac{2}{3}\right)=\frac{2}{9} \\
& \therefore E(Y)=2 / 3, V(Y)_{\substack{\| 1 \\
x_{1}}}=2\left(\frac{2}{9}\right)=4 / 9 \\
& \text { (iii) } \operatorname{Cov}(Y, W)=E(Y W)-E(Y) E(W) \\
& \begin{aligned}
E(W)=E\left(X_{1}\right) E\left(X_{2}\right)=\frac{1}{9}, E(Y W) & =E\left(X_{1}^{2} X_{2}+X_{1} x_{2}^{2}\right)_{2} \\
& =2 E\left(X_{1}^{2}\right) E\left(X_{2}\right)=\frac{2}{9}
\end{aligned} \\
& \text { (iii) } \begin{array}{r}
\because Y=X_{1}+X_{2} \\
E\left(X_{1}^{2}\right)=E\left(X_{1}\right)
\end{array} \\
& p\left(x_{1}, x_{2}\right) \\
& \text { for } x_{1}, x_{2}=0,1 \\
& \left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \quad\left(\frac{2}{3}\right)\left(\frac{2}{3}\right) \\
& E\left(x_{1}\right)=E\left(x_{1}\right)=1\left(\frac{1}{3}\right)+0\left(\frac{2}{3}\right) \\
& \text { ? } \\
& \begin{aligned}
\Rightarrow \operatorname{Cov}(Y, W)^{1} & \simeq \frac{2}{9}-\frac{2}{3}\left(\frac{1}{9}\right) \\
& =4_{4 / 27}
\end{aligned}
\end{aligned}
$$

