Q3.1. By Q(1.,
$$X \sim N(\mu_X, Q^2)$$
.
 $Y \equiv 207$, $S_X^2 = 121.63$
 $\Rightarrow \Theta = P(X \ge 0) \approx P(\overline{Z} \ge \frac{0-2.07}{\sqrt{121.63}})$, $Z \sim N(0,1)$
 $= 0.57$
Q3.2. Who is approximately Normal with mean $[ODE(Y),$
variance $[OD Var(Y)]$.
 $Y = \begin{cases} 20, & Y \\ 0, & otherwise \end{cases}$, $E(Y) = 200$
 $V(Y) = 20^2 \Theta(1-0)$
 $\therefore W_{100} \sim N(2000\theta, 40000\theta(1-0))$
Q3.3. $P(W_{100} > 1500) \approx P(\overline{Z} > \frac{(500 - 2000 \cdot (0.57))}{\sqrt{40000(577)(.43)}})$
 ≈ 0

Q3.4. (a) Let
$$g = P(W_{100} \le 1200)$$

 $\widehat{g} = P(Z \le \frac{1200 - 2000 \cdot \widehat{\theta}}{\sqrt{40000} \, \widehat{\theta}(i, \widehat{\theta})})$
with $\widehat{\theta} = P(Z \ge \frac{0 - \overline{X}}{\sqrt{5x^2}})$.
That is, $\widehat{g} = \widehat{g}(X_1, \dots, X_{100})$, an estimator of
with observations X_1, \dots, X_{100} .
The following is a bootstraping procedure for constructing a 90% CI
for the probabilit $g = P(W_{100} \le 1200)$:
Step1.
Step1.
Step1.1 Select 100 observations from the study data

- $\{x_1, \dots, x_{100}\}$ rendomly with replacement. Dense them the $\{x_1^*, \dots, x_{100}^*\}$
- Step1.2. Evaluate $\hat{q} = \hat{q} (X_1, \dots, X_{100})$ with $\{z_1^*, \dots, z_n^*\}$
- Repeat Step1.1 and step 1.2 B times and denote the resulting of estimates by $\hat{g}_{1}^{*}, \hat{g}_{2}^{*}, \dots, \hat{g}_{B}^{*}$

Step? Let
$$\hat{\mathcal{G}}_{L}$$
 and $\hat{\mathcal{G}}_{U}$ be the $5\frac{2}{5}$ and $95\frac{2}{5}$
quantile of $\hat{\mathcal{G}}_{L}^{*}$. $\hat{\mathcal{G}}_{B}^{*}$.
The interval $(\hat{\mathcal{G}}_{L}, \hat{\mathcal{G}}_{U})$ is then the bootstrap
 90% CI for 9 .

(b) Note-that
$$\sqrt{n} \left(\frac{W_n}{n} - E(Y)\right) \xrightarrow{d} N(o, Var(Y))$$
.
By the s-method,
 $\sqrt{n} \left(\left(\frac{W_n}{n}\right)^{\frac{4}{3}} - \left(E(Y)\right)^{\frac{4}{3}}\right) \xrightarrow{d} N(o, Q^2, Var(Y))$
with $Q = \frac{4}{3} \left(E(Y)\right)^{\frac{4}{3}}$.

$$\Rightarrow A_{po} = W_{po}^{\frac{4}{3}} \sim N(\mu_{A}, \sigma_{A}^{2}) \quad \text{approximately}$$

with $\mu_{A} = n^{\frac{4}{3}} (E(\gamma))^{\frac{4}{3}} = (2000 \theta)^{\frac{4}{3}}$
 $\sigma_{A}^{2} = n^{\frac{5}{3}} q^{2} V(\gamma) = \frac{2^{\frac{2}{3}}}{9} \cdot 10^{\frac{6}{3}} \theta^{\frac{5}{3}} (1-\theta)$