What have we studied in STAT 330?

(They will be covered in the final exam.)

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
 - 2.1 Probability (Chp1.1-4)
 - 2.2 Random Variable and Distribution (Chp1.5-10)
 - 2.3 Multivariate Distribution (Chp2)
 - 2.4 Some Important Distributions (Chp3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)

4. Further Topics, Selected from Chp 7-11

- 4.1 Nonparametric and Robust Statistics (Chp 10.1-4, 10.8-9)
- 4.2 Bayesian Statistics (Chp 11.1)

1. Introduction

- "Statistics is the science of learning from data."
 - By processing/summarizing the data: tabulating/plotting
 - ► By making inferences with the data ⇒ go beyond the data: to understand uncertainties using the limited information
- The methods we studied before, say, from STAT-270 and/or STAT-285, don't always work for us all the time.
 - How to choose an appropriate approach from the available ones?
 - How to develop an appropriate approach when needed?
- **STAT-330** Introduction to Mathematical Statistics
 - To provide a systematic and in-depth coverage of the material in STAT-270 and STAT-285.
 - In general, to provide the required theoretical training in studying statistics further.

2.1 Probability (Chp1.1-4)

- 2.1.1 Introduction
- 2.1.2 Set Theory
- 2.1.3 Definition of Probability
- 2.1.4 Conditional Probability and Independence
- the definitions of probability;
- the three basic probability rules (given in the axiom deftn by Kolmogorov), the commonly used induced rules;
- conditional probability;
- independent events

2.2 Random Variable and Distribution (Chp1.5-10)

- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related
- random variable;
- distribution: pmf, pdf, cdf;
- expectation and related such as variance, mgf, and some important (eg Markov, Jensen) inequalities.

2.3 Multivariate Distribution (Chp2)

2.3.1 Basic Concepts with Two Random Variables2.3.2 Conditional Distribution and Expectation2.3.3 Extension to Several Random Variable

- two random variables: joint/margianl distn, covariance
- conditional distn, independence
- several random variables: function of variables

2.4 Some Important Distributions (Chp3)

- 2.4.1 Discrete Distributions
- 2.4.2 Continuous Distributions
- 2.4.3 Multivariate Distributions
- 2.4.4 Distributions Induced from Others
- discrete distn: uniform, binomial, negative binomial, hypergeometric, Poisson, ...
- ▶ continuous distn: uniform, normal, exponential, beta, ...
- multinomial, multivariate normal ...
- χ^2 -distn, *t*-distn, *F*-distn, ...
- distn of a function of rvs: Jacobian of the transformation

3.1 Elementary Statistical Inferences (Chp4)

- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
- random sample (iid observations);
- statistic; order statistics;
- point vs interval estimation; examples;
- hypothesis testing: hypotheses, test statistic, rejection region (or p-value);
- simulation and bootstrap

3.2 Consistency and Limiting Distributions (Chp5)

3.2.1 Convergence in Probability

3.2.2 Convergence in Distribution

modes of convergence;

- convergence in prob, convergence in distn;
- Weak Law of Large Numbers (WLLN), Central Limit Theorem (CLT);
- applications in statistics: Δ-method, moment generating function technique

3.3 Maximum Likelihood Methods (Chp6)

3.3.1 Maximum Likelihood Estimation

3.3.2 Likelihood-Based Tests

3.3.3 EM Algorithm

- likelihood function and MLE: interpretation;
- how to compute MLE: eg, EM algorithm
- properties of MLE: consistency, asymptotic normality, asymptotic efficient, invariance
- Wald-test, likelihood ratio test (LRT);
- a duality between CI and hypothesis test
- MLE for multiple parameters (parameter vector);
- test on hypotheses of parameter vectors.

4.1 Nonparametric and Robust Statistics (Chp 10.1-4, 10.8-9)

- 4.1.1 Location Models
- 4.1.2 Sample Median and the Sign Test
- 4.1.3 Signed-Rank Test and MWW Test
- 4.1.4 Measures of Association
- 4.1.5 Robust Statistics Concepts

- the definitions of location models, population median, sample median
- the Sign test, the Signed-Rank test, the MWW test
- confidence intervals for the median
- Kendall's au and its estimator, Spearman's ho and its estimator
- sensitivity curve

4.2 Bayesian Procedures (Chp 11.1)

- ► Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})}$
- Bayesian Framework: Θ ~ h(θ), a prior distn. The posterior distn given data x is

$$k(heta|\mathbf{x}) = \left[rac{L(heta|\mathbf{x})}{\int L(heta|\mathbf{x})h(heta)d heta}
ight]h(heta) \propto L(heta|\mathbf{x})h(heta).$$

Point Estimation:
$$\hat{\theta}(\mathbf{x}) = \operatorname{argmin}_{all \ \delta(\mathbf{x})} \left(E \left[\mathcal{L}(\Theta, \delta(\mathbf{x})) \right] \right).$$
eg. if $\mathcal{L}(\theta, \delta(\mathbf{x})) = (\delta(\mathbf{x}) - \theta)^2, \implies \hat{\theta}(\mathbf{x}) = E(\Theta | \mathbf{x})$

Interval Estimation : A credible inverval (u(x), v(x)) is chosen such that

$$1 - \alpha = P[u(\mathbf{x}) < \Theta < v(\mathbf{x}) | \mathbf{x}] = \int_{u(\mathbf{x})}^{v(\mathbf{x})} k(\theta | \mathbf{x}) d\theta.$$

► Testing; To test on $H_0 : \theta \in \Omega_0$ vs $H_1 : \theta \in \Omega_1$: Accept H_0 if $P(\Theta \in \Omega_0 | \mathbf{x}) \ge P(\Theta \in \Omega_1 | \mathbf{x})$; otherwise, reject H_0 .

Thank you for your participation, good luck on the final exam!

Department of Statistics and Actuarial Science Simon Fraser University