STAT 330 Tutorial 1

Mengqi (Molly) Cen
Department of Statistics \& Actuarial Science
Sept $14^{\text {th }} /$ Sept $16^{\text {th }}$

Textbook

Introduction of

Mathematical
Statistics, $8^{\text {th }}$ Edition

Mathematical Statistics

Eighth Edition

Hogg
McKean
Craig

Assignments

- $1^{\text {st }}$ assignment is assigned by emailing to the class list and posting in the course's canvas and web pages.
- Due on Sept $23^{\text {rd }}$ by $17: 30$
- Submit Hwk by CANVAS!

Contents

- R \& Rstudio
- R Examples
- Proof Strategy
- Review of Set Theory

R \& Rstudio

R

- Go to https://mirror.rcg.sfu.ca/mirror/CRAN/

Rstudio

- Goto https://rstudio.com/products/rstudio/download/ \#download

R Examples

See example.r

Proof Strategy

- Direct Proof
- Proof by Contradiction
- Proof by Induction
- Proof by Contrapositive

Proof Strategy

Example:

The sum of any two consecutive numbers is odd.

Proof Strategy

Direct Proof

Assume P true
 Use P to show that Q true

Proof Strategy

Direct Proof

Assume a, b are consecutive integers
so $b=a+1$
$a+b=a+(a+1)=2 a+1$
since a is an integer,
$2 a$ is an even number
$2 a+1$ is an odd number

Proof Strategy

Proof by Contradiction

Assume $P, \neg Q$ true
But deriving a contradiction

Proof Strategy

Proof by Contradiction
Assume a,b are consecutive integers
Also assume $\mathrm{a}+\mathrm{b}$ is not odd
Then no integer k such that $(a+b)=2 k+1$
But $a+b=a+(a+1)=2 a+1$
There is a contradiction
So a+b is odd

Proof Strategy

Proof by Induction

Base case: Proof P, Q true for some basis case
Induction: Proof if P, Q is true for n , then they are true for $n+1$

Proof Strategy

Proof by Induction
Base case: $1+2=3$ is odd Induction case:

If $x+(x+1)$ is odd
Then $x+(x+1)+2$ is also odd
$x+(x+1)+2=x+1+(x+1+1)$
we can proof that if the statement is true for some x and its successor, then it is true for $\mathrm{x}+1$ and its successor

Proof Strategy

Proof by Contrapositive

$$
\text { Proof } \neg Q \rightarrow \neg P
$$

Proof Strategy

Proof by Contrapositive

If $(\mathrm{a}+\mathrm{b})$ is not odd, then a and b are not consecutive integers
since $(a+b)$ is not odd, there is no k exists such that $a+b=2 k+1$
so $(a+b)=k+(k+1)$ does not hold for any integer k .

But $k+1$ is the successor of k, which implies that a and b cannot be consecutive

Review of Set Theory

Complement

Definition 1.2.1. The complement of an event A is the set of all elements in C which are not in A. We denote the complement of A by A^{c}. That is, $A^{c}=\{x \in \mathcal{C}$: $x \notin A\}$.

$$
\mathcal{C}^{c}=\phi \text { and } \phi^{c}=\mathcal{C}
$$

Review of Set Theory

Subset

Definition 1.2.2. If each element of a set A is also an element of set B, the set A is called a subset of the set B. This is indicated by writing $A \subset B$. If $A \subset B$ and also $B \subset A$, the two sets have the same elements, and this is indicated by writing $A=B$.

Review of Set Theory

Union

Definition 1.2.3. Let A and B be events. Then the union of A and B is the set of all elements that are in A or in B or in both A and B. The union of A and B is denoted by $A \cup B$

Review of Set Theory

Intersection

Definition 1.2.4. Let A and B be events. Then the intersection of A and B is the set of all elements that are in both A and B. The intersection of A and B is denoted by $A \cap B$

Review of Set Theory

Disjoint

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if $A \cap B=\phi$

Thanks!

