

STAT 330 Tutorial 3

Mengqi (Molly) Cen Department of Statistics & Actuarial Science

Sept 28st / Sept 30th

Assignment 1

Discrete Random Variable

- **1.6.2.** Let a bowl contain 10 chips of the same size and shape. One and only one of these chips is red. Continue to draw chips from the bowl, one at a time and at random and without replacement, until the red chip is drawn.
 - (a) Find the pmf of X, the number of trials needed to draw the red chip.
 - (b) Compute $P(X \leq 4)$.

Discrete Random Variable

1.6.8. Let X have the pmf $p(x) = (\frac{1}{2})^x$, $x = 1, 2, 3, \ldots$, zero elsewhere. Find the pmf of $Y = X^3$.

Continuous Random Variable

1.7.24. Let $f(x) = \frac{1}{3}$, -1 < x < 2, zero elsewhere, be the pdf of X. Find the cdf and the pdf of $Y = X^2$.

Hint: Consider $P(X^2 \le y)$ for two cases: $0 \le y < 1$ and $1 \le y < 4$.

Expectation

1.8.6. Let X have the pdf $f(x) = 3x^2$, 0 < x < 1, zero elsewhere. Consider a random rectangle whose sides are X and (1-X). Determine the expected value of the area of the rectangle.

mgf

1.9.22. Let X have the pmf p(x) = 1/k, x = 1, 2, 3, ..., k, zero elsewhere. Show that the mgf is

$$M(t) = \begin{cases} \frac{e^t(1 - e^{kt})}{k(1 - e^t)} & t \neq 0\\ 1 & t = 0. \end{cases}$$

Inequality

1.10.3. If X is a random variable such that E(X) = 3 and $E(X^2) = 13$, use Chebyshev's inequality to determine a lower bound for the probability P(-2 < X < 8).

Questions