

STAT 330 Tutorial 9

Mengqi (Molly) Cen Department of Statistics & Actuarial Science

Nov 16th/ Nov 18th

Outline

1. Convergence in Probability

2. Convergence in Distribution

3. Maximum Likelihood Methods

Convergence in Probability

5.1.3. Let W_n denote a random variable with mean μ and variance b/n^p , where p > 0, μ , and b are constants (not functions of n). Prove that W_n converges in probability to μ .

Hint: Use Chebyshev's inequality.

Review =

We say a Sequence of random variables (rus)

$$f(Y_n : n = 1, 2, ..., i)$$
 converges in probability to
 $rv \ Y \ if$, for $\forall < < > 0$,
 $n \xrightarrow{lim}_{\to \infty} P(|Y_n - Y| > <) = 0$.
Denoted it by " $Y_n \rightarrow Y$ in probability" as $n \rightarrow \infty$,

or "Yn
$$\xrightarrow{P}$$
 Y as $n \rightarrow \infty$ ".

Answer =

By Chebyshev's inequality

$$P(|Wn - M| \ge 4) \le \frac{1}{4^2} Var EWn]$$

 $= \frac{b}{6^2 n^p}, \text{ for } 4.70$
Since $p > 0$.
 $\lim_{n \to \infty} \frac{b}{6^2 n^p} = 0$.
Therefore, $\lim_{n \to \infty} Pc[Wn - M| \ge 4) = 0$,
which shows that $Wn \xrightarrow{P} M$.

Convergence in Probability

5.1.5. Let X_1, \ldots, X_n be iid random variables with common pdf

$$f(x) = \begin{cases} e^{-(x-\theta)} & x > \theta - \infty < \theta < \infty \\ 0 & \text{elsewhere.} \end{cases}$$
(5.1.3)

This pdf is called the **shifted exponential**. Let $Y_n = \min\{X_1, \ldots, X_n\}$. Prove that $Y_n \to \theta$ in probability, by first obtaining the cdf of Y_n .

Convergence in Distribution

5.2.2. Let Y_1 denote the minimum of a random sample of size n from a distribution that has pdf $f(x) = e^{-(x-\theta)}$, $\theta < x < \infty$, zero elsewhere. Let $Z_n = n(Y_1 - \theta)$. Investigate the limiting distribution of Z_n . Answer:

Review=

Consider
$$v \times v F_{x}(\cdot)$$
. We call a sequence
of $vs \quad \{X_n\}$ converges in distribution to χ if
 $\lim_{n \to \infty} F_{x_n}(\chi) = \lim_{n \to \infty} P(\chi_n \in \chi) = F(\chi)$
for all $\mathcal{D}(\mathcal{G}(\mathcal{C}(F_X))$, the set of all continuous
points of $F_x(\cdot)$. Denote it by $\chi_n \xrightarrow{D} \chi$.

Previous question has showed that $P(Y_1 \ge y) = e^{n(y-\theta)}$ for $y > \theta$. Since ACX <0, 0-7-0. Thus for t = 0, Fan(t)= P(Zn=t)=0. For t > 0, $F_{2n}(t) = P(2n \le t)$ $=P(n(Y_{1}-\theta) \leq t)$ $=P(Y_{1} \in \frac{1}{2} + \theta)$ = (- Pc Y1 > + 0) = 1-et. We see that Fan is the cdf for the exponential distribution with mean 11=1. Therefore, {Zn} converges in distribution to an exponential distribution with mean 11-1.

Convergence in Distribution

5.2.7. Let X_n have a gamma distribution with parameter $\alpha = n$ and β , where β is not a function of n. Let $Y_n = X_n/n$. Find the limiting distribution of Y_n .

$$\frac{\text{Review}^{2}}{\text{Consider the sequence of rvs {Xn} with}} \xrightarrow{\text{Answer:}} \overline{M_{Xn(t)}} = \overline{E}(e^{tXn})$$

$$\frac{\text{der mathematical for as M_{Xn(t)} for -hetch,}}{\prod_{(Tn)}\beta^{n}} \int_{0}^{\infty} e^{tX} x^{n} e^{-\frac{x}{P}} dx$$

$$= \frac{1}{(Tn)}\beta^{n}} \int_{0}^{\infty} e^{tX} x^{n} e^{-\frac{x}{P}} dx$$
and a rv X with magf M_{X(t)} for -hetch,
$$= \frac{1}{(Tn)}\beta^{n}} \int_{0}^{\infty} x^{n} e^{-\frac{x}{P}} dx$$

$$= (\frac{1}{(Tn)}\beta^{n}} e^{-\frac{x}{P}} dx$$

$$= (\frac{1$$

Convergence in Distribution

5.3.8. Let Y be b(n, 0.55). Find the smallest value of n which is such that (approximately) $P(Y/n > \frac{1}{2}) \ge 0.95$.

Review:

Central Limit Theorem If Xu. Xn are ild with mean M and variance, 6², $Y_{n} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{6} \right) \xrightarrow{V} N(0, i),$ ash->10. That is, $\frac{\overline{X}-M}{\sqrt{6^2/n}} \xrightarrow{D} N(0,1), as n-200.$

Answer:

(Silven Y ~ H(n, 0,55), We have ELY) = 0.55n, Var(Y) = N. Ditt. Dift $P(\frac{1}{n} > \frac{1}{n}) = D_1 \chi_{0} \gamma_{0} \gamma_{0}$ $= [- P(\underline{x} \in \frac{1}{2})$ $= (-)^{2} (\frac{\gamma - 0.52n}{\sqrt{200}} \leq \frac{0.52n + 0.52 - 0.55n}{\sqrt{200}})$ $59.0 < 1 - P(Z \leq \frac{0.5 - 0.05}{0}) > 0.95$ $2:0 \ge \left(\frac{N20.0 - 2.0}{N20.0 - 2}\right) \stackrel{\circ}{\Phi}$ Thus, $\frac{0.5-0.05N}{\sqrt{0.1475N}} \leq -(.645)$. Solve for n we get n=290.

Maximum Likelihood Estimation

6.1.6. Let the table

x	0	1	2	3	4	5
Frequency	6	10	14	13	6	1

represent a summary of a sample of size 50 from a binomial distribution having n = 5. Find the mle of $P(X \ge 3)$. Answer: Review:

The MLE ô is the value of the population parameter O that maximizes the likelihood function: L(ôldata) = max L(oldata). Let X₁, X₁,..., X_n are n iid variables with binomial distribution with parameters n and p. Then we have that $P(X=x) = (\frac{1}{2})\frac{1}{p}(1-p)^{n\times 1}$. Then the likelihood function is: $L(p(X_1,...,X_m) = \prod_{i=1}^{m} (Q_i)p^{x_i}(rp^{n-x_i} for i=0,...,m)$. $L(p(X_1,...,X_m) = \prod_{i=1}^{m} (n(X_1) + \prod_{i=1}^{m} x_i \ln(p) + \prod_{i=1}^{m} (n(x_i)\ln(rp) = \prod_{i=1}^{m} (n(X_1) + \prod_{i=1}^{m} x_i n(p) + \prod_{i=1}^{m} x_i \ln(p) + \prod_{i=1}^{m} x_i n(p) + \prod_{i=1}^{m} x_i \ln(p) + \prod_{i=1}^{$

Maximum Likelihood Estimation

6.2.8. Let X be $N(0, \theta), 0 < \theta < \infty$.

- (a) Find the Fisher information $I(\theta)$.
- (b) If X_1, X_2, \ldots, X_n is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ .

Review =

The Fisher Information is $FI(\theta) = E\left[\left(\frac{\partial \log f(X; \theta)}{\partial \theta}\right)^{2}\right],$ provided the expectation exists. Note that $FI(\theta) = Var\left(\frac{\partial \log f(X; \theta)}{\partial \theta}\right) = -E\left[\frac{\partial \log f(X; \theta)}{\partial x \theta}\right].$ Answer: a) Given X UNLO, θ , $\theta < \theta < \infty$, $f(x_{1}, \theta) = \frac{1}{42\pi\theta} \exp\left\{-\frac{1}{2}\frac{2c^{2}}{\theta}\right\}$ log $f(x; \theta) = -\frac{1}{2}\log(c\pi) - \frac{1}{2}\log(\theta) - \frac{x^{2}}{2\theta}.$ $\frac{\partial \log f(x; \theta)}{\partial \theta} = -\frac{1}{2\theta} + \frac{2c^{2}}{2\theta}.$ $\frac{\partial \log f(x; \theta)}{\partial \theta} = -\frac{1}{2\theta} + \frac{2c^{2}}{2\theta}.$ $FI(\theta) = E\left[\frac{\partial \log f(X; \theta)}{\partial x}\right] = -E\left[-\frac{1}{2\theta^{2}} - \frac{xc^{2}}{\theta^{2}}\right] = -\frac{1}{2\theta^{2}} + \frac{1}{\theta^{2}}E\left[-\frac{\pi^{2}}{\theta}\right]$ $\int \cos\left(\frac{X^{2}}{\theta} - \frac{x^{2}}{x^{4}}\right) = -E\left[-\frac{1}{2\theta^{2}} - \frac{xc^{2}}{\theta^{2}}\right] = -\frac{1}{2\theta^{2}} + \frac{1}{\theta^{2}}E\left[-\frac{\pi^{2}}{\theta}\right]$

Review : An unbiased estimator Y with a random sample of size n is called efficient if Voril's= TETION Answer: $b_1(r, \Theta) = \sum_{N=1}^{\infty} \left[r_{N}(r, \Theta) \right] = -\frac{1}{N} \sum_{N=1}^{\infty} \left[r_{N}(r, \Theta) \right] + \sum_{N=1}^{\infty} \sum_{$ $= -\frac{N}{2} \left[\log(12\pi) - \frac{N}{2} \left[\log(10) - \frac{1}{29} \frac{N}{3} \times i^2 \right] \right]$ Using derivative of function equals 0 to find MLE: $\frac{\partial U}{\partial \theta} = -\frac{\alpha}{2\Theta} + \frac{\hat{\Sigma} \chi^2}{2\Theta^2} = 0, \text{ we get } \overset{\wedge}{\Theta} = \frac{1}{U_1} \sum_{i=1}^{U} \chi_i^2.$ $\frac{\partial^2 U}{\partial p^2} = \frac{N}{20^2} = \frac{1}{20^2} \frac{\chi_1^2}{\rho_2^2}$ After pluging $\hat{\Theta} = \frac{1}{10} \sum_{i=1}^{n} 2i^2$, we get $\frac{2ib}{20^2} = -\frac{h^5}{2(2\pi i)} < 0$ Thus, & is the mit. Since Xiz v X'n, $\mathcal{V}\mathcal{B}r(\hat{\Theta}) = \frac{\Theta^2}{n^2} \mathcal{V}\mathcal{B}r\left(\sum_{i=1}^{N} \frac{\chi_i^2}{\chi_i^2}\right) = \frac{2\Theta^2}{n} = \frac{1}{n}$

Questions