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Part IV. Modern Biostatistical (Analytic
Epidemiologic) Approaches

Part IV.1 Incomplete Data Analysis
(supplementary; Ref: Tsiatis, 2006 “Semiparametric Theory and
Missing Data”)

I Part IV.1.1 Introduction
Incomplete data are prevalent in practice:
I Many studies set out in advance to collect data following a

“nice” plan but do not work out quite as intended, especially
when the studies involve human beings.

I Many studies even begin with the knowledge that the desired
information is not affordable.



Part IV.1.1 Introduction: Some examples of
incomplete data

I Nonresponse in sampling survey

e.g. We send out questionnaries to a sample of randomly chosen

individuals: some may provide only a partial answer or no answer to some

questions, or, many not return the questionnaire at all.

I Dropout or noncompliance in clinical trial

e.g. In a randomized clinical trial, subjects are enrolled and then

randomly assigned to one of the treatment arms: some subjects may

“drop out” of the study – failing to show up for any clinic visit after a

certain point, and some others may miss clinic visits occasionally or quit

taking their assigned treatment.



Part IV.1.1 Introduction: Some examples of
incomplete data

I Surrogate measurements

e.g. In some studies, the response of interest or some important

covariate may be very expensive to obtain, such as the daily average

percentage fat intake of a subject. A cheaper measurement (surrogate) is

to have subjects recall the food they ate in the past 24 hurs.

I Observations on biomarkers

e.g. In AIDS studies, the time to AIDS since HIV infection has become

not desirable endpoint for it takes long to collect enough information on

it. Many recent AIDS studies use biomarkers, such as CD4 counts and

HIV RNA as study responses. Efforts should be made to establish the

association of time to AIDS with the biomarkers.



Original Objective: making an inference about some aspect
(parameter, finite/infinite dimensional) of the distribution of the
“full data” (i.e., the data that would have been observed if there is
no data incompleteness)

Inherent Problem: when data are incomplete, depending on how
and why they are missing, our ability to make an inference may be
compromised. Moreover, not accounting for incomplete data
properly when analyzing the data can lead to severe biases.

Most software packages, by default, delete records for which data
are incomplete and conduct the “complete-case analysis”. e.g.
Cook et al (2011)

Serious attempts since 1980s to address the problem ... ...



Part IV.1.2 Models and Methods for Missing Data

Consider a study to assess the efficacy of a new drug in reducing
blood pressure for patients: the endpoint of interest is the decrease
in blok pressure after six months.

I Yi=subject i ’s reduction in blood pressure after six months

I Ri=1 or 0 corresponding to Yi was taken or not

I i = 1, . . . , n

I assume (Yi ,Ri ) to be iid and the population mean E (Yi ) = µ

Some terms:

I the “full data”: {(Yi ,Ri ) : i = 1, . . . , n}
I the “observed data”: {(RiYi ,Ri ) : i = 1, . . . , n}
I the “complete-case data”: {RiYi : Ri = 1, i = 1, . . . , n}



Part IV.1.2 Models and Methods for Missing Data

I A natural estimator for µ with the observed data:

µ̂C =
∑n

i=1 RiYi∑n
i=1 Ri

, the complete-case sample average (observed

sample mean),

I the sample mean with the full data: µ̂F =
∑n

i=1 Yi/n.

As n→∞, by SLLN, a.s. µ̂F → µ and µ̂C → E(RY )
E(R)

Missing Completely at Random (MCAR): the probability of
missingness is independent of the variable.

I If the data are MCAR, R⊥Y and E (RY ) = E (R)E (Y ) =⇒
µ̂C is consistent (in fact, is unbiased)

I What if not MCAR?



Part IV.1.2 Models and Methods for Missing Data

Not Missing at Random (NMAR): the probability of missingness
depends on the variable.

With E (R|Y ) = P(R = 1|Y ) = π(Y ),

µ̂C →
E (RY )

E (R)
=

E (Y π(Y ))

E (π(Y ))
6= E (Y ) = µ (necessarily)

e.g. π(y) ↑ as y ↑, E(Yπ(Y ))
E(π(Y )) > µ.

If NMAR, no way (i) to know Yi if Ri = 0 and (ii) to estm π(y)
=⇒ no way to find out whether MCAR or NMAR from the
observed data (an inherent nonidentifiability problem).

A third possibility to consider ... ...



Part IV.1.2 Models and Methods for Missing Data

Suppose there are additional observations Wi , i = 1, . . . , n.
[auxiliary covariates: they represent variables not of the primary
interest for inference]
The “observed data” are now {(RiYi ,Ri ,Wi ) : i = 1, . . . , n}.

Missing at Random (MAR): conditional on the auxiliary covariate,
the probability of missingness does not depend on the primary
variable:
P(Ri = 1|Yi ,Wi ) = π(Wi ), that is, Ri⊥Yi |Wi .

=⇒ understanding the missingness and then making inference
about Y ’s distn with the observed data ... ...

For example, consider P(R = 1|W = w) = π(w ; γ), say, a logistic
regression model, and estm γ by maximizing∏n

i=1 π(Wi ; γ)Ri
(
1− π(Wi ; γ)

)1−Ri



Part IV.1.2 Models and Methods for Missing Data

Likelihood Methods: Consider
(Y ,W ) ∼ fY ,W (y ,w) = fY |W (y |w ; γ1)fW (w ; γ2).

µ = E (Y ) = E{E (Y |W )} =

∫
yfY |W (y |w ; γ1)fW (w ; γ2)dydw .

Since [RY ,R,W ] is either [Y |R = 1,W ][R = 1,W ] or [R = 0,W ],
and [Y |R = 1,W ] = [Y |W ] with MAR, the likelihood function

L(γ1, γ2) ∝
( n∏

i=1

fY |W (yi |wi ; γ1)ri
)( n∏

i=1

fW (wi ; γ2)
)
.

=⇒ the MLE of γ1, γ2 and then the MLE of µ, say, µ̂MLE .
Remark: γ1 estm by the complete cases and γ1 estm by all the
data.
numerical challenge: computing? the EM algorithm?



Part IV.1.2 Models and Methods for Missing Data

A small simulation study ...
T ∼ NE (θ) with E (T ) = θ = 3

I iid T1, . . . ,Tn with n = 100
=⇒ θ̂F =

∑n
i=1 Ti/n

I iid Ci ∼ NE (φ) and Ui = min(Ti ,Ci ), δi = I (Ti ≤ Ci ):
right-censored observations =⇒
I
∑n

i=1 Ui/n
I θ̂MLE =

∑n
i=1 Ui/

∑n
i=1 δi

I iid Ri ∼ B(1, p) and then RiTi : MCAR =⇒
I θ̂MCAR =

∑n
i=1 RiTi/

∑n
i=1 Ri

Generated m = 1000 sets of data to examine the performance of
the estimators



Part IV.1.2 Models and Methods for Missing Data

A small simulation study ... (cont’d)

I iid W1, . . . ,Wn with n = 100 from B(1, 0.5)

I Ti ∼ NE (θ1) if Wi = 1; Ti ∼ NE (θ0) if Wi = 0
E (T ) = 1

2θ1 + 1
2θ0

=⇒ θ̂F =
∑n

i=1 Ti/n

I iid Ri ∼ B(1, p1) if Wi = 1; Ri ∼ B(1, p0) if Wi = 0
I
∑n

i=1 RiTi/
∑n

i=1 Ri

I 1
2

∑
i :Wi=1(Ri/p1)Ti

/
n1 + 1

2

∑
i :Wi=0(Ri/p0)Ti

/
n0

Generated m = 1000 sets of data to examine the performance of
the estimators



Part IV.1.2 Models and Methods for Missing Data

Imputation: With the “full data”,

µ̂F =

∑n
i=1 Yi

n
=

1

n

n∑
i=1

RiYi + (1− Ri )Yi .

With MAR, E (Yi |Ri = 0,Wi ) = E (Yi |Wi ) =∫
yfY |W (y |Wi ; γ1)dy = µ(Wi ; γ1).

Using the MLE of γ1, a consistent estm

µ̂IMP =

∑n
i=1 Yi

n
=

1

n

n∑
i=1

[
RiYi + (1− Ri )µ(Wi ; γ̂1)

]

Other imputation techniques, such as to impute the missing Yi

using a random draw (or more ) from fY |W (y |Wi ; γ̂1) the MCEM?



Part IV.1.2 Models and Methods for Missing Data

Inverse Probability Weighted (IPW) Complete-Case
Estimator: With the “observed data”, RiYi with Ri = 1 should

present more than one but 1/P(R = 1|Wi ) many individuals.
=⇒ another consistent estm µ̂IPWCC = 1

n

∑n
i=1

RiYi
π̂(Wi )

π̂(w) is obtained from
∏n

i=1 π(Wi ; γ)Ri
(
1− π(Wi ; γ)

)1−Ri .

This is because

E
[
E
( RY

π(W )

∣∣∣Y ,W)] = E
[ Y

π(W )
E
(
R
∣∣∣Y ,W)].

e.g. Hu, et al (2007): kindergarten readiness skills in children with
sickle cell disease [cognitive impairment?]



Part IV.1.2 Models and Methods for Missing Data

I µ̂MLE and µ̂IMP require to specify fY |W (y |w ; γ1): what if it’s
misspecified?

I µ̂IPWCC requires to specify P(R = 1|w) = π(w ; γ): what if
it’s misspecified?

=⇒ the following ... ...
Double Robust Estimator: an augmented inverse probability
weighted complete-case estimator

µ̂AIPWCC =
1

n

n∑
i=1

[ RiYi

π(Wi ; γ̂)
+ (1− Ri

π(Wi ; γ̂)
)µ(Wi ; γ̂1)

]
.

consistent if either of the two models is specified correctly
(Why?)
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