What to do today (Feb 9, 2023)?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials
Part IV. Modern Biostatistical Approaches
Part IV. 1 Incomplete Data Analysis
Part IV.1.1 Introduction
Part IV.1.2 Models and Methods for Missing Data
Part IV.1.3 Coarsened Data Analysis
Part IV.1.4 Measurement Errors
Part IV.1.5 Truncation
Part IV. 2 Some Other Important Topics (Chp 8-18, Koepsell and Weiss, 2003)

Part IV.1.2 Models and Methods for Missing Data

Consider a study to assess the efficacy of a new drug in reducing blood pressure for patients: the endpoint of interest is the decrease in blok pressure after six months.

- $Y_{i}=$ subject i 's reduction in blood pressure after six months
- $R_{i}=1$ or 0 corresponding to Y_{i} was taken or not
- $i=1, \ldots, n$
- assume $\left(Y_{i}, R_{i}\right)$ to be iid and the population mean $E\left(Y_{i}\right)=\mu$

Some terms:

- the "full data": $\left\{\left(Y_{i}, R_{i}\right): i=1, \ldots, n\right\}$
- the "complete data": $\left\{Y_{i}: i=1, \ldots, n\right\}$
- the "observed data": $\left\{\left(R_{i} Y_{i}, R_{i}\right): i=1, \ldots, n\right\}$
- the "complete-case data": $\left\{R_{i} Y_{i}: R_{i}=1, i=1, \ldots, n\right\}$

Part IV.1.2 Models and Methods for Missing Data

- Missing Completely at Random (MCAR): the probability of missingness is independent of the variable. (i.e. $R \Perp Y$)
- Missing at Random (MAR): conditional on the auxiliary covariate, the probability of missingness does not depend on the primary variable: (i.e. $R \Perp Y \mid W$)
- Not Missing at Random (NMAR/MNAR): the probability of missingness depends on the variable. (i.e. $R \nVdash Y \mid X, W$)
\Longrightarrow understanding the missingness and then making inference about Y 's distn by the observed data accounting for the missing. For example, Likelihood Methods: Assume
$(Y, W) \sim f_{Y, w}(y, w)=f_{Y \mid W}\left(y \mid w ; \gamma_{1}\right) f_{W}\left(w ; \gamma_{2}\right)$. Since $[R Y, R, W]$ is either $[Y \mid R=1, W][R=1, W]$ or $[R=0, W]$, and $[Y \mid R=1, W]=[Y \mid W]$ with MAR, the likelihood function

$$
L\left(\gamma_{1}, \gamma_{2}\right) \propto\left(\prod_{i=1}^{n} f_{Y \mid W}\left(y_{i} \mid w_{i} ; \gamma_{1}\right)^{r_{i}}\right)\left(\prod_{i=1}^{n} f_{W}\left(w_{i} ; \gamma_{2}\right)\right)
$$

\Longrightarrow the MLE of γ_{1}, γ_{2} and the MLE of $\mu=E(Y)$. practical challenges?

Part IV.1.2 Models and Methods for Missing Data

Imputation: With the "full data",

$$
\hat{\mu}_{F}=\frac{\sum_{i=1}^{n} Y_{i}}{n}=\frac{1}{n} \sum_{i=1}^{n} R_{i} Y_{i}+\left(1-R_{i}\right) Y_{i}
$$

With MAR, $E\left(Y_{i} \mid R_{i}=0, W_{i}\right)=E\left(Y_{i} \mid W_{i}\right)=$
$\int y f_{Y \mid W}\left(y \mid W_{i} ; \gamma_{1}\right) d y=\mu\left(W_{i} ; \gamma_{1}\right)$.
Using the MLE of γ_{1}, a consistent estm

$$
\hat{\mu}_{I M P}=\frac{1}{n} \sum_{i=1}^{n}\left[R_{i} Y_{i}+\left(1-R_{i}\right) \mu\left(W_{i} ; \hat{\gamma}_{1}\right)\right]
$$

Other imputation techniques, such as to impute the missing Y_{i} using a random draw (or more) from $f_{Y \mid W}\left(y \mid W_{i} ; \hat{\gamma}_{1}\right)$ the MCEM?

Part IV.1.2 Models and Methods for Missing Data

Inverse Probability Weighted (IPW) Complete-Case
Estimator: With the "observed data", $R_{i} Y_{i}$ with $R_{i}=1$ should present more than one but $1 / P\left(R=1 \mid W_{i}\right)$ many individuals.
\Longrightarrow another consistent estm $\hat{\mu}_{\text {IPWCC }}=\frac{1}{n} \sum_{i=1}^{n} \frac{R_{i} Y_{i}}{\hat{\pi}\left(W_{i}\right)}$
$\hat{\pi}(w)$ is obtained from $\prod_{i=1}^{n} \pi\left(W_{i} ; \gamma\right)^{R_{i}}\left(1-\pi\left(W_{i} ; \gamma\right)\right)^{1-R_{i}}$.
This is because

$$
E\left[E\left(\left.\frac{R Y}{\pi(W)} \right\rvert\, Y, W\right)\right]=E\left[\frac{Y}{\pi(W)} E(R \mid Y, W)\right]
$$

e.g. Hu, et al (2007): kindergarten readiness skills in children with sickle cell disease [cognitive impairment?]

Part IV.1.2 Models and Methods for Missing Data

- $\hat{\mu}_{M L E}$ and $\hat{\mu}_{I M P}$ require to specify $f_{Y \mid W}\left(y \mid w ; \gamma_{1}\right)$: what if it's misspecified?
- $\hat{\mu}_{\text {IPWCC }}$ requires to specify $P(R=1 \mid w)=\pi(w ; \gamma)$: what if it's misspecified?
\Longrightarrow the following
Double Robust Estimator: an augmented inverse probability weighted complete-case estimator

$$
\hat{\mu}_{A I P W C C}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{R_{i} Y_{i}}{\pi\left(W_{i} ; \hat{\gamma}\right)}+\left(1-\frac{R_{i}}{\pi\left(W_{i} ; \hat{\gamma}\right)}\right) \mu\left(W_{i} ; \hat{\gamma}_{1}\right)\right]
$$

consistent if either of the two models is specified correctly (Why?)

Part IV.1.3A Coarsened Data Analysis: Coarsening vs Missing

Example. To study the relationship between the concentration of HIV RNA, a viral biological marker, with a clinical outcome Y. Two blood samples of equal volume are drawn from each subject in a study. The full data are observations on (Y, X_{1}, X_{2}); however, to save on expense, some subjects' HIV RNA concentrations were obtained from the combined samples, and thus only available were the observations of $\left(Y, \frac{X_{1}+X_{2}}{2}\right)$.
\Longrightarrow the concentrations of those subjects are not missing but coarsened. (Heitjan and Rubin, 1991)

Part IV.1.3A Coarsened Data Analysis: Coarsening vs Missing

Coarsened Data: When the full data are $\left\{Z_{i}: i=1, \ldots, n\right\}$, the observed data are

$$
\left\{\mathcal{C}_{i}, G_{\mathcal{C}_{i}}\left(Z_{i}\right)\right\}: i=1, \ldots, n
$$

\mathcal{C} : the coarsening variable, specifying how the data are coarsened; $G_{C}(Z)$ are the resulting data.

Usually, $\mathcal{C}=\infty$ is used to indicate an observation of Z : $G_{\infty}(Z)=Z$
the complete-case data are $\left\{Z_{i}: \mathcal{C}_{i}=\infty, i=1, \ldots, n\right\}$
Missing is a special case of coarsening.

Part IV.1.3B Coarsened Data Analysis: Coarsening Mechanisams

- Coarsening completely at random (CCAR)

$$
P(\mathcal{C}=r \mid Z)=\pi(r), \forall r ; \quad \text { i.e., } \mathcal{C} \perp Z
$$

- Coarsening at random (CAR)

$$
P(\mathcal{C}=r \mid Z)=\pi\left(r, G_{r}(Z)\right), \forall r ; \quad \text { i.e., } \mathcal{C} \perp Z \mid G_{\mathcal{C}}(Z)
$$

- Not coarsening at random (NCAR)

There are $z_{1} \neq z_{2}$ such that $G_{r}\left(z_{1}\right)=G_{r}\left(z_{2}\right)$ but $P\left(\mathcal{C}=r \mid Z=z_{1}\right) \neq P\left(\mathcal{C}=r \mid Z=z_{2}\right)$

Part IV.1.3B Coarsened Data Analysis: Coarsened Data Likelihood

Suppose $(\mathcal{C}, Z) \sim f_{\mathcal{C}, Z}(r, z ; \psi, \beta, \eta)=P(\mathcal{C} \mid Z=z ; \psi) f_{Z}(z ; \beta, \eta)$ With CAR,

$$
\begin{aligned}
& \left(\mathcal{C}, G_{\mathcal{C}}(Z)\right) \sim f_{\mathcal{C}, G_{\mathcal{C}}(Z)}\left(r, g_{r} ; \psi, \beta, \eta\right) \\
= & \int_{z: G_{r}(z)=g_{r}} P(\mathcal{C}=r \mid Z=z ; \psi) f_{Z}(z ; \beta, \eta) d z=\pi\left(r, g_{r} ; \psi\right) f_{G_{r}(Z)}\left(g_{r} ; \beta, \eta\right)
\end{aligned}
$$

(the above notation for discrete/continuous Z) the likelihood
function of (ψ, β, η) with the observed (coarsened) data:

$$
\prod_{i=1}^{n} \pi\left(r_{i}, g_{r_{i}} ; \psi\right) \prod_{i=1}^{n} f_{G_{\mathcal{C}}(z)}\left(g_{r_{i}} ; \psi, \beta, \eta\right)
$$

\Longrightarrow the likelihood based approaches: estm and testing computationally not easy

Part IV.1.4 Measurement Error

(Refs: "Measurement Error in Nonlinear Models" by Carroll, Ruppert and Stefanski, 1995;
"Measurement Error in Nonlinear Models: A Modern Perspective"
by Carroll, Ruppert, Stefanski and Crainiceanu, 2006)

- This section focuses on an introduction to the problem of (quantitative!) predictors measured with errors.
- Misclassification, discussed in Chp 10 of Koepsell and Weiss (2003), will be covered in a section of Part IV. 2

Part IV.1.4A Measurement Error: Introduction

Example. Nutrition Studies the NHANES-I Epidemiologic Study Cohort (Jones, et al 1987)

- originally consisting of 8,596 women, interviewed about their nutrition habits and then later examined for evidence of cancer
- response Y indicates the presence of breast cancer
- predictor variables S (measured without significant error, such as age, poverty index, body mass index, etc)
- predictor variables X (the nutrition variables, such as long-term saturated fat intake, known to be imprecisely measured): the measured W was a 24 hour recall and then X was computed
- the study modeled the measurement error structure using an external data set: parameters in the external study may differ from parameters in the primary study, leading to bias
- alternative: an internal subset? the Nurses' Health Study

Part IV.1.4A Measurement Error: Introduction

Why it is needed to account for measurement error?
Let's see a simple example
Simple Linear Regression with Additive Error:

- Consider $Y=\beta_{0}+\beta_{1} X+\epsilon, X \perp \epsilon$ and $E(X)=\mu_{x}$, $V(X)=\sigma_{x}^{2}, E(\epsilon)=0, V(\epsilon)=\sigma^{2}$.
- Suppose X cannot be observed and instead one observes $W=X+U$, with $U \perp X$ and $E(U)=0, V(U)=\sigma_{U}^{2}$. [the classical additive measurement error model]
What if use W's observations as X's and fit the simple linear regression line?
See a simulation... ...

Part IV.1.4A Measurement Error: Introduction

For $i=1, \ldots, 30$, indpt

- $X_{i} \sim N(1,1) ; U_{i} \sim N(0,1) ; \epsilon_{i} \sim N(0, .25)$
- $Y_{i}=0+1 * X_{i}+\epsilon_{i}$

- blue line: $Y=X$; red line: $Y \xlongequal{\text { vededan } \times 0.09955+1.07155 X \text {; green line: }}$ $Y=0.4677+0.5226 X$

Part IV.1.4A Measurement Error: Introduction

In general,

- An ordinary least squares regression of Y on W is a consistent estimator not of β_{1} but $\beta_{1}^{*}=\lambda \beta_{1}$, where

$$
\lambda=\frac{\sigma_{x}^{2}}{\sigma_{x}^{2}+\sigma_{u}^{2}}<1
$$

λ : reliability ratio

- The residual variance of this regression of Y on W is

$$
\operatorname{var}(Y \mid W)=\sigma^{2}+\frac{\beta_{1}^{2} \sigma_{x}^{2} \sigma_{u}^{2}}{\sigma_{x}^{2}+\sigma_{u}^{2}}
$$

\Longrightarrow "Measurement error causes a double-whammy: not only is the slope attenuated, but the data are more noisy, with an increased error about the line" - Carroll et al (1995)

Part IV.1.4A Measurement Error: Introduction

How to "correct" the bias?

- Method of Moments. Note that $\beta_{1}=\beta_{1}^{*} / \lambda$
- β_{1}^{*} can be estm consistently
- if λ, the reliability ratio, can be estimated?
- $\hat{\sigma}_{w}^{2}$, the sample variance of W_{i} 's
- σ_{u}^{2} ? If there're k_{i} replicate measurements of X_{i},

$$
\hat{\sigma}_{u}^{2}=\frac{1}{\sum_{i}\left(k_{i}-1\right)} \sum_{i} \sum_{j=1}^{k_{i}}\left(W_{i j}-\bar{W}_{i}\right)^{2}
$$

Remark. Sometimes $\hat{\lambda}=\left(\hat{\sigma}_{w}^{2}-\hat{\sigma}^{2}\right) / \hat{\sigma}_{w}^{2}$ can be negative. Further discussions are needed.

Part IV.1.4A Measurement Error: Introduction

How to "correct" the bias?

- Orthogonal Regression. If the ratio $\eta=\sigma^{2} / \sigma_{u}^{2}$ is known, minimize the weighted orthogonal distance of (Y, W) to the line $\beta_{0}+\beta_{1} X$

$$
\sum_{i}\left[\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}+\eta\left(W_{i}-X_{i}\right)^{2}\right]
$$

in the unknown parameters $\beta_{0}, \beta_{1}, X_{1}, \ldots, X_{n}$.

Remarks.

- η needs to be estm; if not properly specified, it may lead to "over correction".
- The resulting estm of β_{0}, β_{1} are the functional MLE with X_{1}, \ldots, X_{n} as unknown fixed constants, assuming $\left(\epsilon_{i}, U_{i}\right) \sim$ normal, iid.

Part IV.1.4B Measurement Error: Modeling and Inference

There are various models for measurement error. They may be categorized into two modeling classes:

- Functional modeling.
- the classical functional models: X_{i} 's are a sequence of unknown fixed constants
- extended to either fix or random: in the latter case no or at least minimal assumptions are made about the ditn
- Structural modeling.
- the classical structural models: X_{i} 's are regarded as r.v.s.
- usuallythe distn are parametric

Part IV.1.4B Measurement Error: Modeling and Inference

Given a specification of $[X, W \mid S]$ (or in the form of $[X \mid W, S]$, or $[W \mid X, S]$), procedures for making inference about $[Y \mid X, S]$:

Likelihood or Pseudo-Likelihood Approaches, or their variations

- parametric, semi-parametric, semi-nonparametric
- with Y continuous, or categorical (binary, count)
- with coarsened response data (e.g. censored survival times), with some X_{i} observed, ...

Remark:

- something from Econometrics ... instrumental variables, the generalized method of moments

Part IV.1.4C Measurement Error: vs Coarsening?

Measurement error as a missing data problem, or, more general, a coarsened data problem?

Recall the simple example in Part IV.1.4A: Simple Linear Regression with Additive Error

- Consider $Y=\beta_{0}+\beta_{1} X+\epsilon, X \perp \epsilon$ and $E(X)=\mu_{x}, V(X)=\sigma_{x}^{2}$, $E(\epsilon)=0, V(\epsilon)=\sigma^{2}$.
- Suppose X cannot be observed and instead one observes $W=X+U$, with $U \perp X$ and $E(U)=0, V(U)=\sigma_{U}^{2}$.

We have

- the full data: $Z_{i}=\left(Y_{i}, X_{i}\right), i=1, \ldots, n$
- the observed data: $Z_{i}^{*}=\left(Y_{i}, W_{i}\right), i=1, \ldots, n$

Part IV.1.4C Measurement Error: vs Coarsening?

Any appropriate \mathcal{C}_{i} (observable) and $G_{\mathcal{C}}(\cdot)$ such that $Z_{i}^{*}=G_{\mathcal{C}_{i}}\left(Z_{i}\right)$?
Recall $W_{i}=X_{i}+U_{i}$ depends on U_{i}, something unobservable.
\Longrightarrow viewing $G_{\mathcal{C}}(\cdot)$ as a stochastic mapping, instead of a deterministic one, with a given \mathcal{C} ?
an extended version of coarsening

What to study next class?

Part IV. Modern Biostatistical (Analytic Epidemiologic) Approaches

Part IV. 1 Incomplete Data Analysis (supplementary)
Part IV.1.1 Introduction
Part IV.1.2 Models and Methods for Missing Data
Part IV.1.3 Coarsened Data Analysis
Part IV.1.4 Measurement Errors
Part IV.1.5 Truncation

Part IV. 2 Some Other Important Topics (Chp 8-18,
Koepsell and Weiss, 2003)

