
What to do today (Feb 9, 2023)?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials

Part IV. Modern Biostatistical Approaches

Part IV.1 Incomplete Data Analysis
Part IV.1.1 Introduction
Part IV.1.2 Models and Methods for Missing Data
Part IV.1.3 Coarsened Data Analysis
Part IV.1.4 Measurement Errors
Part IV.1.5 Truncation

Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and
Weiss, 2003)



Part IV.1.2 Models and Methods for Missing Data

Consider a study to assess the efficacy of a new drug in reducing
blood pressure for patients: the endpoint of interest is the decrease
in blok pressure after six months.

I Yi=subject i ’s reduction in blood pressure after six months

I Ri=1 or 0 corresponding to Yi was taken or not

I i = 1, . . . , n

I assume (Yi ,Ri ) to be iid and the population mean E (Yi ) = µ

Some terms:

I the “full data”: {(Yi ,Ri ) : i = 1, . . . , n}
I the “complete data”: {Yi : i = 1, . . . , n}
I the “observed data”: {(RiYi ,Ri ) : i = 1, . . . , n}
I the “complete-case data”: {RiYi : Ri = 1, i = 1, . . . , n}



Part IV.1.2 Models and Methods for Missing Data
I Missing Completely at Random (MCAR): the probability of

missingness is independent of the variable. (i.e. R ⊥⊥ Y )

I Missing at Random (MAR): conditional on the auxiliary covariate,
the probability of missingness does not depend on the primary
variable: (i.e. R ⊥⊥ Y

∣∣W )

I Not Missing at Random (NMAR/MNAR): the probability of
missingness depends on the variable. (i.e. R 6⊥⊥ Y

∣∣X ,W )

=⇒ understanding the missingness and then making inference about Y ’s
distn by the observed data accounting for the missing. For example,
Likelihood Methods: Assume
(Y ,W ) ∼ fY ,W (y ,w) = fY |W (y |w ; γ1)fW (w ; γ2). Since [RY ,R,W ] is
either [Y |R = 1,W ][R = 1,W ] or [R = 0,W ], and
[Y |R = 1,W ] = [Y |W ] with MAR, the likelihood function

L(γ1, γ2) ∝
( n∏

i=1

fY |W (yi |wi ; γ1)ri
)( n∏

i=1

fW (wi ; γ2)
)
.

=⇒ the MLE of γ1, γ2 and the MLE of µ = E (Y ). practical challenges?



Part IV.1.2 Models and Methods for Missing Data

Imputation: With the “full data”,

µ̂F =

∑n
i=1 Yi

n
=

1

n

n∑
i=1

RiYi + (1− Ri )Yi .

With MAR, E (Yi |Ri = 0,Wi ) = E (Yi |Wi ) =∫
yfY |W (y |Wi ; γ1)dy = µ(Wi ; γ1).

Using the MLE of γ1, a consistent estm

µ̂IMP =
1

n

n∑
i=1

[
RiYi + (1− Ri )µ(Wi ; γ̂1)

]

Other imputation techniques, such as to impute the missing Yi

using a random draw (or more ) from fY |W (y |Wi ; γ̂1) the MCEM?



Part IV.1.2 Models and Methods for Missing Data

Inverse Probability Weighted (IPW) Complete-Case
Estimator: With the “observed data”, RiYi with Ri = 1 should
present more than one but 1/P(R = 1|Wi ) many individuals.

=⇒ another consistent estm µ̂IPWCC = 1
n

∑n
i=1

RiYi
π̂(Wi )

π̂(w) is obtained from
∏n

i=1 π(Wi ; γ)Ri
(
1− π(Wi ; γ)

)1−Ri .

This is because

E
[
E
( RY

π(W )

∣∣∣Y ,W)] = E
[ Y

π(W )
E
(
R
∣∣∣Y ,W)].

e.g. Hu, et al (2007): kindergarten readiness skills in children with
sickle cell disease [cognitive impairment?]



Part IV.1.2 Models and Methods for Missing Data

I µ̂MLE and µ̂IMP require to specify fY |W (y |w ; γ1): what if it’s
misspecified?

I µ̂IPWCC requires to specify P(R = 1|w) = π(w ; γ): what if
it’s misspecified?

=⇒ the following ... ...
Double Robust Estimator: an augmented inverse probability
weighted complete-case estimator

µ̂AIPWCC =
1

n

n∑
i=1

[ RiYi

π(Wi ; γ̂)
+ (1− Ri

π(Wi ; γ̂)
)µ(Wi ; γ̂1)

]
.

consistent if either of the two models is specified correctly
(Why?)



Part IV.1.3A Coarsened Data Analysis: Coarsening
vs Missing

Example. To study the relationship between the concentration of
HIV RNA, a viral biological marker, with a clinical outcome Y .
Two blood samples of equal volume are drawn from each subject
in a study. The full data are observations on (Y ,X1,X2); however,
to save on expense, some subjects’ HIV RNA concentrations were
obtained from the combined samples, and thus only available were
the observations of (Y , X1+X2

2 ).

=⇒ the concentrations of those subjects are not missing but
coarsened. (Heitjan and Rubin, 1991)



Part IV.1.3A Coarsened Data Analysis: Coarsening
vs Missing

Coarsened Data: When the full data are {Zi : i = 1, . . . , n}, the
observed data are

{Ci ,GCi (Zi )} : i = 1, . . . , n

C: the coarsening variable, specifying how the data are coarsened;
GC(Z ) are the resulting data.

Usually, C =∞ is used to indicate an observation of Z :
G∞(Z ) = Z
the complete-case data are {Zi : Ci =∞, i = 1, . . . , n}

Missing is a special case of coarsening.



Part IV.1.3B Coarsened Data Analysis: Coarsening
Mechanisams

I Coarsening completely at random (CCAR)

P(C = r |Z ) = π(r),∀r ; i .e., C⊥Z

I Coarsening at random (CAR)

P(C = r |Z ) = π(r ,Gr (Z )),∀r ; i .e., C⊥Z |GC(Z )

I Not coarsening at random (NCAR)
There are z1 6= z2 such that Gr (z1) = Gr (z2) but
P(C = r |Z = z1) 6= P(C = r |Z = z2)



Part IV.1.3B Coarsened Data Analysis: Coarsened
Data Likelihood

Suppose (C,Z ) ∼ fC,Z (r , z ;ψ, β, η) = P(C|Z = z ;ψ)fZ (z ;β, η)
With CAR,

(C,GC(Z)) ∼ fC,GC(Z)(r , gr ;ψ, β, η)

=

∫
z:Gr (z)=gr

P(C = r |Z = z ;ψ)fZ (z ;β, η)dz = π(r , gr ;ψ)fGr (Z)(gr ;β, η)

(the above notation for discrete/continuous Z ... ...) the likelihood

function of (ψ, β, η) with the observed (coarsened) data:

n∏
i=1

π(ri , gri ;ψ)
n∏

i=1

fGC(Z)(gri ;ψ, β, η)

=⇒ the likelihood based approaches: estm and testing
computationally not easy ... ...



Part IV.1.4 Measurement Error

(Refs: “Measurement Error in Nonlinear Models” by Carroll,
Ruppert and Stefanski, 1995;
“Measurement Error in Nonlinear Models: A Modern Perspective”
by Carroll, Ruppert, Stefanski and Crainiceanu, 2006)

I This section focuses on an introduction to the problem of
(quantitative!) predictors measured with errors.

I Misclassification, discussed in Chp 10 of Koepsell and Weiss
(2003), will be covered in a section of Part IV.2



Part IV.1.4A Measurement Error: Introduction

Example. Nutrition Studies the NHANES-I Epidemiologic Study
Cohort (Jones, et al 1987)

I originally consisting of 8,596 women, interviewed about their
nutrition habits and then later examined for evidence of cancer

I response Y indicates the presence of breast cancer

I predictor variables S (measured without significant error, such as
age, poverty index, body mass index, etc)

I predictor variables X (the nutrition variables, such as long-term
saturated fat intake, known to be imprecisely measured): the
measured W was a 24 hour recall and then X was computed

I the study modeled the measurement error structure using an
external data set: parameters in the external study may differ from
parameters in the primary study, leading to bias

I alternative: an internal subset? the Nurses’ Health Study



Part IV.1.4A Measurement Error: Introduction

Why it is needed to account for measurement error?
Let’s see a simple example ... ...

Simple Linear Regression with Additive Error:

I Consider Y = β0 + β1X + ε, X⊥ε and E (X ) = µx ,
V (X ) = σ2x , E (ε) = 0, V (ε) = σ2.

I Suppose X cannot be observed and instead one observes
W = X + U, with U⊥X and E (U) = 0, V (U) = σ2U .
[the classical additive measurement error model]

What if use W’s observations as X’s and fit the simple linear
regression line?
See a simulation... ...



Part IV.1.4A Measurement Error: Introduction

For i = 1, . . . , 30, indpt

I Xi ∼ N(1, 1); Ui ∼ N(0, 1); εi ∼ N(0, .25)

I Yi = 0 + 1 ∗ Xi + εi
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I blue line: Y = X ; red line: Y = −0.09955 + 1.07155X ; green line:
Y = 0.4677 + 0.5226X



Part IV.1.4A Measurement Error: Introduction

In general,

I An ordinary least squares regression of Y on W is a consistent
estimator not of β1 but β∗1 = λβ1, where

λ =
σ2x

σ2x + σ2u
< 1

λ: reliability ratio

I The residual variance of this regression of Y on W is

var(Y |W ) = σ2 +
β21σ

2
xσ

2
u

σ2x + σ2u

=⇒ “Measurement error causes a double-whammy: not only is the
slope attenuated, but the data are more noisy, with an increased
error about the line” – Carroll et al (1995)



Part IV.1.4A Measurement Error: Introduction

How to “correct” the bias?
I Method of Moments. Note that β1 = β∗1/λ

I β∗1 can be estm consistently
I if λ, the reliability ratio, can be estimated?

I σ̂2
w , the sample variance of Wi ’s

I σ2
u? If there’re ki replicate measurements of Xi ,

σ̂2
u =

1∑
i (ki − 1)

∑
i

ki∑
j=1

(Wij − W̄i )
2

Remark. Sometimes λ̂ = (σ̂2w − σ̂2)/σ̂2w can be negative. Further
discussions are needed.



Part IV.1.4A Measurement Error: Introduction

How to “correct” the bias?

I Orthogonal Regression. If the ratio η = σ2/σ2u is known,
minimize the weighted orthogonal distance of (Y ,W ) to the
line β0 + β1X∑

i

[
(Yi − β0 − β1Xi )

2 + η(Wi − Xi )
2
]

in the unknown parameters β0, β1,X1, . . . ,Xn.

Remarks.

I η needs to be estm; if not properly specified, it may lead to “over
correction”.

I The resulting estm of β0, β1 are the functional MLE with X1, . . . ,Xn

as unknown fixed constants, assuming (εi ,Ui ) ∼ normal, iid.



Part IV.1.4B Measurement Error: Modeling and
Inference

There are various models for measurement error. They may be
categorized into two modeling classes:

I Functional modeling.
I the classical functional models: Xi ’s are a sequence of

unknown fixed constants
I extended to either fix or random: in the latter case no or at

least minimal assumptions are made about the ditn

I Structural modeling.
I the classical structural models: Xi ’s are regarded as r.v.s.
I usuallythe distn are parametric



Part IV.1.4B Measurement Error: Modeling and
Inference

Given a specification of [X ,W |S ] (or in the form of [X |W , S ], or
[W |X ,S ]), procedures for making inference about [Y |X ,S ]:

Likelihood or Pseudo-Likelihood Approaches, or their variations

I parametric, semi-parametric, semi-nonparametric

I with Y continuous, or categorical (binary, count)

I with coarsened response data (e.g. censored survival times),
with some Xi observed, ...

Remark:

I something from Econometrics ...
instrumental variables, the generalized method of moments



Part IV.1.4C Measurement Error: vs Coarsening?

Measurement error as a missing data problem, or, more
general, a coarsened data problem?

Recall the simple example in Part IV.1.4A: Simple Linear Regression
with Additive Error

I Consider Y = β0 + β1X + ε, X⊥ε and E (X ) = µx , V (X ) = σ2
x ,

E (ε) = 0, V (ε) = σ2.

I Suppose X cannot be observed and instead one observes
W = X + U, with U⊥X and E (U) = 0, V (U) = σ2

U .

We have ... ...

I the full data: Zi = (Yi ,Xi ), i = 1, . . . , n

I the observed data: Z ∗i = (Yi ,Wi ), i = 1, . . . , n



Part IV.1.4C Measurement Error: vs Coarsening?

Any appropriate Ci (observable) and GC(·) such that Z ∗i = GCi (Zi )?

Recall Wi = Xi + Ui depends on Ui , something unobservable.

=⇒ viewing GC(·) as a stochastic mapping, instead of a
deterministic one, with a given C?

an extended version of coarsening ... ...



Part IV.1 Incomplete Data Analysis Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and Weiss, 2003)

What to study next class?

Part IV. Modern Biostatistical (Analytic Epidemiologic)
Approaches

Part IV.1 Incomplete Data Analysis (supplementary)

Part IV.1.1 Introduction
Part IV.1.2 Models and Methods for Missing Data
Part IV.1.3 Coarsened Data Analysis
Part IV.1.4 Measurement Errors
Part IV.1.5 Truncation

Part IV.2 Some Other Important Topics (Chp 8 - 18,
Koepsell and Weiss, 2003)
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