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Part IV.1.4A Measurement Error: Introduction

Why it is needed to account for measurement error?

In general,

I An ordinary least squares regression of Y on W is a consistent
estimator not of β1 but β∗

1 = λβ1, where
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λ: reliability ratio

I The residual variance of this regression of Y on W is

var(Y |W ) = σ2 +
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=⇒ “Measurement error causes a double-whammy: not only is the slope

attenuated, but the data are more noisy, with an increased error about

the line” – Carroll et al (1995)



Part IV.1.4A Measurement Error: Introduction

How to “correct” the bias?
I Method of Moments. Note that β1 = β∗1/λ

I β∗
1 can be estm consistently

I if λ, the reliability ratio, can be estimated?
I σ̂2

w , the sample variance of Wi ’s
I σ2

u? If there’re ki replicate measurements of Xi ,

σ̂2
u =

1∑
i (ki − 1)

∑
i

ki∑
j=1

(Wij − W̄i )
2

Remark. Sometimes λ̂ = (σ̂2w − σ̂2)/σ̂2w can be negative. Further
discussions are needed.



Part IV.1.4A Measurement Error: Introduction

How to “correct” the bias?

I Orthogonal Regression. If the ratio η = σ2/σ2u is known,
minimize the weighted orthogonal distance of (Y ,W ) to the
line β0 + β1X∑

i

[
(Yi − β0 − β1Xi )

2 + η(Wi − Xi )
2
]

in the unknown parameters β0, β1,X1, . . . ,Xn.

Remarks.

I η needs to be estm; if not properly specified, it may lead to “over
correction”.

I The resulting estm of β0, β1 are the functional MLE with X1, . . . ,Xn

as unknown fixed constants, assuming (εi ,Ui ) ∼ normal, iid.



Part IV.1.4B Measurement Error: Modeling and
Inference

There are various models for measurement error. They may be
categorized into two modeling classes:

I Functional modeling.
I the classical functional models: Xi ’s are a sequence of

unknown fixed constants
I extended to either fix or random: in the latter case no or at

least minimal assumptions are made about the ditn

I Structural modeling.
I the classical structural models: Xi ’s are regarded as r.v.s.
I usuallythe distn are parametric



Part IV.1.4B Measurement Error: Modeling and
Inference

Given a specification of [X ,W |S ] (or in the form of [X |W , S ], or
[W |X ,S ]), procedures for making inference about [Y |X ,S ]:

Likelihood or Pseudo-Likelihood Approaches, or their variations

I parametric, semi-parametric, semi-nonparametric

I with Y continuous, or categorical (binary, count)

I with coarsened response data (e.g. censored survival times),
with some Xi observed, ...

Remark:

I something from Econometrics ...
instrumental variables, the generalized method of moments



Part IV.1.4C Measurement Error: vs Coarsening?

Measurement error as a missing data problem, or, more
general, a coarsened data problem?

Recall the simple example in Part IV.1.4A: Simple Linear Regression
with Additive Error

I Consider Y = β0 + β1X + ε, X⊥ε and E (X ) = µx , V (X ) = σ2
x ,

E (ε) = 0, V (ε) = σ2.

I Suppose X cannot be observed and instead one observes
W = X + U, with U⊥X and E (U) = 0, V (U) = σ2

U .

We have ... ...

I the full data: Zi = (Yi ,Xi ), i = 1, . . . , n

I the observed data: Z ∗i = (Yi ,Wi ), i = 1, . . . , n



Part IV.1.4C Measurement Error: vs Coarsening?

Any appropriate Ci (observable) and GC(·) such that Z ∗i = GCi (Zi )?

Recall Wi = Xi + Ui depends on Ui , something unobservable.

=⇒ viewing GC(·) as a stochastic mapping, instead of a
deterministic one, with a given C?

an extended version of coarsening ... ...



Part IV.1.5A Truncation: Introduction

Examples ...

I Lynden-Bell (1971, Monthly Notices of the Royal
Astronomical Society)
In an astronomical survey, a quantity, say, the luminosity (the
brightness in comparison with that of the sun), of stars in a
galaxy was observed as Y1, . . . ,YK : what’s the distn?
the observational selection? (if Yi ≥ O?)

I Lagakos, et al (1988, Biometrika)
In an AIDS study, the time between HIV infection and AIDS is
of interest (Y), and the available data are (Xi ,Yi ) for
i = 1, . . . , n, provided Yi + Xi ≤ Oi (the observation times):
what’s the distn of Y?



Part IV.1.5 Truncation: as Coarsening?

I the full data: Zi = (Yi , Ti ) with i ∈ P
I the observed data: {Zi : Yi ≥ Ti , i ∈ P}

Any observed coarsening variable C and GC(·) presents the
observation selection?
Recall that no information about individual i , if Yi < Ti ... ...

=⇒ mechanism of incompleteness, different from what studied
before

Truncated data arise in many contexts ... ...
e.g. Car Warranty Claims (Hu and Lawless, 1996a,b)



Part IV.1.5 Truncation: Analysis of Truncated Data

I nonparametric approaches, e.g. Lynden-Bell and Woodroofe
estimator; Woodroofe (1985)
an identifiability problem when both nonpara models are for
Y , T : only FY (·)/FY (τmax) is estimatable

I semiparametric approaches, e.g. Kalbfleisch and Lawless
(1991); Wang (1989), and Qin and Shen (2010)
length bias sampling: in Lagakos’s setting, if Xi ∼ a uniform
distn

I using additional info, e.g. Hu and Lawless (1996a,b)



Part IV.2 Some Other Important Topics (Chp 8 -
18, Koepsell and Weiss, 2003)

Part IV.2.1 Measure of Risk
Example. Crib death of SIDS (Sudden Infant Death Syndrome)
Cumulative incidence of crib death was recorded based on usual sleeping
position of 2607 one-month old Tasmanian infants born 1988-1991
(Dwyer et al., 1991): to study how X affects Y ? =⇒ measure of risk
to SIDS with a sleeping position?

Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 = 9 n12 = 837 n1+ = 846
other n21 = 6 n22 = 1755 n2+ = 1761

Total n+1 = 15 n+2 = 2592 n++ = 2607



Part IV.2.1 Measure of Risk

A 2× 2 table with the row and column variables X and Y , both
binary: for i = 1, 2 and j = 1, 2,

I the joint and marginal prob
πij = P(X = i ,Y = j); πi+ = P(X = i); π+j = P(Y = j);

I the conditional prob
P(X = i |Y = j) = πij/π+j ; P(Y = j |X = i) = πij/πi+

Probabilities:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone π11 π12 π1+

other π21 π22 π2+

Total π+1 π+2 π++ = 1



Part IV.2.1 Measure of Risk

A 2× 2 table with the row and column variables X and Y , both

binary:
Probabilities:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone π11 π12 π1+

other π21 π22 π2+

Total π+1 π+2 π++ = 1

the MLE of the prob:

I with the multinomial sampling (fixed n++, e.g. cohort study):
π̂ij = nij/n++ and thus π̂i+ etc.

I with the purposive sampling (fixed n+j , e.g. case-control study):
π̂ij

π+j
= nij/n+j



Part IV.2.1 Measure of Risk

Probabilities:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone π11 π12 π1+

other π21 π22 π2+

Total π+1 π+2 π++ = 1

Measures of Risk

I excess risk: ER = P(Y = 1|X = 1)− P(Y = 1|X = 2)
= π11

π1+
− π21

π2+
[attributable risk to the exposed]

I relative risk: RR = P(Y = 1|X = 1)
/
P(Y = 1|X = 2) = π11

π1+

/
π21

π2+

I odds ratio: OR = P(Y=1,X=1)
P(Y=2,X=1)

/P(Y=1,X=2)
P(Y=2,X=2) = π11

π12

/
π21

π22

I RR ≈ OR when Y = 1 is a rare event



Part IV.2.1 Measure of Risk

Estimation for the measures of risk:
Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 n12 n1+
other n21 n22 n2+
Total n+1 n+2 n++

the MLE of the Measures of Risk: with the multinomial sampling

I excess risk: ÊR = n11
n1+
− n21

n2+
= IE − IO [diff of cumulative

incidences with E vs O]

I relative risk: R̂R = n11
n1+

/
n21
n2+

= IE/IO

I odds ratio: ÔR = n11
n12

/
n21
n22

= n11n22
n12n21

= IE/(1−IE )
IO/(1−IO )



Part IV.2.1 Measure of Risk

Estimation for the measures of risk:

Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 n12 n1+
other n21 n22 n2+
Total n+1 n+2 n++

the MLE of the Measures of Risk: with the purposive sampling

I excess risk: ÊR = n11
n1+
− n21

n2+

I relative risk: R̂R = n11
n1+

/
n21
n2+

I odds ratio: ÔR = n11/n1+
n12/n1+

/
n21/n2+
n22/n2+

= n11n22
n12n21



Part IV.2.1 Measure of Risk

Estimation for the measures of risk:

Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 n12 n1+
other n21 n22 n2+
Total n+1 n+2 n++

Confidence Intervals for the Measures of Risk: for example,

I odds ratio: ÔR ± 1.96SEÔR

I odds ratio: exp
{

log(ÔR)± 1.96SElog(ÔR)

}
with

SE 2
log(ÔR)

= 1
n11

+ 1
n12

+ 1
n21

+ 1
n22

log(OR)=the coef to X in the logistic regression model of Y on X



Part IV.2.1 Measure of Risk

Revisit to Example of Crib death of SIDS

Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 = 9 n12 = 837 n1+ = 846
other n21 = 6 n22 = 1755 n2+ = 1761

Total n+1 = 15 n+2 = 2592 n++ = 2607
I a cohort study

I ÊR = 9
846 −

6
1761 = 0.723%

I R̂R = 9
846/

6
1761 = 3.122 [Does exposure cause disease?], with

95% CI (1.12, 8.74)
I ÔR = 3.145 [Does exposure cause disease?], with 95% CI

(1.1158, 8.8654)



Part IV.2.1 Measure of Risk

Revisit to Example of Crib death of SIDS

Cumulative Incidence:

Usual SIDS Death? (Y)
Sleeping (X)
Position yes no Total

prone n11 = 9 n12 = 837 n1+ = 846
other n21 = 6 n22 = 1755 n2+ = 1761

Total n+1 = 15 n+2 = 2592 n++ = 2607

I relative risk vs risk difference?

I study design?
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