What to do today (Feb 14, 2023)?

Part I. Introduction Part II. Epidemiologic Concepts and Designs Part III. Clinical Trials

Part IV. Modern Biostatistical Approaches Part IV.1 Incomplete Data Analysis

IV.1.1 Introduction

IV.1.2 Models and Methods for Missing Data

IV.1.3 Coarsened Data Analysis

IV.1.4 Measurement Errors

IV.1.5 Truncation

Part IV.2 Some Other Important Topics (Chp 8 - 18, Keensell and Weise, 2002)

Koepsell and Weiss, 2003)

IV.2.1 Measures of Risks

IV.2.2 Measurement Error Revisit

IV.2.3 Confounding and Its Control

IV.2.4 Causation vs Association

Part IV.3 Selected Widely-Used Algorithms

Part IV.1.4A Measurement Error: Introduction

Why it is needed to account for measurement error?

In general,

An ordinary least squares regression of Y on W is a consistent estimator not of β₁ but β^{*}₁ = λβ₁, where

$$\lambda = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2} < 1$$

 λ : reliability ratio

The residual variance of this regression of Y on W is

$$\mathsf{var}(\mathsf{Y}|\mathsf{W}) = \sigma^2 + rac{eta_1^2 \sigma_x^2 \sigma_u^2}{\sigma_x^2 + \sigma_u^2}$$

 \implies "Measurement error causes a double-whammy: not only is the slope attenuated, but the data are more noisy, with an increased error about the line" – Carroll et al (1995)

Part IV.1.4A Measurement Error: Introduction

How to "correct" the bias?

• Method of Moments. Note that $\beta_1 = \beta_1^* / \lambda$

- β_1^* can be estm consistently
- if λ , the reliability ratio, can be estimated?
 - $\hat{\sigma}_w^2$, the sample variance of W_i 's
 - σ_u^2 ? If there're k_i replicate measurements of X_i ,

$$\hat{\sigma}_u^2 = rac{1}{\sum_i (k_i - 1)} \sum_i \sum_{j=1}^{k_i} (\mathcal{W}_{ij} - ar{\mathcal{W}}_i)^2$$

Remark. Sometimes $\hat{\lambda} = (\hat{\sigma}_w^2 - \hat{\sigma}^2)/\hat{\sigma}_w^2$ can be negative. Further discussions are needed.

Part IV.1.4A Measurement Error: Introduction

How to "correct" the bias?

• Orthogonal Regression. If the ratio $\eta = \sigma^2 / \sigma_u^2$ is known, minimize the weighted orthogonal distance of (Y, W) to the line $\beta_0 + \beta_1 X$

$$\sum_{i} \left[(Y_i - \beta_0 - \beta_1 X_i)^2 + \eta (W_i - X_i)^2 \right]$$

in the unknown parameters $\beta_0, \beta_1, X_1, \ldots, X_n$.

Remarks.

- \blacktriangleright η needs to be estm; if not properly specified, it may lead to "over correction" .
- ▶ The resulting estm of β_0 , β_1 are the functional MLE with X_1, \ldots, X_n as unknown fixed constants, assuming $(\epsilon_i, U_i) \sim$ normal, iid.

Part IV.1.4B Measurement Error: Modeling and Inference

There are various models for measurement error. They may be categorized into two modeling classes:

- Functional modeling.
 - the classical functional models: X_i's are a sequence of unknown fixed constants
 - extended to either fix or random: in the latter case no or at least minimal assumptions are made about the ditn

Structural modeling.

- the classical structural models: X_i 's are regarded as r.v.s.
- usuallythe distn are parametric

Part IV.1.4B Measurement Error: Modeling and Inference

Given a specification of [X, W|S] (or in the form of [X|W, S], or [W|X, S]), procedures for making inference about [Y|X, S]:

Likelihood or Pseudo-Likelihood Approaches, or their variations

parametric, semi-parametric, semi-nonparametric

- with Y continuous, or categorical (binary, count)
- with coarsened response data (e.g. censored survival times), with some X_i observed, ...

Remark:

something from Econometrics ... instrumental variables, the generalized method of moments

Part IV.1.4C Measurement Error: vs Coarsening?

Measurement error as a missing data problem, or, more general, a coarsened data problem?

Recall the simple example in **Part IV.1.4A**: *Simple Linear Regression with Additive Error*

Consider $Y = \beta_0 + \beta_1 X + \epsilon$, $X \perp \epsilon$ and $E(X) = \mu_x$, $V(X) = \sigma_x^2$, $E(\epsilon) = 0$, $V(\epsilon) = \sigma^2$.

Suppose X cannot be observed and instead one observes W = X + U, with $U \perp X$ and E(U) = 0, $V(U) = \sigma_U^2$.

We have

- the full data: $Z_i = (Y_i, X_i), i = 1, \dots, n$
- ▶ the observed data: $Z_i^* = (Y_i, W_i), i = 1, ..., n$

Part IV.1.4C Measurement Error: vs Coarsening?

Any appropriate C_i (observable) and $G_C(\cdot)$ such that $Z_i^* = G_{C_i}(Z_i)$?

Recall $W_i = X_i + U_i$ depends on U_i , something unobservable.

 \implies viewing $G_{\mathcal{C}}(\cdot)$ as a stochastic mapping, instead of a deterministic one, with a given \mathcal{C} ?

an extended version of coarsening

Part IV.1.5A Truncation: Introduction

Examples ...

 Lynden-Bell (1971, Monthly Notices of the Royal Astronomical Society)

In an astronomical survey, a quantity, say, the luminosity (the brightness in comparison with that of the sun), of stars in a galaxy was observed as Y_1, \ldots, Y_K : what's the distn? the observational selection? (if $Y_i \ge O$?)

► Lagakos, et al (1988, *Biometrika*) In an AIDS study, the time between HIV infection and AIDS is of interest (Y), and the available data are (X_i, Y_i) for i = 1,..., n, provided Y_i + X_i ≤ O_i (the observation times): what's the distn of Y?

Part IV.1.5 Truncation: as Coarsening?

- the full data: $Z_i = (Y_i, \mathcal{T}_i)$ with $i \in \mathcal{P}$
- the observed data: $\{Z_i : Y_i \geq T_i, i \in P\}$

Any observed coarsening variable ${\cal C}$ and ${\it G}_{\cal C}(\cdot)$ presents the observation selection?

Recall that no information about individual *i*, if $Y_i < T_i \dots \dots$

 \Longrightarrow mechanism of incompleteness, different from what studied before

Truncated data arise in many contexts e.g. Car Warranty Claims (Hu and Lawless, 1996a,b)

Part IV.1.5 Truncation: Analysis of Truncated Data

- ▶ nonparametric approaches, e.g. Lynden-Bell and Woodroofe estimator; Woodroofe (1985) an identifiability problem when both nonpara models are for Y, T: only F_Y(·)/F_Y(τ_{max}) is estimatable
- semiparametric approaches, e.g. Kalbfleisch and Lawless (1991); Wang (1989), and Qin and Shen (2010) *length bias sampling*: in Lagakos's setting, if X_i ~ a uniform distn
- using additional info, e.g. Hu and Lawless (1996a,b)

Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and Weiss, 2003)

Part IV.2.1 Measure of Risk

Example. Crib death of SIDS (Sudden Infant Death Syndrome) Cumulative incidence of crib death was recorded based on usual sleeping position of 2607 one-month old Tasmanian infants born 1988-1991 (Dwyer et al., 1991): **to study how** X **affects** Y? \implies measure of risk to SIDS with a sleeping position?

Cumulative incluence.				
Usual	SIDS Death? (Y)			
Sleeping (X)				
Position	yes	no	Total	
prone	$n_{11} = 9$	$n_{12} = 837$	$n_{1+} = 846$	
other	$n_{21} = 6$	$n_{22} = 1755$	$n_{2+} = 1761$	
Total	$n_{+1} = 15$	$n_{+2} = 2592$	$n_{++} = 2607$	

Cumulative Incidence:

A 2×2 table with the row and column variables X and Y, both binary: for i = 1, 2 and j = 1, 2,

▶ the joint and marginal prob

$$\pi_{ij} = P(X = i, Y = j); \quad \pi_{i+} = P(X = i); \quad \pi_{+j} = P(Y = j);$$

• the conditional prob $P(X = i | Y = j) = \pi_{ij}/\pi_{+j}; P(Y = j | X = i) = \pi_{ij}/\pi_{i+j}$

Probabilities:			
Usual	SIDS D	Death? (Y)	
Sleeping (X)			
Position	yes	no	Total
prone	π_{11}	π_{12}	π_{1+}
other	π_{21}	π_{22}	π_{2+}
Total	$\pi_{\pm 1}$	π_{+2}	$\pi_{++}=1$

A 2×2 table with the row and column variables X and Y, both binary:

Probabilities:			
Usual	SIDS [Death? (Y)	
Sleeping (X)			
Position	yes	no	Total
prone	π_{11}	π_{12}	π_{1+}
other	π_{21}	π_{22}	π_{2+}
Total	$\pi_{\pm 1}$	π_{+2}	$\pi_{++} = 1$

the MLE of the prob:

- with the multinomial sampling (fixed n_{++} , e.g. cohort study): $\hat{\pi}_{ij} = n_{ij}/n_{++}$ and thus $\hat{\pi}_{i+}$ etc.
- with the purposive sampling (fixed n_{+j} , e.g. case-control study): $\frac{\widehat{\pi_{ij}}}{\pi_{+j}} = n_{ij}/n_{+j}$

Probabilities:			
Usual	SIDS I	Death? (Y)	
Sleeping (X)			
Position	yes	no	Total
prone	π_{11}	π_{12}	π_{1+}
other	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	$\pi_{++} = 1$

Measures of Risk

• excess risk:
$$ER = P(Y = 1|X = 1) - P(Y = 1|X = 2)$$

= $\frac{\pi_{11}}{\pi_{1+}} - \frac{\pi_{21}}{\pi_{2+}}$ [attributable risk to the exposed]

• relative risk:
$$RR = P(Y = 1 | X = 1) / P(Y = 1 | X = 2) = \frac{\pi_{11}}{\pi_{1+}} / \frac{\pi_{21}}{\pi_{2+}}$$

• odds ratio:
$$OR = \frac{P(Y=1,X=1)}{P(Y=2,X=1)} / \frac{P(Y=1,X=2)}{P(Y=2,X=2)} = \frac{\pi_{11}}{\pi_{12}} / \frac{\pi_{21}}{\pi_{22}}$$

• $RR \approx OR$ when Y = 1 is a rare event

Estimation for the measures of risk:

Cumulative Incidence:				
Usual	SIDS I	Death? (Y)		
Sleeping (X)				
Position	yes	no	Total	
prone	<i>n</i> ₁₁	<i>n</i> ₁₂	n_{1+}	
other	<i>n</i> ₂₁	n 22	n_{2+}	
Total	n_{+1}	n_{+2}	<i>n</i> ++	

the MLE of the Measures of Risk: with the multinomial sampling

• excess risk: $\hat{ER} = \frac{n_{11}}{n_{1+}} - \frac{n_{21}}{n_{2+}} = I_E - I_O$ [diff of cumulative incidences with E vs O]

• relative risk:
$$\hat{RR} = \frac{n_{11}}{n_{1+}} / \frac{n_{21}}{n_{2+}} = I_E / I_O$$

• odds ratio:
$$\hat{OR} = \frac{n_{11}}{n_{12}} / \frac{n_{21}}{n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}} = \frac{l_E/(1-l_E)}{l_O/(1-l_O)}$$

Estimation for the measures of risk:

Cumulative Incidence:				
Usual	SIDS I	Death? (Y)		
Sleeping (X)				
Position	yes	no	Total	
prone	<i>n</i> ₁₁	<i>n</i> ₁₂	n_{1+}	
other	<i>n</i> ₂₁	<i>n</i> ₂₂	n_{2+}	
Total	n_{+1}	n_{+2}	<i>n</i> ++	

the MLE of the Measures of Risk: with the purposive sampling

• excess risk:
$$\hat{ER} = \frac{n_{11}}{n_{1+}} - \frac{n_{21}}{n_{2+}}$$

• relative risk:
$$\hat{RR} = \frac{n_{11}}{n_{1+}} / \frac{n_{21}}{n_{2+}}$$

• odds ratio:
$$\hat{OR} = \frac{n_{11}/n_{1+}}{n_{12}/n_{1+}} / \frac{n_{21}/n_{2+}}{n_{22}/n_{2+}} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

Estimation for the measures of risk:

Cumulative Incidence:				
Usual	SIDS [Death? (Y)		
Sleeping (X)				
Position	yes	no	Total	
prone	<i>n</i> ₁₁	<i>n</i> ₁₂	n_{1+}	
other	<i>n</i> ₂₁	<i>n</i> ₂₂	n_{2+}	
Total	n_{+1}	<i>n</i> ₊₂	<i>n</i> ++	

Confidence Intervals for the Measures of Risk: for example,

• odds ratio:
$$\hat{OR} \pm 1.96SE_{\hat{OR}}$$

• odds ratio: exp {
$$\log(\hat{OR}) \pm 1.96SE_{\log(\hat{OR})}$$
 } with
 $SE^2_{\log(\hat{OR})} = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$
 $\log(OR)$ =the coef to X in the logistic regression model of Y on X

Revisit to Example of Crib death of SIDS

Cumulative Incidence:				
Usual	SIDS Death? (Y)			
Sleeping (X)				
Position	yes	no	Total	
prone	$n_{11} = 9$	$n_{12} = 837$	$n_{1+} = 846$	
other	$n_{21} = 6$	$n_{22} = 1755$	$n_{2+} = 1761$	
Total	$n_{+1} = 15$	$n_{+2} = 2592$	$n_{++} = 2607$	

a cohort study

•
$$\hat{ER} = \frac{9}{846} - \frac{6}{1761} = 0.723\%$$

- ▶ $\hat{RR} = \frac{9}{846} / \frac{6}{1761} = 3.122$ [Does exposure cause disease?], with 95% CI (1.12, 8.74)
- ÔR = 3.145 [Does exposure cause disease?], with 95% CI (1.1158, 8.8654)

Revisit to Example of Crib death of SIDS

Cumulative Incidence:					
Usual	SIDS Death? (Y)				
Sleeping (X)					
Position	yes	no	Total		
prone	$n_{11} = 9$	$n_{12} = 837$	$n_{1+} = 846$		
other	$n_{21} = 6$	$n_{22} = 1755$	$n_{2+} = 1761$		
Total	$n_{+1} = 15$	$n_{+2} = 2592$	$n_{++} = 2607$		

- relative risk vs risk difference?
- study design?

What to study next?

Part I. Introduction Part II. Epidemiologic Concepts and Designs Part III. Clinical Trials

Part IV. Analytic Epidemiology

Part IV.1 Incomplete Data Analysis (supplementary) Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and Weiss, 2003)

IV.2.1 Measures of Risks

IV.2.2 Measurement Error Revisit

IV.2.3 Confunding and Its Control

IV.2.4 Causation vs Association

Part IV.3 Selected Widely-Used Algorithms

IV.3.1 Bootstrap and Related

IV.3.2 EM Algorithm and Related