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Part IV.2.2 Measurement Error Revisit

Mismeasurement of exposure status or level is “present to at
least some degree in nearly every epidemiologic study, since nearly
every means of ascertaining the presence or level of exposure is
imperfect” – Koepsell and Weiss (2003)

I Measure refers broadly to any way of capturing data on a
certain characteristic of study subjects.

I Measurement error is the discrepancy between the true value
and the measured value.

I The scale of measurement is usually categorized into
I continuous: e.g. body weight; any positive real number
I categorical: ordinal vs nominal; e.g. disease serverity – mild,

moderate, severe vs gender – male, female

Misclassification; Fine to Coarse Measurement Scales



Part IV.2.2 Measurement Error Revisit

Assessing Measurement Error

I Reliability. A good measurement should yield the same value
if applied repeatdly under circumstances in which the
underlying characteristic is believed to remain the same.
I e.g. for binary measures and 2× 2 table of outcomes,

concordance [percent agreement]: pO = n11
n++

+ n22
n++

I e.g. for binary measures, Kappa: κ = pO−pe
1−pe
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I e.g. for continuous measures, intraclass correlation coefficient

(reliability ratio): λ =
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Part IV.2.2 Measurement Error Revisit

I Validity A good measurement method should yield the
correct value. [Being consistent is not good enough if the
results are consistently wrong.]
A gold standard (a criterion measure) is required to evaluate
the validity of a measure.
I sensitivity and specificity: 2× 2 table of outcomes with a

diagnosis test and the condition presence
Sensitivity=P(T+|C+), estimated by n11/n+1

Specificity=P(T−|C−), estimated by n22/n+2

I when a test yields an ordinal or continuous scale, often is to
select a cutoff value =⇒ receiver operating characteristic
(ROC) curve: (1-specificity, sensitivity) at different cutoff
values
uninformative test; good test; perfect test



Part IV.2.2 Measurement Error Revisit

Consequences of Measurement Error

I with Continuous Variables
I when the variable is the response: if the errors sum up to zero?

if the errors don’t sum up to zero?
I when the variable is explanatory: if the errors sum up to zero?

[Part IV.1.4] if the errors don’t sum up to zero?

I with Categorical Variables (misclassification)
I non-differential (non-selective) – a form of random

measurement errors?
I differential – bias to a particular direction?



Part IV.2.2 Measurement Error Revisit

“Nondifferential misclassification of exposure is ubiquitous in
epidemiology, and usually leads to an attenuation of the estimated
size of a true association between exposure and disease.” (Thomas,
1995)

Example. In a case-control study
A. When the exposure was measured perfectly

Exposure case control Odds Ratio

yes 150 75 150
150
÷ 75

225

no 150 225 = 3.0
Total 300 300



Part IV.2.2 Measurement Error Revisit

Example. (cont’d)

B. When 1/3 of exposured subjects were misclassified

Exposure case control Odds Ratio

yes 150-50 75-25 100
200
÷ 50

250

no 150+50 225+25 = 2.5
Total 300 300

C. In addition to B., 20% of non-exposured subjects were misclassified

Exposure case control Odds Ratio

yes 150-50+30 75-25+45 130
170
÷ 95

205

no 150+50-30 225+25-45 = 1.65
Total 300 300



Part IV.2.3 Confounding and Its Control

What is confounding?

“Confounding occurs in epidemiologic research when the measured
association between an exposure and disease occurrence is distorted
by an imbalance between exposed and non-exposed persons with
regard to one or more other risk factors for the disease.”

– Koepsell and Weiss (2003)



Part IV.2.3A Confounding and Its Control

Example. Crude Death Rate (per 100,000 person-years):

total deaths in a year

average popluation in the year
× 105

I U.S. Global Health Policy:
(http://www.globalhealthfacts.org/data/topic/map.aspx?ind=90)
Crude Death Rate (per 100,000 people) in 2012:

Canada 8.09; Mexico 4.90

I Mexican age specific moratlity rates are greater: The World Bank
(http://data.worldbank.org/indicator/SH.DYN.MORT)

age 5 or under group: Canada 6; Mexico 16

Why?



Part IV.2.3A Confounding and Its Control

Example. Mortality Rates in Two Hypothetical Communities
Community A Community B

No. of Mid-Year No. of Mid-Year
Age Deaths Population Ratea Deaths Population Ratea

young 1 1000 1 10 5000 2
middle 15 3000 5 40 4000 10
old 50 5000 10 20 1000 20

Total 66 9000 7.3 70 10,000 7.0
aDeaths per 1000 person-year

I Crude Death Rates (1000 per-year): A, 7.3; B, 7.0

I Mortality Rates in A and B both sharply increase with increasing age

I Difference in the age distributions on average: people in A older

A has higher proportion of older people and is “penalized” in comparison

to B: the Simpson’s Paradox



Part IV.2.3B Confounding and Its Control

Methods of Accounting for Confounding Variables:

I in the Study Design:
I random assignment
I matching - select matched pairs (sets) from each age group in

Mexico and Canada
I restriction - compare death rate within a specific age group

I as Part of Data analysis:
I stratification - obtain separate comparisons of death in each

selected age groups using age-specific mortality rates
I covariate adjustment

Advantage vs disadvantage for each?



Part IV.2.3C Confounding and Its Control

Standardization: to calculate what would have been the overall
mortality rates in A and B if they had the same age composition
(i.e. by using a common set of weights).

I Step 1. Pick a reference population to construct weights

Choice of a Standard Population:

I regional comparisons may use the combined population of a
specified date as the standard

I the non-exposed group

I Step 2. Calculate weighted average using age-specific rates in each
population and the selected weights.

The common confounding factor distn is taken from the standard
population; hence, the term of “standardization”.



Part IV.2.3C Confounding and Its Control

Example. Mortality Rates in Two Hypothetical Communities (cont’d)

I Step 1. Select the combined mid-year population of Community A
and B to construct the reference population:

Age Standard Weights

young (1000+5000)/19,000 = 0.316
middle (3000+4000)/19,000 =0.368

old (5000+1000)/19,000 =0.316

Total 1.000
I Step 2. Calculate weighted average

Community A Community B

Age rate weight rate weight

young 1 × .316 =.316 2 × .316 =.632
middle 5 × .368 =1.84 10 × .368 =3.68

old 10 × .316 =3.16 20 × .316 =6.32

5.3a 10.6a

aAge standardized mortality rates in Community A and B



Part IV.2.3C Confounding and Its Control

Direct vs Indirect Standardization

I Direct Standardization: all disease rates from strata are
(weighted) averaged using the distribution of the standard
population for the weights
I It gives the crude rate would have been if the study

population(s) had the same distribution as the standard
population.
Other adjusted measures ... ...

e.g. θ̂XY ,MH =
∑

k N11kN22k/N++k∑
k N12kN21k/N++k

[adjusted OR]

I It may be inefficient when there are few events per stratum



Part IV.2.3C Confounding and Its Control

I Indirect Standardization:
I “Multivariate regression analysis” (Multiple regression?)

e.g. multiple logistic regression analysis [adjusted log-OR]: an
additional covariate to adjust for the effect of a confounder

I Propensity scores
to control multiple potential confounders simultaneously by
using a propensity score:

I First modeling the exposure variable as a function of the potential
confounders by logistic regression or a related method:

to calculate an expected probability (“propensity”) of exposure for
each study subject

I Then examining the exposure-outcome association while controlling
for the propensity score by stratification, matching, or covariate
adjustment



Part IV.2.3C Confounding and Its Control

Stratification:

to separate data into several subgroups (e.g. by age and sex)

I 1st step in standardization

I stratified analysis: rationale for reporting it vs a combined
result?

“conditioning”



Part IV.2.3C Confounding and Its Control

Conditional vs Marginal Associations

I X-Y conditional odds ratios: [describe conditional X-Y
association] For Z = k , k = 1, . . . ,K ,

θXY (k) =
π11kπ22k
π12kπ21k

=
µ11kµ22k
µ12kµ21k

If θXY (k) ≡ constant, =⇒ “homogeneous” conditional X-Y
association

I X-Y marginal odds ratios: [describe marginal X-Y
association]

θXY =
π11+π22+
π12+π21+

=
µ11+µ22+
µ12+µ21+



Part IV.2.3C Confounding and Its Control

I Homogeneous conditional association
If θXY (k) = c for all k , not necessarily θXY = c
e.g. the Simpson’s Paradox

I Marginal vs conditional independence
I X⊥Y |Z ↔ (iff) θXY (k) = 1 for all k
I X⊥Y ↔ (iff) θXY = 1
I X⊥Y |Z 6↔ X⊥Y



Part IV.2.3C Confounding and Its Control

I Cohran-Mantel-Haenszel Test. with a 2× 2× K table, to
test X⊥Y |Z – H0 : “θXY (k) = 1 for all k = 1, . . . ,K” vs H1 :
otherwise
I CMH-test works well if conditional X-Y associations are similar

I Mantel-Haenszel Estimator. with a 2× 2× K table, when
θXY (1) = . . . = θXY (K), to estimate the common conditional

odds ratio: θ̂XY ,MH =
∑

k N11kN22k/N++k∑
k N12kN21k/N++k

6= N11+N22+

N12+N21+

I Breslow-Day Test. with a 2× 2× K table, to test for
homogeneity of conditional odds ratios –
H0 : θXY (1) = . . . = θXY (K) vs H1 : otherwise



Part IV.2.3D Confounding and Its Control

Confounding vs Mediating Variables

I Mediators are also known as intervening or intermediate variables.

I Confounders are associated with but not caused by exposure;
adjusting for variables on the causal pathway biases estimated odds
ratios towards one (Leon, 1993).

e.g. Birth weight is on the causal pathway between maternal smoking
and infant mortality:

Maternal
Smoking

(Exposure)
⇒

Birth
Weight

(Mediator)
⇒

Infant
Mortality

(Outcome)

The odds ratio for infant mortality comparing smokers to non-smokers was:

I 1.3 (95% CI (1.2,1.4)), after adjusting for marital status, education,
maternal age and parity;

I 1.0 (95% CI (0.9,1.1)), after further adjustment for infant birth weight!



Part IV.2.3E Confounding and Its Control

Residual Confounding
Our ability to obtain unconfounded estimates for the effect of exposure in
observational studies is limited by residual confounding due to:

I unknown confounding variables,

I known confounders are not measured,

I random measurement error (non-differential misclassification) of
confounders biasing adjusted estimates of the exposure-disease
association towards estimates of the unadjusted association.

For example,

I Mothers who smoke while pregnant tend to have smaller babies.

I Male babies tend to be bigger than female babies.

I To what extent could the observed association between maternal
smoking and infant birth weight be confounded by infant gender?



Part IV.2.3F Confounding and Its Control

When is confounding present?

I classical criteria
A variable is a confounder if it is associated with exposure and
causally related to the outcome:

?
Exposure 7−→ Outcome
(Country) (Mortality)
l ↗

Confounder
(Age)

the question mark ? about the association of Country and
Mortality



Part IV.2.3F Confounding and Its Control

I collapsibility criterion

Confounding is present when there is a substantive difference
between the crude and adjusted odds ratios.

I A common application of the collapsibility criterion concern for
the effects of confounding occur when the crude and adjusted
estimates of excess risk differ by at least 10%.



Part IV.2.3F Confounding and Its Control

How to Use the Criteria for Confounding?

I The classical criteria may be used when designing a study to:
(i) develop a conceptual framework and (ii) identify potential
confounding variables.

The classical criteria may also prove useful in identifying the
source of confounding.

I The collapsibility criteria is most useful when deciding how
best to describe study results.
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