What to do this week (March 7 and 9, 2023)?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials

Part IV. Modern Biostatistical Approaches

Part IV.1 Incomplete Data Analysis

Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and Weiss, 2003)

IV.2.1 Measures of Risks

IV.2.2 Measurement Error Revisit

IV.2.3 Confounding and Its Control

IV.2.4 Causation vs Association

Part IV.3 Selected Widely-Used Algorithms

IV.3.1 Statistical Simulation and Bootstrap IV.3.2 EM Algorithm and Related

Part IV.4 Lifetime Data Analysis

What do we care about a random variable X?

Its **distribution**: its pattern of taking different values, that is, what values X takes and how often it takes a particular value.

How do we find out X's distribution from its observations (**data**: x_1, \ldots, x_n)?

- (i) by descriptive analysis: plotting/tabulating the data; summarizing the data with statistics
- \blacktriangleright (ii) by making inference on X's disnt $F(\cdot)$

(iia) to approximate (estimate) $F(\cdot)$ by point/interval estimation;

(iib) to choose between (test on) two contradictory claims about $F(\cdot)$ by hypothesis testing

How to verify a conclusion? How to assess performance of an inference procedure?

- ► Monte Carlo refers to an area of Monaco, where the *Monte Carlo Casino* is located.
- Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that obtain numerical results by repeated random sampling.
- Monte Carlo methods are especially useful for simulating phenomena with significant uncertainty in inputs and random systems.

How does an Monte Carlo method work?

- ► How to simulate a particular system?
- After quantifying the system by a rv, how to simulate the rv?

Uniform generator. eg the one in the software package *R*: "runif(n,min,max)"

```
 \begin{array}{l} x = runif(100); \\ hist(x, freq=FALSE, \dots, ) \\ curve(dunif(x), col = 2, lty = 2, lwd = 3, add = TRUE) \\ y = runif(100); \\ plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(a2), n=100) \\ x = runif(1000); \\ hist(x, freq=FALSE, \dots, ) \\ curve(dunif(x), col = 2, lty = 2, lwd = 3, add = TRUE) \\ y = runif(1000); \\ plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(b2), n=1000) \\ \end{array}
```

How to generate random variables?

- R has generators of most commonly used rvs: eg. "rnorm(n,mean,sd)"
- ▶ Use transformations of commonly used rvs: for example,

```
x=runif(1000);
w = 3 * x - 1:
z=rnorm(1000):
v = 3*z + 5:
hist(x, freq=FALSE, ...)
curve(dunif(x), col = 2, lty = 2, lwd = 3, add = TRUE)
hist (w, freq=FALSE, ...)
lines (w, rep(1/3, 1000), col = 3, lty = 2, lwd = 3)
hist(z, freq=FALSE, ...)
curve (\exp(-x^2/2)/(2*pi)^.5, \min(z), \max(z),
                 col = 4, Itv = 2, Iwd = 3, add = TRUE)
hist(v, freq=FALSE, ...)
curve (\exp(-(x-5)^2/(2*9))/(2*pi*9)^5, \min(v), \max(v),
                  col = 5, Ity = 2, Iwd = 3, add = TRUE)
```

How to generate random variables?

- ▶ Use transformations of commonly used rvs: for example,
 - If given a cdf $F(\cdot)$, $Y = F^{-1}(U)$ with $U \sim U(0,1)$ has $Y \sim F(\cdot)$

```
ztmp=matrix(rnorm(4000), ncol=4)
b=apply(ztmp^2,1,sum)
x=runif(1000);
t = -\log(1-x)/2
hist(b, freq=FALSE, ...)
lines (density (b), col = 2, lty = 2, lwd = 3)
b2=rchisq (1000, df=4)
hist(b2, freq=FALSE, ...)
lines (density (b2), col = 3, lty = 2, lwd = 3)
hist(t, freq=FALSE, ...)
lines (density (t), col = 4, lty = 2, lwd = 3)
t2 = rexp(1000.2)
hist(t2, freq=FALSE, ...)
lines (density (t2), col = 5, lty = 2, lwd = 3)
```

How to generate random variables?

▶ Accept-Reject Algorithm. If $f(\cdot)$ is a pdf and $f(x) \leq Mg(x)$ with M a constant and $g(\cdot)$ the *instrumental* pdf.

Step 1. Generate $Y \sim g(\cdot)$ and $U \sim U(0,1)$ indptly.

Step 2. If $U \le \frac{f(Y)}{[Mg(Y)]}$, take X = Y and go to Step 3; otherwise, return to Step 1.

Step 3. Obtain X, which follows $f(\cdot)$.

To prove it? (p298, the textbook by Hogg et al)

To prove $P(X \le x) = \int_{-\infty}^{x} f(z) dz$. Proof.

$$P(X \le x) = P(Y \le x | U \le \frac{f(Y)}{Mg(Y)})$$

$$= P\left(Y \le x | U \le \frac{f(Y)}{Mg(Y)}\right)$$
$$= \frac{P\left(Y \le x, U \le \frac{f(Y)}{Mg(Y)}\right)}{P\left(U \le \frac{f(Y)}{Mg(Y)}\right)}$$

 $= \frac{\int_{-\infty}^{x} \left[\int_{0}^{f(y)/Mg(y)} 1 du \right] g(y) dy}{\int_{-\infty}^{\infty} \left[\int_{0}^{f(y)/Mg(y)} 1 du \right] g(y) dy}$

 $= \frac{\int_{-\infty}^{x} \left[\frac{f(y)}{Mg(y)} \right] g(y) dy}{\int_{-\infty}^{\infty} \left[\frac{f(y)}{Mg(y)} \right] g(y) dy}$

 $P\left(U \leq \frac{f(Y)}{M\sigma(Y)}\right) = \frac{1}{M}$

 $=\int_{-\infty}^{\infty}f(z)dz$

Remark. The algorithm's probability of an acceptance is 1/M:

Example. Suppose $X \sim N(0,1)$ with pdf $f(x) = (2\pi)^{-1/2} \exp(-x^2/2)$, and $Y \sim Cauchy(0,1)$ with pdf $g(y) = \pi^{-1}(1+x^2)^{-1}$. Note that $\frac{f(x)}{g(x)} = \frac{\pi}{\sqrt{2\pi}}(1+x^2)\exp(-x^2/2).$ Because $(1 + x^2) \exp(-x^2/2) \le 2 \exp(-1/2)$, $f(x) \le Mg(x)$ with

$$M=rac{\pi}{\sqrt{2\pi}}(1.213)=1.520.$$
 Use the Accept-Reject Algorithm to generate observations from

N(0.1):

```
x < -rep(0,1000)
for(i in 1:1000){
         y \leftarrow reauchy(1, location = 0, scale = 1);
         u \leftarrow runif(1, min=0, max=1)
         while (u>(exp(-y^2/2)/(2*pi)^.5/1.520*pi*(1+y^2)))
         y<-reauchy(1, location = 0, scale = 1);
         u \leftarrow runif(1, min=0, max=1)
```

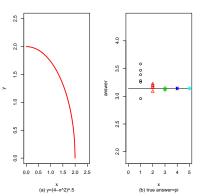
x[i] < -y

Monte Carlo Integration

How to calculate $\int_a^{\overline{b}} g(x) dx$? Example.

$$\int_0^2 \sqrt{4 - x^2} dx = 2 \int_0^2 \sqrt{4 - x^2} \left(\frac{1}{2}\right) dx = 2E\left\{\sqrt{4 - X^2}\right\} (\pi)$$

provided that $X \sim U(0,2)$.



(b) Approximates to the integral by generating n observations from U(0,2), with $n=10^k$ for $k=1,\ldots,5$.

Part IV.3.1 Statistical Simulation and Bootstrap: Simulation Example 1

To verify the normal approximation to binomial distn:

```
xtmp=matrix(ifelse(runif(1000*10)<.3,1,0),ncol=10)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE, ...)
y = rbinom(n = 1000, size = 10, prob = 0.3)
hist(y, freq=FALSE, breaks=11, ...)
xtmp=matrix(ifelse(runif(1000*100)<.3,1,0),ncol=100)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE, breaks=20, ...)
curve (\exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, |ty=1,
        lwd=3, add=TRUE)
y=rbinom(n=1000, size=100, prob=0.3)
hist(y, freq=FALSE, breaks=20, ...)
curve (\exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, |ty=1, 0|
        lwd = 3, add=TRUE)
```

Part IV.3.1 Statistical Simulation and Bootstrap:

Simulation Example 2
What can data missing result in?

```
x=runif(1000);
y = runif(1000);
w=ifelse(x<y,1,0); sum(w)/1000
r0 = ifelse(runif(1000) < .5, 1, 0)
x0=x[r0==1];v0=v[r0==1];
w0 = ifelse(x0 < y0, 1, 0); sum(w0)/sum(r0);
r1 = rep(0,1000)
r1[x < y] = rbinom(length(x[x < y]), size = 1, prob = .8)
r1[x>=y]=rbinom(length(x[x>=y]), size=1, prob=.2)
x1=x[r1==1];y1=y[r1==1];
w1 = ifelse(x1 < y1, 1, 0); sum(w1)/sum(r1);
r2 = rep(0,1000)
r2[x < y] = rbinom(length(x[x < y]), size = 1, prob = .3)
r2[x>=y]=rbinom(length(x[x>=y]), size=1, prob=.7)
x2=x[r2==1]; y2=y[r2==1];
w2=ifelse(x2<y2,1,0);sum(w2)/sum(r2);
```

Part IV.3.1 Statistical Simulation and Bootstrap: Preparation for Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

Definition. The following is the **empirical function** with the random sample:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathsf{I}(X_i \le x) \quad \text{for} \quad -\infty < x < \infty.$$

For all $x \in (-\infty, \infty)$,

►
$$E\{F_n(x)\} = F(x)$$
 and $Var\{F_n(x)\} = F(x)[1 - F(x)]/n$.

 $F_n(\cdot)$ is a very good estimator of $F(\cdot)$.

Part IV.3.1 Statistical Simulation and Bootstrap: Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

When to use a point estmator $\widehat{\theta}(X_1, \dots, X_n)$ of a population parameter θ , how to estimate its variance $Var(\widehat{\theta})$?

Thinking

▶ If we could have a random sample $\widehat{\theta}_b$ for $b=1,\ldots,B$ from the same population as $\widehat{\theta}$, we can estimate the variance with

$$s_{\widehat{\theta}}^2 = \sum_{b=1}^B (\widehat{\theta}_b - \overline{\widehat{\theta}})^2 / (B - 1)$$

with
$$\widehat{\widehat{\theta}} = \sum_{b=1}^{B} \widehat{\theta}_b / B$$
.

▶ That can be achieved if there are X_{1b}, \ldots, X_{nb} iid from $F(\cdot)$. However, $F(\cdot)$ is unknown. How to overcome it?

Part IV.3.1 Statistical Simulation and Bootstrap:

Bootstrap

Consider $\forall X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

When to use a point estmator $\widehat{\theta}(X_1, \dots, X_n)$ of a population parameter θ , how to estimate its variance $Var(\widehat{\theta})$?

Bootstrap variance estimation:

- Step 1. Generate $X_{1b}^*, \ldots, X_{nb}^*$ iid from the empirical function $F_n(\cdot)$.
- (Resample with size n from X_1, \ldots, X_n with replacement.) Step 2. Calculate $\widehat{\theta}(X_{1h}^*, \ldots, X_{nh}^*)$, denoted by $\widehat{\theta}_h^*$.
- ▶ Repeat Steps 1. and 2. *B* times and obtain $\{\widehat{\theta}_b^*: b = 1, ..., B\}$.
- With $\widehat{\theta}^* = \sum_{b=1}^B \widehat{\theta}_b^* / B$, calculate $s_{\widehat{\theta}^*}^2 = \sum_{b=1}^B (\widehat{\theta}_b^* \widehat{\bar{\theta}^*})^2 / (B-1)$.
- ▶ Use $s_{\widehat{\theta}^*}^2$ to estimate $Var(\widehat{\theta})$.

Resampling methods: Jackknife (J.W. Tukey, 1958); Bootstrap (Bradley Efron, 1979)

Part IV.3.1 Statistical Simulation and Bootstrap: Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

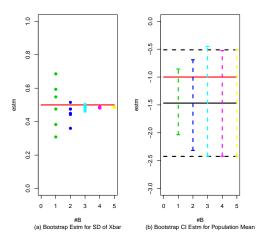
► How to obtain an interval estimator of a population parameter θ based on a point estmator $\widehat{\theta}(X_1, ..., X_n)$?

Bootstrap confidence interval:

- Step 1. Generate $X_{1b}^*, \ldots, X_{nb}^*$ iid from the empirical function $F_n(\cdot)$. (Resample with size n from X_1, \ldots, X_n with replacement.)
- ▶ Step 2. Calculate $\widehat{\theta}(X_{1b}^*, \dots, X_{nb}^*)$, denoted by $\widehat{\theta}_b^*$.
- ▶ Repeat Steps 1. and 2. B times and obtain $\{\widehat{\theta}_b^*: b=1,\ldots,B\}$.
- Sort the sequence as $\widehat{\theta}_{(1)}^* \leq \ldots \leq \widehat{\theta}_{(B)}^*$, and obtain bootstrap percentiles: $\widehat{\theta}_{(\alpha/2)100)}^*$ and $\widehat{\theta}_{(1-\alpha/2)100)}^*$.
- ▶ Use $(\widehat{\theta}^*_{((\alpha/2)100)}, \widehat{\theta}^*_{((1-\alpha/2)100)})$ as a $(1-\alpha)100\%$ CI for θ .

Bootstrap example

Consider $X \sim F(\cdot)$ with $\mu = E(X)$ and iid obs X_1, \ldots, X_n .



 $X \sim N(-1, 5^2)$ with n = 100 and $B = 10^k$ for k = 1, ..., 5.

Part IV.3.2 EM Algorithm and Related: Maximum Likelihood Estimation (MLE)

- **Likelihood Function:** X_1, \ldots, X_n are iid observations (a random sample) from the population with distribution $f(x; \theta)$, $\theta \in \Omega$. If the observed values are x_1, \ldots, x_n , then $L(\theta \mid \text{data}) = \prod_{i=1}^n f(x_i; \theta)$.
- ▶ Maximum Likelihood Estimator (MLE): The MLE $\widehat{\theta}$ is maximizes $L(\theta)$: $\widehat{\theta} = argmax_{\theta \in \Omega}L(\theta \mid \text{data})$.

 The MLE $\widehat{\theta}$ gives the parameter value that agrees most closely with the observed sample (the data).
- ▶ **Asymptotic Properties** Provided some regularity conditions,
 - 1. $\widehat{\boldsymbol{\theta}}_n \stackrel{P}{\rightarrow} \boldsymbol{\theta}$.
 - 2. $\sqrt{n}(\widehat{\boldsymbol{\theta}}_n \boldsymbol{\theta}) \stackrel{D}{\rightarrow} MN(\mathbf{0}, FI(\boldsymbol{\theta})^{-1}).$

For j = 1, ..., K, the jth component of $\widehat{\theta}_n$ satisfies

$$\sqrt{n}(\widehat{\theta}_{n,j} - \theta_j) \stackrel{D}{\to} N(0, [\mathsf{FI}(\boldsymbol{\theta})^{-1}]_{jj}).$$

Part IV.3.2 EM Algorithm and Related: Likelihood-Based Tests:

Consider $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$ using a random sample $X_1, \ldots, X_n \sim f(x; \theta)$ for $\theta \in \Omega \subseteq \mathcal{R}^K$ with $\Omega_0 \cap \Omega_1 = \emptyset$.

- ▶ Wald Test: If $\Omega_0 = \{\theta_0\}$ and $\Omega_1 = \Omega \setminus \{\theta_0\}$ and n >> 1, $W = (\widehat{\theta} \theta_0)' [n \text{FI}(\theta_0] (\widehat{\theta} \theta_0) \underset{H_0}{\sim} \chi^2(K)$ approximately.
 - \implies Rejection region with level of α : $\{\mathbf{x}: W > c\}$, the critical value c is $\chi^2(K)_{1-\alpha}$ of the $\chi^2(K)$ -distn.
- ▶ Likelihood Ratio Test: If $\Omega_1 = \Omega \setminus \Omega_0$ and n >> 1, $-2 \log(\Lambda) \underset{H_0}{\sim} \chi^2(K-q)$ approximately. Here $\Lambda = \frac{\max_{\theta \in \Omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$ and if q the number of indpt parameters under H_0 is q. \Longrightarrow Rejection region with level of α : $\{\mathbf{x} : -2 \log(\Lambda) > c\}$, the critical values c is $\chi^2(K-q)_{1-\alpha}$ of the $\chi^2(K-q)$ -distn.

Part IV.3.2 EM Algorithm and Related: Expectation-Maximization (EM) Algorithm

What does it do?

An iterative procedure (algorithm) to calculate MLEs of the population parameters θ when it is hard to maximize the likelihood function of θ with the available data.

Original References:

- Dempster, Laird, and Rubin (1977). "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B. 39 (1): 1–38.
- ► C.F. Jeff Wu (1983). "On the Convergence Properties of the EM Algorithm". *Annals of Statistics*. 11 (1): 95–103.
- B.W. Turbull (1976) "The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data". Journal of the Royal Statistical Society, Series B. 38 (3): 290–295.

Part IV.3.2 EM Algorithm and Related:

Expectation-Maximization (EM) Algorithm Goal: Consider to maximize $L(\theta|\mathbf{X})$, the (observed) likelihood

function with the available data \mathbf{X} to obtain the MLE of population parameter $\boldsymbol{\theta}$.

Suppose that it is relatively easier to maximize $L_C(\theta|\mathbf{X},\mathbf{Z})$, the (complete) likelihood function of θ with the "augmented" data (\mathbf{X},\mathbf{Z}) .

Define $Q(\theta|\theta_0, \mathbf{x}) = E_{\theta_0} [\log L_C(\theta|\mathbf{X}, \mathbf{Z})|\theta_0, \mathbf{X} = \mathbf{x}].$

EM Algorithm. Let $\hat{\theta}^{(m)}$ be the estimate on the *m*th step with $m \geq 0$. The following compute the estimate on the (m+1)th step:

Expectation-Step. Compute

$$Q(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}^{(m)}, \mathbf{x}) = E_{\hat{\boldsymbol{a}}^{(m)}} [\log L_C(\boldsymbol{\theta}|\mathbf{X}, \mathbf{Z})|\hat{\boldsymbol{\theta}}^{(m)}, \mathbf{X} = \mathbf{x}].$$

▶ Maximization-Step. Let the updated estimate be

$$\hat{\boldsymbol{ heta}}^{(m+1)} = \operatorname{argmax}_{\boldsymbol{ heta} \in \Omega} Q(\boldsymbol{ heta}|\hat{\boldsymbol{ heta}}^{(m)}, \mathbf{x}).$$

Part IV.3.2 EM Algorithm and Related: Expectation-Maximization (EM) Algorithm

- Starting with an initial estimate (guess) of θ , say, $\hat{\theta}^{(0)}$, repeat the *E-Step* and *M-Step* and record the sequence of estimates $\{\hat{\theta}^{(m)}: m=1,2,\dots\}$.
- ▶ Under some assumptions, the sequence converges in probability to the MLE $\widehat{\theta}$ as $m \to \infty$.
- ► The EM algorithm works to improve $Q(\theta|\hat{\theta}^{(m)}, \mathbf{x})$. This implies improvements to $L(\theta|\mathbf{x})$: $L(\hat{\theta}^{(m+1)}|\mathbf{x}) \geq L(\hat{\theta}^{(m)}|\mathbf{x})$.

EM algorithm has a broad range of applications!

... and a lot of variants, eg MCEM Algorithm, ES Algorithm, ...

Example. Consider a mixture of normal distributions:

 $X = (1 - W)Y_1 + WY_2$ with $Y_j \sim N(\mu_j, \sigma_j^2)$ for j = 1, 2 and $W \sim B(1, \epsilon)$. Suppose the observations on a random sample

 $W \sim B(1,\epsilon)$. Suppose the observations on a random sample $\mathbf{X}' = (X_1, \dots, X_n)$ from the mixture distn are available.

- Apply the EM algorithm to estimate the parameter $\theta' = (\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \epsilon)$
- Similar to Ex6.6.8, generate data with n=1000 and $\theta^{'}=(100,15^{2},200,10^{2},.8)$, and then evaluate the MLE of $\theta^{'}$ by EM algorithm.

Solution. Let $f_j(y)$ be the pdf of Y_j . The log-likelihood functor with the observed data is

$$I(\boldsymbol{\theta}|\mathbf{x}) = \sum_{i=1}^{n} \log \left[(1 - \epsilon) f_1(x_i) + \epsilon f_2(x_i) \right].$$

With observations $\mathbf{w}^{'}$ on a random sample W_1, \ldots, W_n from $W \sim B(1, \epsilon)$, the log-likelihood functn with the complete data is

$$I_{C}(\boldsymbol{\theta}|\mathbf{x},\mathbf{w}) = \sum_{i=1}^{n} \Big\{ \big[(1-w_{i}) \log f_{1}(x_{i}) + w_{i} \log f_{2}(x_{i}) \big] + \big[w_{i} \log \epsilon + (1-w_{i}) \log (1-\epsilon) \big] \Big\}.$$

Provided the estimate at the *m*th stage is $\theta^{(m)}$.

E-Step.
$$Q(\theta|\theta^{(m)}, \mathbf{x}) = I_C(\theta|\mathbf{x}, \mathbf{w})|_{\mathbf{w} = \widehat{\mathbf{w}}^{(m)}}$$
 with

$$\hat{\varphi}^{(m)} = F(W|\boldsymbol{\rho}^{(m)} \times) = \frac{\epsilon^{(m)} f_2(x_i)^{(m)}}{\epsilon^{(m)}}$$

and $e^{(m+1)} = \sum_{i=1}^{n} \hat{w}_{i}^{(m)} / n$.

$$\hat{w}_i^{(m)} = E(W_i|oldsymbol{ heta}^{(m)},\mathbf{x}) = rac{\epsilon^{(m)}f_2(x_i)^{(m)}}{(1-\epsilon^{(m)})f_1(x_i)^{(m)}+\epsilon^{(m)}}$$

$$W_i^{(m)} = E(W_i | \boldsymbol{\theta}^{(m)}, \mathbf{x}) = \frac{1}{(1 - \epsilon^{(m)}) f_1(x_i)^{(m)} + \epsilon^{(m)} f_1}$$
 M -Step. Maximizing $Q(\boldsymbol{\theta} | \boldsymbol{\theta}^{(m)}, \mathbf{x})$ wrt $\boldsymbol{\theta}$ yields

 $\hat{w}_i^{(m)} = E(W_i|\boldsymbol{\theta}^{(m)},\mathbf{x}) = \frac{\epsilon^{(m)}f_2(x_i)^{(m)}}{(1-\epsilon^{(m)})f_1(x_i)^{(m)} + \epsilon^{(m)}f_2(x_i)^{(m)}}.$

 $\mu_1^{(m+1)} = \frac{\sum_{i=1}^n (1 - \hat{w}_i^{(m)}) x_i}{\sum_{i=1}^n (1 - \hat{w}_i^{(m)})}, \quad \sigma_1^{2(m+1)} = \frac{\sum_{i=1}^n (1 - \hat{w}_i^{(m)}) (x_i - \mu_1^{(m+1)})^2}{\sum_{i=1}^n (1 - \hat{w}_i^{(m)})},$

 $\mu_2^{(m+1)} = \frac{\sum_{i=1}^n \hat{w}_i^{(m)} x_i}{\sum_{i=1}^n \hat{w}_i^{(m)}}, \quad \sigma_2^{2(m+1)} = \frac{\sum_{i=1}^n \hat{w}_i^{(m)} (x_i - \mu_2^{(m+1)})^2}{\sum_{i=1}^n \hat{w}_i^{(m)}},$

E-Step. $Q(\theta|\theta^{(m)},\mathbf{x}) = I_C(\theta|\mathbf{x},\mathbf{w})|_{\mathbf{w}=\widehat{\mathbf{w}}^{(m)}}$ with

What to study next?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials

Part IV. Analytic Epidemiology

Part IV.1 Incomplete Data Analysis (supplementary)

Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell

and Weiss, 2003)

Part IV.3 Selected Widely-Used Algorithms

IV.3.1 Bootstrap and Related
IV.3.2 EM Algorithm and Related

Part IV.4 Lifetime Data Analysis

IV.4.1 Introduction

IV.4.2 Parametric Inference

IV.4.3 Nonparametric Inference: Estimation

IV.4.4 Nonparametric Inference: Testing IV.4.5 Semiparametric Inference