What to do this week (March 14 and 16, 2023)?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials

Part IV. Modern Biostatistical Approaches

Part IV.1 Incomplete Data Analysis

Part IV.2 Some Other Important Topics (Chp 8 - 18, Koepsell and Weiss, 2003)

Part IV.3 Selected Widely-Used Algorithms

Part IV.4 Lifetime Data Analysis

IV.4.1 Parametric Inference

IV.4.2 Nonparametric Inference: Estimation

IV.4.3 Nonparametric Inference: Testing

IV.4.4 Semiparametric Inference

Part IV.4.1 Lifetime Data Analysis: Parametric Inference

Parametric Analysis with Right-Censored Data

Consider event time r.v. $T \sim f(\cdot; \theta)$: to make inference on θ with a set of right-censored data $\{(U_i, \delta_i) : i = 1, \dots, n\}$, arising from n indpt individuals

Independent Censoring. the situations with indpt T_i and C_i for i = 1, ..., n, denoted by $T_i \perp C_i$.

What is the likelihood function $L(\theta|data)$?

$$L(\theta|data) \propto \prod_{i=1}^n f(u_i;\theta)^{\delta_i} S(u_i;\theta)^{1-\delta_i} = \prod_{i=1}^n h(u_i;\theta)^{\delta_i} S(u_i;\theta)$$

... applications of MLE/likelihood-based testing proceudres

Example. r.v. $T \sim NE(1/\theta)$ with a set of right-censored data from n indpt individuals: $\{(u_i, \delta_i) : i = 1, \dots, n\}$, assuming indpt censoring

- Can we use $\bar{T} = \frac{\sum_{i=1}^{n} t_i}{n}$, the sample mean to estimate the population mean of T, $E(T) = \theta$? $\bar{T} \sim AN(\theta, \theta^2/n)$
- ▶ What is the MLE of θ with the censored data?

$$L(\theta|data) = \prod_{i=1}^{n} \left(\frac{1}{\theta} e^{-u_i/\theta}\right)^{\delta_i} \left(e^{-u_i/\theta}\right)^{1-\delta_i} = \frac{1}{\theta}^{\sum \delta_i} \exp(-\sum u_i/\theta)$$

$$rac{\partial log L(heta)}{\partial heta} = 0 \Longrightarrow ext{the MLE } \hat{ heta} = rac{\sum_{i=1}^n u_i}{\sum_{i=1}^n \delta_i}$$
:

$$\sqrt{n}(\hat{\theta}-\theta) \sim AN(0,FI^{-1}(\theta)), \quad n >> 1$$

How to compare the efficiency of MLE $\hat{\theta}$ with $\bar{T} \sim AN(\theta, \theta^2/n)$?

Moreover,

- \blacktriangleright (i) how to compute the MLE $\hat{\theta}$ in general?
- (ii) how to estimate the variance of the MLE $\hat{\theta}$?

Part IV.4.2-4 Lifetime Data Analysis: Nonparametric/Semiparametric Inference

Motivation

Consider event time $T \sim f(\cdot)$, or $T|X = x \sim f(\cdot|x)$ Goal: to make inference on $f(\cdot)$ or $f(\cdot|x)$

Recall parametric inference in LIDA ...

- ▶ What if the parametric model is not plausible?
- ▶ What if not to take any risks?

⇒ the demand of approaches requiring less model assumptions:

- nonparametric inference procedures
- semiparametric inference procedures

... ... Modern Survival/Failure Time/Lifetime Analysis

Overview

► Kaplan and Meier (1958, JASA)

product-limit (Kaplan-Meier) estimator for S(t) with right-censored event times – nonparametric estimator

▶ Mantel (1966, Cancer Chem); Gehan (1965, Biometrika) logrank test (extended Wilcoxon test) with right-censored event times – nonparametric test

Cox (1972, JRSSB; 1975, Biometrika)

Cox's proportional hazards model and partial likelihood approach – semiparametric inference

Part IV.4.3 Lifetime Data Analysis: Kaplan-Meier Estimator

Motivation

 $T_1,\ldots,T_n\sim F(\cdot)$ iid the empirical distribution $\hat{F}_n(t)=\frac{1}{n}\sum_{i=1}^n I(T_i\leq t)$, the nonparametric MLE (Kiefer's version)

the empirical distribution $\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(T_i \leq t)$

- $ightharpoonup \forall t \in [0, \infty),$
 - \triangleright $E\{\hat{F}_n(t)\} = F(t)$
 - $ightharpoonup Var\{\hat{F}_n(t)\} = F(t)[1 F(t)]/n$
 - $lacksquare \sqrt{n} ig\{ \hat{F}_n(t) F(t) ig\}
 ightarrow \mathcal{N}(0, F(t)[1-F(t)])$ in distn, as $n
 ightarrow \infty$
- $ightharpoonup \sup_{t>0} \left| \hat{F}_n(t) F(t) \right| \to 0 \text{ a.s.}$
- ▶ $\sqrt{n}\{\hat{F}_n(t) F(t)\}$ → Gaussian Process with mean zero and variance function F(t)[1 F(t)] in distribution (weak convergence)

What if
$$\{(U_i, \delta_i) : i = 1, ..., n\}$$
?

Recall "Actuarial Life Table"

 $P_j = P(an individual survives beyond I_j)$

	time interval	number of death	number of withdrawal	number at risk	\hat{q}_j	$\hat{ ho}_{j}$	\hat{P}_j
	I ₁						
	I_j	D_j	W_{j}	 N j	$\frac{D_j}{N_j - \frac{1}{2}W_j}$	$1-\hat{q}_j$	
	I_K				, ,		
•	p_j =P(an individual survives beyond I_j beyond I_{j-1})						
	$q_j = 1 - p_j = P(an \; individual \; dies \; in \; I_j beyond \; I_{j-1})$						

Rationale?

Kaplan-Meier Estimator

In general, $F \in \mathcal{F} = \{ \textit{all cdfs} \}$ With the right-censored data, the likelihood function

$$L(F) = \prod_{i=1}^n dF(u_i)^{\delta_i} [1 - F(u_i)]^{1 - \delta_i}$$

Maximize L(F) as $F(\cdot)$ having only masses at the distinct observed event times: $0 = V_0 \le V_1 < \ldots < V_J \le V_{J+1}$ \Longrightarrow the Kaplan-Meier estimator (left-continuous)

$$\hat{S}(t) = \prod_{j:V_j < t} \left(1 - \frac{n_j}{N_j}\right) = \left\{ egin{array}{l} 1 & t \leq V_1 \\ \prod_{j=1}^{j} (1 - \hat{h}_j) & V_j < t \leq V_{j+1} \\ t > V_{J+1} \end{array}
ight.$$

Recall a pointwise CI: for t>0, $\hat{S}_{KM}(t)\pm 1.96\sqrt{\hat{V}ar(\hat{S}_{KM}(t))}$

an alternative way to construct a CI for S(t):

ightharpoonup to obtain a CI for log S(t) first

$$\log \hat{S}_{\mathit{KM}}(t) \pm 1.96 \sqrt{\hat{V} ig(\log \hat{S}_{\mathit{KM}}(t)ig)}$$

$$ightharpoonup \hat{V}ig(\log \hat{S}_{KM}(t)ig)pprox \sum_{l=1}^{j} Varig[\log(1-\hat{h}_{l})ig] ext{ for } t\in [V_{j},V_{j+1})$$

►
$$Var\left[\log(1-\hat{h}_l)\right] \approx Var(\hat{h}_l)\frac{1}{(1-\hat{h}_l)^2}$$
 by the Δ -method.

$$ightharpoonup Var(\hat{h}_I) pprox rac{1}{N_I} rac{n_I}{N_I} \Big(1 - rac{n_I}{N_I}\Big)$$

ightharpoonup to obtain a CI for S(t) as

$$\exp\Big\{\log \hat{S}_{\mathit{KM}}(t) \pm 1.96 \sqrt{\hat{V}\big(\log \hat{S}_{\mathit{KM}}(t)\big)}\Big\} = \hat{S}_{\mathit{KM}}(t) \mathrm{e}^{\pm 1.96 \sqrt{\hat{V}\big(\log \hat{S}_{\mathit{KM}}(t)\big)}}$$

Recall the alternative pointwise CI: for t > 0, $(\hat{S}_{KM}(t)e^{-1.96\sqrt{\hat{V}ar(\hat{S}_{KM}(t))}}, \hat{S}_{KM}(t)e^{1.96\sqrt{\hat{V}ar(\hat{S}_{KM}(t))}})$

any other alternative constructions for a CI of S(t)?

- ▶ the logit transformation?
 - (proportional odds failure time models)
- the probit transformation?

Kaplan-Meier Estimator: Applications

- for comparing two populations' distn with censored data e.g. $\sup_{t>0} |\hat{S}_{1,KM}(t) \hat{S}_{2,KM}(t)|$? an extension of the Kolmogorov-Smirnov test statistic $\sup_{t>0} |F_{1,n}(t) F_{2,m}(t)|$ no need to specify the population distributions into parametric models
- for justifying actuarial life table

Kaplan-Meier Estimator: Applications

- ▶ for assessing parametric goodness-of-fit with censored data
 - e.g. is $T \sim NE(\lambda)$ $(H(t) = \lambda t)$? \Longrightarrow to check if $\log S(t) = -\lambda t$? using the scatter plot of $\log \hat{S}(t)$ vs t: is $\log \hat{S}(t)$ linear function of t?
 - e.g. is $T \sim Weibull(\lambda, \rho)$ $(H(t) = \lambda t^{\rho})$? \implies to check if $\log (-\log S(t)) = \log \lambda + \rho \log t$? using the scatter plot of $\log (-\log \hat{S}(t))$ vs $\log t$: look for linearity?

Part IV.4.3 Lifetime Data Analysis: Nonparametric Tests

Introduction

Consider to compare two groups wrt the event time distns

For example,

- ▶ in the placebo group, iid $T_{0i} \sim F_0(\cdot)$: i = 1, ..., n
- ▶ in the treatment group, iid $T_{1j} \sim F_1(\cdot)$: j = 1, ..., m

$$\implies H_0: F_0(\cdot) = F_1(\cdot)$$

... Many different ways to differ: any UMP?

- ▶ directional tests: designated/oriented to a specific type of difference between the two population distristing e.g. $S_1(t) = S_0(t)^c$
- omnibus tests: there is power to detect all or most types of differences but not with great power for a specific difference

Early work with censored data

- ► Gehan (1965, Biometrika): modifying rank tests to allow censoring
- ▶ Mantel (1966, Cancer Chem): adapting data to use methods for several 2×2 tables
- ► Application of the Cox partial likelihood approach (Cox, 1975)*

Recall that, without censoring and provided the two populations are indpt, the Wilcoxon sign test:

$$\Phi(T_{1i}, T_{0j}) = \begin{cases} 1 & T_{0j} > T_{1i} \\ -1 & T_{0j} < T_{1i} \\ 0 & T_{0j} = T_{1i} \end{cases}$$

$$W = \sum_{i=1}^{n} \sum_{j=1}^{m} \Phi(T_{1i}, T_{0j})$$

- $ightharpoonup E_{H_0}(W) = 0$
- ▶ $W/SE(W) \sim N(0,1)$ in distn as $n, m \to \infty$
- ⇒ the Wilcoxon sign test

- efficiency?
- ▶ what if $T_1 \not\perp \!\!\! \perp T_0$?
- what if the data are right-censored? $\{(U_{1i},\delta_{1i}): i=1,\ldots,n\} \bigcup \{(U_{0j},\delta_{0j}): j=1,\ldots,m\}$

With the right-cenosred data $\{(U_{1i}, \delta_{1i}) : i = 1, ..., n\} \cup \{(U_{0j}, \delta_{0j}) : j = 1, ..., m\}$:

$$\Phi(\textit{U}_{1i}, \delta_{1i}; \textit{U}_{0j}, \delta_{0j}) = \left\{ \begin{array}{ll} 1, & \textit{U}_{0j} > \textit{U}_{1i}; \delta_{1i} = 1 \\ -1, & \textit{U}_{0j} < \textit{U}_{1i}; \delta_{0j} = 1 \\ 0, & \textit{otherwise} \end{array} \right.$$

$$GW = \sum_{i} \sum_{j} \Phi(U_{1i}, \delta_{1i}; U_{0j}, \delta_{0j})$$
 provided indpt censoring,

- $ightharpoonup E_{H_0}(GW) = 0$
- ► $GW/SE(GW) \sim N(0,1)$ in distn as $n, m \to \infty$
- $\Longrightarrow {\sf Wilcoxon\text{-}Gehan\ testing\ procedure\ ...}$

- efficiency?
- ▶ what if $T_1 \not\perp T_0$?
- ▶ how is it compared to the extended Kolmogorov-Smirnov test based on the KM estm?

with all observed distinct event times: $0 < V_1 < \dots, V_K$

First, consider what happens at time $t = V_I \dots$

	at $t = V_I$		
Group	failure	not	at risk
placebo	n ₀₁	_	N ₀₁
treatment	n_{1I}	_	N_{1}
total	n _{.1}	_	N _{.1}

The number of observed failures at time V_I from the treatment group $O_I = n_{1I} \sim$ Hypergeometric distn under $H_0: S_0(\cdot) = S_1(\cdot)$

$$P(O_{I} = a) = \frac{\binom{N_{1I}}{a} \binom{N_{0I}}{n_{.I} - a}}{\binom{N_{.I}}{n_{I}}}$$

with all observed distinct event times: $0 < V_1 < \dots, V_K$

First, consider what happens at time $t = V_1 \dots$

	at $t = V_I$		
Group	failure	not	at risk
placebo	n ₀₁	_	N ₀₁
treatment	n_{1I}	_	N ₁ /
total	n _{.I}	_	N _{.1}

- ▶ the expected number of failures from treatment group $E_l = E(O_l) = n_l \frac{N_{1l}}{N_l}$ under H_0
- $V(O_l) = \frac{N_l N_{1l}}{N_l 1} N_{1l} \left(\frac{n_l}{N_l} \right) \left(1 \frac{n_l}{N_l} \right)$ under H_0

Now, pull together the information at all the observed failure times ...

$$Z = \frac{\sum_{l=1}^{K} (O_{l} - E_{l})}{\sqrt{\sum_{l=1}^{K} V(O_{l})}} \sim N(0, 1)$$

approximately under H_0 \Longrightarrow the Mantel (logrank) testing procedure ...

- $ightharpoonup Z^2 \sim \chi^2(1)$ under H_0
- $Z = (\sum_{I} O_{I} \sum_{I} E_{I}) / SE(O)$

Example. Group 0: 3.1, 6.8⁺, 9, 9, 11.3⁺, 16.2 Group 1: 8.7, 9, 10.1⁺, 12.1⁺, 18.7, 23.1⁺

Remarks

- ightharpoonup similar to the techniques for combining 2 imes 2 tables across trata to test for independence
- efficiency?
- ► Mantel (logrank) test vs Gehan test?
- oriented towards $S_1(t) = S_0(t)^c$, a directional test

What if the subjects are stratified according to a factor, say, gender?

Stratified Logrank Test with the factor of *K* levels

$$Z = \frac{\sum_{k=1}^{K} (O^{(k)} - E^{(k)})}{\left(\sum_{k} V^{(k)}\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

 \Longrightarrow the testing procedure

What if there is a need to weight the information at different times differently?

Weighted Logrank Test

$$Z_W = \frac{\sum_{l=1}^{L} w_l (O_l - E_l)}{\left(\sum_{l} w_l^2 V_l\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

 \Longrightarrow the testing procedure

How to choose the weights in general?

▶ If $w_I = N_{.I}$, the test is similar to Gehan test.

What if to compare p treatment groups with the placebo group? $H_0: S_0(\cdot) = S_1(\cdot) = \dots = S_p(\cdot)$

 $H_0: S_0(\cdot) = S_1(\cdot) = \ldots = S_p(\cdot)$ Given all the distinct failure times are $0 < V_1 < \ldots < V_L < \infty$,

	at $t = V_I$		
Group	failure	not	at risk
placebo	<i>n</i> _{0/}		N ₀₁
treatment 1	$n_{1/}$		N _{1/}
:	•	•	:
treatment p	n_{pl}		N_{pl}
total	n _{.1}		N _{.1}

$$\mathbf{O}_{l} = \begin{pmatrix} n_{1l} \\ \vdots \\ n_{pl} \end{pmatrix}; \; \mathbf{E}_{l} = E\{\mathbf{O}_{l}\} = \begin{pmatrix} N_{1l} \\ \vdots \\ N_{pl} \end{pmatrix} \frac{n.l}{N.l}; \; \mathbf{V}_{l} = Var\{\mathbf{O}\}$$

$$\begin{split} \tilde{\mathbf{O}} &= \sum_{l=1}^{L} \mathbf{O}_{l}, \ \tilde{\mathbf{E}} &= \sum_{l=1}^{L} \mathbf{E}_{l}, \ \tilde{\mathbf{V}} &= \sum_{l=1}^{L} \mathbf{V}_{l} \\ & \left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}} \right)^{'} \tilde{\mathbf{V}}^{-1} \left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}} \right) \sim \chi^{2}(p) \end{split}$$

approximately under H_0 , provided the sample size is large.

- \Longrightarrow the testing procedure
 - ► The test is *omnibus*.
 - ▶ If a trend test is intended? to consider $\mathbf{c}' \left(\tilde{\mathbf{O}} \tilde{\mathbf{E}} \right) \sim N(0, \mathbf{c}' \tilde{\mathbf{V}} \mathbf{c})$?

IV.4.4 Semiparametric Inference: Cox Proportional Hazards Model

- lacktriangle Recall the two-sample problem o testing on $H_0: h_1(\cdot) = h_0(\cdot)$
 - $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases},$ to study event time T|Z = z?
 - with general covariates Z, to explore event time T|Z=z? \Longrightarrow regression modeling?
- Feigl and Zelen (1965) $T|Z = z \sim NE(\lambda_z): \ h(t|z) = \lambda_z = \lambda_0 e^{\beta z}$ $\beta = 0 \rightarrow \text{ no effect of } Z$
- ⇒ Cox Proportional Hazards Model (Cox, JRSSB 1972)

Cox Proportional Hazards Model: (Cox, JRSSB 1972)

The hazard function of event time T|Z = z is

$$h(t|z) = h_0(t)e^{\beta z}, \quad t > 0$$

The conditional survivor function is

$$S(t|z) = \exp(-\int_0^t h_0(u)e^{\beta z}du) = \exp(-H_0(t)e^{\beta z}), \quad t > 0$$

Remarks

• the hazard ratio
$$h(t|Z=z_1)/h(t|Z=z_0)=e^{\beta(z_1-z_0)}$$
 for all $t>0$ proportional!

$$Z_1 = \left\{ \begin{array}{ll} 1 & \textit{treatment} \\ 0 & \textit{placebo} \end{array} \right., \ Z_2 = \left\{ \begin{array}{ll} 1 & \textit{male} \\ 0 & \textit{female} \end{array} \right., \ \beta = \left(\begin{array}{l} \beta_1 \\ \beta_2 \end{array} \right),$$

$$Z = \left(\begin{array}{l} Z_1 \\ Z_2 \end{array} \right), \ h(t|\mathbf{Z}) = h_0(t)e^{\beta'\mathbf{Z}} \text{: relative impacts of the}$$
 treatment to female and male are the same.

Cox Proportional Hazards Model: Estimation of β

Often is interested to estm β in the Cox PH model, for comparison/evaluate/assess effect

With right-censored event times along with the covariates

$$\{(U_i,\delta_i,Z_i):i=1,\ldots,n\}$$

from n indpt subjects and indpt censoring $T_i \perp \!\!\! \perp C_i$

$$L(\beta, h_0(\cdot)|data) = \prod_{i=1}^n \left(h_0(u_i)e^{\beta z_i}\right)^{\delta_i} \exp(-H_0(u_i)e^{\beta z_i})$$

$$L(\beta, h_0(\cdot)|data) = L_1(\beta|data)L_2(\beta, h_0(\cdot)|data)$$

 \Longrightarrow the Cox partial likelihood function (Cox, Biometrika 1975)

the Cox partial likelihood function (Cox, Biometrika 1975)

$$L_1(etaig| extit{data}) = \prod_{i=1}^n \Big(rac{e^{eta z_i}}{\sum_{l \in \mathcal{R}_i} e^{eta z_l}}\Big)^{\delta_i}$$

the risk set at time u_i : $\mathcal{R}_i = \{j : u_j \geq u_i\}$

 \implies the MPLE (maximum partial likelihood estimator) of β :

$$\hat{\beta} = \operatorname{argmax}_{\mathsf{all}} \ _{\beta} \mathsf{L}_1(\beta | \mathsf{data})$$

With some conditions, as $n \to \infty$

- $ightharpoonup \hat{\beta}
 ightarrow \beta$ a.s.
- $ightharpoonup \sqrt{n}(\hat{eta}-eta)
 ightarrow N(0,?)$ in distn

Example. n = 5 indpt subjects and $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$ (u_i, δ_i, z_i) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

$$(u_i, \delta_i, z_i)$$
: (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

 $\implies \hat{\beta} = \frac{1}{2} \log 2 - \log 3$

$$(u_i, \delta_i, z_i)$$
: (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

 $L_1(eta) \propto rac{e^{eta}}{(3e^{eta}+2)(3e^{eta}+1)}, \ \ \partial \log L_1(eta) ig/ \partial eta = 1 - rac{9e^{eta}(2e^{eta}+1)}{(3e^{eta}+2)(3e^{eta}+1)}$

Remarks

To use
$$\log L_1(\beta) = \sum_{i=1}^n \delta_i \{\beta z_i - \log(\sum_{l \in \mathcal{R}_i} e^{\beta z_l})\}$$

or
$$U(\beta) = \partial \log L_1(\beta) / \partial \beta = \sum_{i=1}^n \delta_i \left\{ z_i - \frac{\sum_{l \in \mathcal{R}_i} z_l e^{\beta z_l}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l}} \right\} = 0$$

Remarks (cont'd)

- interpretation
 - recall likelihood, marginal likelihood, conditional likelihood, partial likelihood
 - **the Cox partial likelihood function** of β
 - conditional arguments
 - the marginal distn of the rank statistic when no tie, no censored observation, cfs: Kalbfleisch and Prentice (1980, 2011)

Cox Proportional Hazards Model: Testing on β

Consider $H_0: \beta = 0$ vs $H_1: \beta \neq 0$

the partial score test

$$U(\beta) = \partial \log L_1(\beta) / \partial \beta = \sum_{i=1}^n \delta_i \left[z_i - \frac{\sum_{l \in \mathcal{R}_i} z_l e^{\beta z_l}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l}} \right]$$

Based on $U(\beta)/\sqrt{n} \sim AN(0,??)$ as $n \to \infty$ with some conditions,

 \Longrightarrow the partial score testing procedure ...

Remarks.

• e.g. when
$$Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$$

$$U(\beta)\big|_{\beta=0}=\sum_{l=1}^L\left(O_l-n_{.l}\frac{N_{1l}}{N_{.l}}\right)=O-E$$
, the numerator of the logrank test statistic

- ▶ the Wald-type, using the MPLE of β and its asymptotic normality?
- the PLRT, using the structure of LRT?