What to do this week (March 21 and 23, 2023)?

Part I. Introduction
Part II. Epidemiologic Concepts and Designs
Part III. Clinical Trials
Part IV. Modern Biostatistical Approaches
Part IV. 1 Incomplete Data Analysis
Part IV. 2 Some Other Important Topics (Chp 8-18, Koepsell and Weiss, 2003)

Part IV. 3 Selected Widely-Used Algorithms
Part IV. 4 Lifetime Data Analysis
IV.4.1 Parametric Inference
IV.4.2 Nonparametric Inference: Estimation
IV.4.3 Nonparametric Inference: Testing
IV.4.4 Semiparametric Inference
IV.4.5 An Overview by A.A. Tsiatis

IV.4.4 Semiparametric Inference: Cox Proportional Hazards Model

- Recall the two-sample problem \rightarrow testing on $H_{0}: h_{1}(\cdot)=h_{0}(\cdot)$
- $Z=\left\{\begin{array}{lr}1 & \text { treatment } \\ 0 & \text { placebo }\end{array}\right.$, to study event time $T \mid Z=z$?
- with general covariates Z, to explore event time $T \mid Z=z$?
\Longrightarrow regression modeling?
- Feigl and Zelen (1965)
$T \mid Z=z \sim N E\left(\lambda_{z}\right): h(t \mid z)=\lambda_{z}=\lambda_{0} e^{\beta z}$
$\beta=0 \rightarrow$ no effect of Z
\Longrightarrow Cox Proportional Hazards Model (Cox, JRSSB 1972)

Cox Proportional Hazards Model: (Cox, JRSSB 1972) The hazard function of event time $T \mid Z=z$ is

$$
h(t \mid z)=h_{0}(t) e^{\beta z}, \quad t>0
$$

The conditional survivor function is

$$
S(t \mid z)=\exp \left(-\int_{0}^{t} h_{0}(u) e^{\beta z} d u\right)=\exp \left(-H_{0}(t) e^{\beta z}\right), \quad t>0
$$

Remarks

- the hazard ratio $h\left(t \mid Z=z_{1}\right) / h\left(t \mid Z=z_{0}\right)=e^{\beta\left(z_{1}-z_{0}\right)}$ for all $t>0$
proportiona!
- $Z=\left\{\begin{array}{l}1 \\ \text { treatment } \\ 0\end{array}\right.$ placebo \quad, ${ }^{\beta}:$ treatment effect
- $Z_{1}=\left\{\begin{array}{rr}1 & \text { treatment } \\ 0 & \text { placebo }\end{array}, Z_{2}=\left\{\begin{array}{cc}1 & \text { male } \\ 0 & \text { female }\end{array}, \boldsymbol{\beta}=\binom{\beta_{1}}{\beta_{2}}\right.\right.$,
$\mathbf{Z}=\binom{Z_{1}}{Z_{2}}, h(t \mid \mathbf{Z})=h_{0}(t) e^{\boldsymbol{\beta}^{\prime} \mathbf{Z}}$: relative impacts of the treatment to female and male are the same.

Cox Proportional Hazards Model: Estimation of β

Often is interested to estm β in the Cox PH model, for comparison/evaluate/assess effect

With right-censored event times along with the covariates

$$
\left\{\left(U_{i}, \delta_{i}, Z_{i}\right): i=1, \ldots, n\right\}
$$

from n indpt subjects and indpt censoring $T_{i} \Perp C_{i}$

$$
\begin{gathered}
L\left(\beta, h_{0}(\cdot) \mid \text { data }\right)=\prod_{i=1}^{n}\left(h_{0}\left(u_{i}\right) e^{\beta z_{i}}\right)^{\delta_{i}} \exp \left(-H_{0}\left(u_{i}\right) e^{\beta z_{i}}\right) \\
L\left(\beta, h_{0}(\cdot) \mid \text { data }\right)=L_{1}(\beta \mid \text { data }) L_{2}\left(\beta, h_{0}(\cdot) \mid \text { data }\right)
\end{gathered}
$$

\Longrightarrow the Cox partial likelihood function (Cox, Biometrika 1975)
the Cox partial likelihood function (Cox, Biometrika 1975)

$$
L_{1}(\beta \mid d a t a)=\prod_{i=1}^{n}\left(\frac{e^{\beta z_{i}}}{\sum_{l \in \mathcal{R}_{i}} e^{\beta z_{l}}}\right)^{\delta_{i}}
$$

the risk set at time $u_{i}: \mathcal{R}_{i}=\left\{j: u_{j} \geq u_{i}\right\}$
\Longrightarrow the MPLE (maximum partial likelihood estimator) of β :

$$
\hat{\beta}=\operatorname{argmax}_{\text {all }}{ }_{\beta} L_{1}(\beta \mid \text { data })
$$

With some conditions, as $n \rightarrow \infty$

- $\hat{\beta} \rightarrow \beta$ a.s.
- $\sqrt{n}(\hat{\beta}-\beta) \rightarrow N(0, ?)$ in distn

Example. $n=5$ indpt subjects and $Z=\left\{\begin{array}{rr}1 & \text { treatment } \\ 0 & \text { placebo }\end{array}\right.$ $\left(u_{i}, \delta_{i}, z_{i}\right):(16,1,1),(13,0,0),(21,1,1),(11,1,0),(12,1,1)$

Remarks

- implementation
- to use $\log L_{1}(\beta)=\sum_{i=1}^{n} \delta_{i}\left\{\beta z_{i}-\log \left(\sum_{l \in \mathcal{R}_{i}} e^{\beta z_{l}}\right)\right\}$

$$
\text { or } U(\beta)=\partial \log L_{1}(\beta) / \partial \beta=\sum_{i=1}^{n} \delta_{i}\left\{z_{i}-\frac{\sum_{l \in \mathcal{R}_{i}} z_{i} e^{\beta z_{i} \mid}}{\sum_{\mid \in \mathcal{R}_{i}} e^{\beta z_{i}}}\right\}=0
$$

- e.g. R: coxph

Remarks (cont'd)

- interpretation
- recall likelihood, marginal likelihood, conditional likelihood, partial likelihood
- the Cox partial likelihood function of β
- conditional arguments
- the marginal distn of the rank statistic when no tie, no censored observation, cfs: Kalbfleisch and Prentice (1980, 2011)

Cox Proportional Hazards Model: Testing on β

Consider $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
the partial score test

$$
U(\beta)=\partial \log L_{1}(\beta) / \partial \beta=\sum_{i=1}^{n} \delta_{i}\left[z_{i}-\frac{\sum_{l \in \mathcal{R}_{i}} z_{l} e^{\beta z_{l}}}{\sum_{l \in \mathcal{R}_{i}} e^{\beta z_{l}}}\right]
$$

Based on $U(\beta) / \sqrt{n} \sim A N(0$, ?? $)$ as $n \rightarrow \infty$ with some conditions,
\Longrightarrow the partial score testing procedure \ldots

Remarks.

- e.g. when $Z=\left\{\begin{array}{rr}1 & \text { treatment } \\ 0 & \text { placebo }\end{array}\right.$
$\left.U(\beta)\right|_{\beta=0}=\sum_{l=1}^{L}\left(O_{I}-n_{. I} \frac{N_{1 I}}{N_{\text {I }}}\right)=O-E$, the numerator of the logrank test statistic
- the Wald-type, using the MPLE of β and its asymptotic normality?
- the PLRT, using the structure of LRT?
IV.4.5 An Overview by A.A. Tsiatis

What to do next?

- Individual meetings: Project A-II; Homework 2; Project B-I
- March 28 (Tuesday) 3:30-4:00
- March 28 (Tuesday) 4:00-4:30
- March 28 (Tuesday) 4:30-5:00
- March 28 (Tuesday) 5:00-5:30
- March 30 (Thursday) 3:30-4:00
- March 30 (Thursday) 4:00-4:30
- March 30 (Thursday) 4:30-5:00
- March 30 (Thursday) 5:00-5:30
- Project B-II (Class presentations)
- April 4 (Tuesday) 3:30-4:00 Tong-Wei Lin
- April 4 (Tuesday) 4:10-4:40 Quang Vuong
- April 6 (Thursday) 3:30-4:00 Nadia Enhaili
- April 6 (Thursday) 4:10-4:40 So-Yeon Park
- April 6 (Thursday) 4:50-5:20 Quinn Forzley
- April 11 (Tuesday) 3:30-4:00 David Lai
- April 11 (Tuesday) 4:10-4:40 Sashini Silva
- April 11 (Tuesday) 4:50-5:20 Niwanthi Ruwan
- Project C The final report is due on April 21 by 5:00pm.

