STAT 855. Lifetime Data Analysis

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

Spring 2022

B. Part I. Preliminaries

What to do today?

A. Course Syllabus

B. Part I. Preliminaries

STAT-855. Lifetime Data Analysis (Spring 2022)

Instructor: X. Joan Hu (Tel: 778-782-6714)

Lecture: TueThu 16:30 - 18:20 (PT), AQ5046 (*Remote learning during Jan 10 - 24, 2022 via* ZOOMA for Tue and ZOOMB for Thu)

Office Hour: Thu 15:30 - 16:20, or by appointment; SSC K10555 (*Use* ZOOMC *during Jan 10 - 24, 2022*)

Course Web Page/Canvas Page: URL http://www.sfu.ca/ joanh/stat855web.html URL http://canvas.sfu.ca/courses/65992

Computer Software: *R* and *SAS* are recommended; *R* will be used in class (URL http://www.r-project.org/)

STAT-855: Reference Books

- Statistical Models Based on Counting Processes, by Andersen, Borgan, Gill and Keiding
- The Statistical Analysis of Failure Time Data (2nd Ed), by Kalbfleisch and Prentice
- Survival Analysis (2nd Ed), by Klein and Moeschberger
- Statistical Models and Methods for Lifetime Data (2nd Ed), by Lawless
- The Statistical Analysis of Recurrent Events, by Cook and Lawless
- Multistate Models for the Analysis of Life History Data, by Cook and Lawless

STAT-855: COURSE EVALUATION

Grading Scheme:

- Homework Assignments (the best three out of four marks; 15% per assignment)
- Course Project: Phase I. (proposal) 10%; Phase II. (in class presentation) 20%; Phase III. (final report) 20%
- Participation (5%)

Remarks:

- No late homework/project will be accepted unless due to illness evidenced by a medical note: please turn in the available portion, if you cannot complete the whole homework/project in time.
- Group discussions are encouraged; however, the homework/projects to be evaluated should be independent work.
- Discussions in-class are highly encouraged. The whole class will participate in evaluating the presentations.

Why to study STAT-855. LIDA?

What is lifetime (survival) data analysis?

• continuous r.v. $T \ge 0$: time to event

special features:

e.g. medical settings => various data structures

The wide range of applications.

Beyond the classic survival analysis:

- binary process
- recurrent events
- multistate process
- time series, longitudinal data, spatio-temporal analysis, stochastic process, ...

What to study in STAT-855. LIDA?

Part I. Preliminaries

- Introduction
- Review of likelihood based approaches

Part II. Parametric Inference

- Commonly used parametric models
- Incomplete data structures

What to study in STAT-855. LIDA?

Part III. Nonparametric/Semiparametric Approaches

- Kaplan-Meier estimator
- Logrank test
- Cox proportional hazards model

Part IV. Further Topics

- Counting process framework
- More on incomplete data structures
- Recurrent events and multistate processes
- Alternative regression models
- Other selected topics

How to study STAT-855. LIDA?

Master the basic concepts and inference procedures,

- the basic statistics studied before, and
- the method for the simplest case in a class of problems and then move on
- Understand the ideas of the modeling/methods, know when to use what procedures/models, and able to implement them via R/SAS
- Follow the theoretical derivations

Don't fall behind.

Part I. Preliminaries

► 1.1 Introduction

I.2 Review of likelihood based approaches

r.v. $Y \sim f(y; \theta), \theta \in \Theta$ a random sample from the population: iid Y_1, \ldots, Y_n the likelihood function

$$L(\theta|\mathsf{data}) = \prod_{i=1}^n f(y_i; \theta)$$

Part I.1 Review of likelihood based approaches Estimation of θ

maximum likelihood estimator (MLE):

 $\hat{\theta} = argmax_{\theta \in \Theta}L(\theta|\mathsf{data})$

Part I.1 Review of likelihood based approaches

Procedures of testing on θ

Wald-type

What to study next?

Part I. Preliminaries

- I.1 Introduction
- I.2 Review of likelihood based approaches

Part II. Parametric Inference

- II.1 Some basic concepts
- II.2 Commonly used parametric distributions
- II.3 Various incomplete data structures
- ▶ II.4 Parametric analysis with right-censored data