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I.2. Review of Likelihood Methods
Likelihood methods are inference procedures based on the
likelihood function with a population model.
I Formulation.

I Consider a population under consideration, quantified by a
random variable Y .

I Assume Y ∼ f (y |θ), where θ is the population characteristics
of interest.

I If Y is discrete, f (y |θ) = P(Y = y |θ), the pmf.
I If Y is continuous, f (y |θ) is the pdf with

P(Y ≤ y) =
∫ y

−∞ f (u|θ)du.
I Sample data.

I Collect n iid (independent and identically distributed)
observations on Y : y1, . . . , yn.

I Likelihood function of θ based on the sample data:

L(θ|y) =
n∏

i=1

f (yi |θ)

A measure of the possibility to have the data with the parameter θ.



I.2. Review of Likelihood Methods

Maximum Likelihood Estimation. (MLE)
The estimator θ̂ is the MLE of θ if

L(θ̂|y) = max
θ

L(θ|y)

I rationale
I implementation

I Often to obtain θ̂ by solving

∂

∂θ
log L(θ|y) = 0.

I Computational algorithms: optimization or solving equation
e.g. Newton-Raphson algorithm (eg R: nlm())



Part I.2 Review of Likelihood Based Approaches

likelihood related quantities:

I score function U(θ)

I Fisher information I (θ)



I.2. Review of Likelihood Methods

Properties of MLE

I Invariance property
If φ = h(θ), φ̂ = h(θ̂) is the MLE of φ.

I Large sample properties (when n >> 1): provided with some
regularity conditions,
I MLE is consistent,

I MLE has the asymptotic normality: θ̂ ∼ N(θ,AVn(θ))
approximately

I MLE is asymptotically most efficient,

I MLE’s variance can be estimated by

V̂ (θ̂) = −
(∂2 log L(θ|y)

∂θ2

)−1∣∣∣
θ=θ̂



I.2. Review of Likelihood Methods

Inference with MLE when n >> 1

I Testing with MLE: H0 : θ = θ0 vs H1 : θ 6= θ0

I Wald test:
Z = θ̂−θ0√

V̂ (θ̂)
∼ N(0, 1) approximately under H0

I Score test:
U(θ) = ∂ log L(θ|y)

∂θ and U(θ0)√
Var
(
U(θ0)

) ∼ N(0, 1) approximately

under H0

I Likelihood ratio test:
Λ = L(θ0|y)

L(θ̂|y)
and −2 log Λ ∼ χ2(1) approxmately under H0



I.2. Review of Likelihood Methods

Inference with MLE when n >> 1
I Confidence interval with MLE:

I Wald type: CI with level of 1− α

θ̂ ± Z1−α/2

√
V̂ (θ̂)

I Score based: CI with level of 1− α{
θ :
∣∣U(θ)/

√
Var
(
U(θ)

)∣∣ ≤ Z1−α/2

}
I Likelihood ratio based: CI with level of 1− α{

θ : −2 log(L(θ|y)
/
L(θ̂|y)) ≤ χ2

1−α(1)
}



Part I.2 Review of Likelihood Based Approaches
Consider r.v. Y ∼ f (·; θ), θ ∈ Θ
with a set of observations: Y1, . . . ,Yn

If the observations are not indpt, L(θ|data) =?

I assume the joint distn of (Y1, . . . ,Yn) ...

e.g. with a frailty model?

e.g. with a copula model?



Part I.2 Review of Likelihood Based Approaches

Consider r.v. Y ∼ f (·; θ), θ ∈ Θ
with a set of observations: Y1, . . . ,Yn

If some of Y1, . . . ,Yn are not available, L(θ|data) =?

I e.g. assume the available observations form a random sample?

I e.g. use other information?



Part I.2 Review of Likelihood Based Approaches
What if consider r.v. Y ∼ F (·), unspecified F (·)
with a set of iid observations: Y1, . . . ,Yn

How to estm F (·) based on L(F )?

I the nonparametric MLE: empirical distn?

I local likelihood estimation: local polynomial approximation?



Part I.2 Review of Likelihood Based Approaches

What if

I consider Y |X = x ∼ f (y |x ; θ), θ ∈ Θ?

with a set of observations: (Y1,X1), . . . , (Yn,Xn)
L(θ|data) =?

I f (y |x ; θ) is unspecified but assume E (Y |X = x) = µ(x ; θ)
and V (Y |X = x) = σ2(x ; θ)?

conditional likelihood, quasi-likelihood, pseudo-likelihood, partial
likelihood, composite likelihood, ... ...



Part II. Parametric Inference in LIDA

Part II.1 Some Basic Concepts

Consider continuous r.v. T ≥ 0, time to an event

I probability density function (pdf) f (t), t ≥ 0

I cumulative distribution function (cdf) F (t) = P(T ≤ t), t ≥ 0

I survivor function S(t) = P(T ≥ t), t ≥ 0



Part II.1 Some Basic Concepts
Consider continuous r.v. T ≥ 0, time to an event

I hazard function

h(t) = lim
∆t→0+

P
(
T ∈ [t, t + ∆t)

∣∣T ≥ t
)

∆t

interpretation, analytic properties, ...

I cumulative hazard function H(t) =
∫ t

0 h(u)du, t ≥ 0



Part II.2 Commonly Used Parametric Distributions

Exponential distribution T ∼ NE (λ), λ > 0

f (t;λ) = λ exp(−λt), t > 0

(or f (t; θ) = 1
θ exp(−t/θ), t > 0 with θ > 0)

I E (T )

I S(t)

I h(t)

I memoryless property: P(T > a + b|T > a) = P(T > b)

I the central role



Part II.2 Commonly Used Parametric Distributions

Weibull distribution T ∼Weibull(k , θ):

f (t; θ, k) =
k

θ

( t
θ

)k−1
exp

(
− (t/θ)k

)
, t > 0

with θ > 0 and k > 0.

I E (T ) = θΓ(1 + 1/k), Var(T ) = θ2
[
Γ(1 + 2

k )− Γ(1 + 1
k )2
]

I S(t)

I h(t) = k
θ

(
t
θ

)k−1

I T k ∼ NE (1/θ)

A translated Weibull distribution: T ∼Weibull(k , θ, α):

f (t; θ, k) =
k

θ

( t − α
θ

)k−1
exp

{
−
( t − α

θ

)k}
, t > α



Part II.2 Commonly Used Parametric Distributions
Gamma distribution T ∼ Γ(k , θ):

f (t; θ, k) =
1

θΓ(k)

( t
θ

)k−1
exp

(
− t/θ

)
, t > 0

with θ > 0 and k > 0.

I E (T ) = kθ, Var(T ) = kθ2

I S(t)

I h(t)

I T1,T2 indpt and Tj ∼ Γ(αj , θ): T1 + T2 ∼ Γ(α1 + α2, θ)

I 2
θT ∼ χ

2(2k)

– Wikimedia Commons



Part II.2 Commonly Used Parametric Distributions

Log-normal distribution T ∼ logN(µ, σ2), ie logT ∼ N(µ, σ2):

T ∼ 1

tσ
√

2π
exp

(
− (logt − µ)2

2σ2

)
, t > 0

with σ > 0.

I E (T ) = exp(µ+ σ2/2)

I S(t)

I h(t)



Part II.2 Commonly Used Parametric Distributions

I Extreme value distribution

I Gumbel distribution

I ... ...

See books on reliability, such as Lawless (2003), for more examples
of parametric models for event time
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