STAT 855. Lifetime Data Analysis

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

Spring 2022

Department of Statistics and Actuarial Science Simon Fraser University

Part I. Preliminaries	Part II. Parametric Inference
00000000	00 00000
	0

What to do today?

Part I. Preliminaries

Part I.1 Introduction Part I.2 Review of Likelihood Based Approaches

Part II. Parametric Inference

Part II.1 Some Basic Concepts Part II.2 Commonly Used Parametric Distributions Part II.3 Various Incomplete Data Structures Part II.4 Parametric Analysis with Right-Censored Data

Likelihood methods are inference procedures based on the likelihood function with a population model.

- Formulation.
 - Consider a population under consideration, quantified by a random variable Y.
 - Assume $Y \sim f(y|\theta)$, where θ is the population characteristics of interest.
 - If Y is discrete, $f(y|\theta) = P(Y = y|\theta)$, the pmf.

• If Y is continuous, $f(y|\theta)$ is the pdf with $P(Y \le y) = \int_{-\infty}^{y} f(u|\theta) du$.

Sample data.

- Collect n iid (independent and identically distributed) observations on Y: y₁,..., y_n.
- Likelihood function of θ based on the sample data:

$$L(\theta|\mathbf{y}) = \prod_{i=1}^{n} f(y_i|\theta)$$

A measure of the possibility to have the data with the parameter θ .

Maximum Likelihood Estimation. (MLE) The estimator $\hat{\theta}$ is the MLE of θ if

$$L(\hat{ heta}|\mathbf{y}) = \max_{ heta} L(heta|\mathbf{y})$$

rationale

implementation

• Often to obtain $\hat{\theta}$ by solving

$$\frac{\partial}{\partial \theta} \log L(\theta | \mathbf{y}) = 0.$$

 Computational algorithms: optimization or solving equation e.g. Newton-Raphson algorithm (eg R: nlm())

likelihood related quantities:

▶ score function $U(\theta)$

Properties of MLE

lnvariance property If $\phi = h(\theta)$, $\hat{\phi} = h(\hat{\theta})$ is the MLE of ϕ .

Large sample properties (when n >> 1): provided with some regularity conditions,

MLE is consistent,

- MLE has the asymptotic normality: $\hat{\theta} \sim N(\theta, AV_n(\theta))$ approximately
- MLE is asymptotically most efficient,
- MLE's variance can be estimated by

$$\hat{V}(\hat{\theta}) = - \Big(\frac{\partial^2 \log L(\theta|\mathbf{y})}{\partial \theta^2}\Big)^{-1}\Big|_{\theta = \hat{\theta}}$$

Inference with MLE when n >> 1

 Testing with MLE: H₀ : θ = θ₀ vs H₁ : θ ≠ θ₀
 Wald test: Z = ^{θ̂-θ₀}/_{√(θ̂)} ~ N(0,1) approximately under H₀

Score test:

$$U(\theta) = \frac{\partial \log L(\theta|\mathbf{y})}{\partial \theta}$$
 and $\frac{U(\theta_0)}{\sqrt{V_{ar}(U(\theta_0))}} \sim N(0, 1)$ approximately
under H_0

• Likelihood ratio test:

$$\Lambda = \frac{L(\theta_0|\mathbf{y})}{L(\hat{\theta}|\mathbf{y})}$$
 and $-2 \log \Lambda \sim \chi^2(1)$ approxmately under H_0

Inference with MLE when n >> 1

- Confidence interval with MLE:
 - Wald type: CI with level of 1α

$$\hat{\theta} \pm Z_{1-\alpha/2} \sqrt{\hat{V}(\hat{\theta})}$$

Score based: CI with level of
$$1 - \alpha$$

 $\left\{ \theta : \left| U(\theta) / \sqrt{Var(U(\theta))} \right| \le Z_{1-\alpha/2} \right\}$

• Likelihood ratio based: CI with level of $1 - \alpha$

$$\left\{ heta: -2\log(L(heta|\mathbf{y})/L(\hat{ heta}|\mathbf{y})) \leq \chi^2_{1-lpha}(1)
ight\}$$

Part I.2 Review of Likelihood Based Approaches Consider r.v. $Y \sim f(\cdot; \theta), \theta \in \Theta$ with a set of observations: Y_1, \ldots, Y_n

If the observations are not indpt, $L(\theta|data) =$?

- assume the joint distn of (Y_1, \ldots, Y_n) ...
- e.g. with a frailty model?
- e.g. with a copula model?

Consider r.v. $Y \sim f(\cdot; \theta), \theta \in \Theta$ with a set of observations: Y_1, \ldots, Y_n

If some of Y_1, \ldots, Y_n are not available, $L(\theta | data) =$?

e.g. assume the available observations form a random sample?

e.g. use other information?

What if consider r.v. $Y \sim F(\cdot)$, unspecified $F(\cdot)$ with a set of iid observations: Y_1, \ldots, Y_n

How to estm $F(\cdot)$ based on L(F)?

- the nonparametric MLE: empirical distn?
- Iocal likelihood estimation: local polynomial approximation?

What if

• consider
$$Y|X = x \sim f(y|x; \theta), \ \theta \in \Theta$$
?

with a set of observations: $(Y_1, X_1), \dots, (Y_n, X_n)$ $L(\theta|data) = ?$

f(y|x; θ) is unspecified but assume E(Y|X = x) = μ(x; θ) and V(Y|X = x) = σ²(x; θ)?

conditional likelihood, quasi-likelihood, pseudo-likelihood, partial likelihood, composite likelihood,

Part II. Parametric Inference in LIDA

Part II.1 Some Basic Concepts

Consider continuous r.v. $T \ge 0$, time to an event

• probability density function (pdf) $f(t), t \ge 0$

• cumulative distribution function (cdf) $F(t) = P(T \le t), t \ge 0$

• survivor function
$$S(t) = P(T \ge t), t \ge 0$$

Part II.1 Some Basic Concepts Consider continuous r.v. $T \ge 0$, time to an event

hazard function

$$h(t) = \lim_{\Delta t \to 0+} \frac{P(T \in [t, t + \Delta t) | T \ge t)}{\Delta t}$$

interpretation, analytic properties, ...

• cumulative hazard function $H(t) = \int_0^t h(u) du, t \ge 0$

Exponential distribution $T \sim NE(\lambda), \lambda > 0$

$$f(t;\lambda) = \lambda \exp(-\lambda t), \ t > 0$$

(or $f(t; \theta) = \frac{1}{\theta} \exp(-t/\theta), t > 0$ with $\theta > 0$) $\blacktriangleright E(T)$

▶ h(t)

• memoryless property: P(T > a + b | T > a) = P(T > b)

the central role

Weibull distribution $T \sim Weibull(k, \theta)$:

$$f(t; \theta, k) = \frac{k}{\theta} \left(\frac{t}{\theta}\right)^{k-1} \exp\left(-(t/\theta)^k\right), \quad t > 0$$

with $\theta > 0$ and k > 0.

• $E(T) = \theta \Gamma(1 + 1/k), Var(T) = \theta^2 \left[\Gamma(1 + \frac{2}{k}) - \Gamma(1 + \frac{1}{k})^2 \right]$ • S(t)• $h(t) = \frac{k}{\theta} \left(\frac{t}{\theta} \right)^{k-1}$ • $T^k \sim NE(1/\theta)$

A translated Weibull distribution: $T \sim Weibull(k, \theta, \alpha)$:

$$f(t;\theta,k) = \frac{k}{\theta} \left(\frac{t-\alpha}{\theta}\right)^{k-1} \exp\left\{-\left(\frac{t-\alpha}{\theta}\right)^k\right\}, \quad t > \alpha$$

Part II.2 Commonly Used Parametric Distributions Gamma distribution $T \sim \Gamma(k, \theta)$:

$$f(t; \theta, k) = \frac{1}{\theta \Gamma(k)} \left(\frac{t}{\theta}\right)^{k-1} \exp\left(-t/\theta\right), \ t > 0$$

with $\theta > 0$ and k > 0. \blacktriangleright $E(T) = k\theta$, $Var(T) = k\theta^2$ \blacktriangleright S(t) \blacktriangleright h(t) ► T_1, T_2 indpt and $T_i \sim \Gamma(\alpha_i, \theta)$: $T_1 + T_2 \sim \Gamma(\alpha_1 + \alpha_2, \theta)$ $\blacktriangleright \frac{2}{\theta}T \sim \chi^2(2k)$ ι4 3 .2 .1 0 0 2 14 16 18 /ikimedia Commons

Log-normal distribution $T \sim logN(\mu, \sigma^2)$, ie $logT \sim N(\mu, \sigma^2)$:

$$T \sim rac{1}{t\sigma\sqrt{2\pi}}\expig(-rac{(logt-\mu)^2}{2\sigma^2}ig), \ t>0$$

with $\sigma > 0$. • $E(T) = \exp(\mu + \sigma^2/2)$ • S(t)

▶ h(t)

Extreme value distribution

Gumbel distribution

►

See books on reliability, such as Lawless (2003), for more examples of parametric models for event time

What to study next?

Part I. Preliminaries

- I.1 Introduction
- I.2 Review of Likelihood Based Approaches

Part II. Parametric Inference

- II.1 Some basic concepts
- II.2 Commonly used parametric distributions
- II.3 Various incomplete data structures
- ▶ II.4 Parametric analysis with right-censored data