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Part II. Parametric Inference in LIDA

Part II.1 Some Basic Concepts

Consider continuous r.v. T ≥ 0, time to an event

I probability density function (pdf) f (t), t ≥ 0

I cumulative distribution function (cdf) F (t) = P(T ≤ t), t ≥ 0

I survivor function S(t) = P(T ≥ t), t ≥ 0



Part II.1 Some Basic Concepts
Consider continuous r.v. T ≥ 0, time to an event

I hazard function

h(t) = lim
∆t→0+

P
(
T ∈ [t, t + ∆t)

∣∣T ≥ t
)

∆t

interpretation, analytic properties, ...

I cumulative hazard function H(t) =
∫ t

0 h(u)du, t ≥ 0



Part II.2 Commonly Used Parametric Distributions

Exponential distribution T ∼ NE (λ), λ > 0

f (t;λ) = λ exp(−λt), t > 0

(or f (t; θ) = 1
θ exp(−t/θ), t > 0 with θ > 0)

I E (T )

I S(t)

I h(t)

I memoryless property: P(T > a + b|T > a) = P(T > b)

I the central role



Part II.2 Commonly Used Parametric Distributions

Weibull distribution T ∼Weibull(k , θ):

f (t; θ, k) =
k

θ

( t
θ

)k−1
exp

(
− (t/θ)k

)
, t > 0

with θ > 0 and k > 0.

I E (T ) = θΓ(1 + 1/k), Var(T ) = θ2
[
Γ(1 + 2

k )− Γ(1 + 1
k )2
]

I S(t)

I h(t) = k
θ

(
t
θ

)k−1

I T k ∼ NE (1/θ)

A translated Weibull distribution: T ∼Weibull(k , θ, α):

f (t; θ, k) =
k

θ

( t − α
θ

)k−1
exp

{
−
( t − α

θ

)k}
, t > α



Part II.2 Commonly Used Parametric Distributions
Gamma distribution T ∼ Γ(k , θ):

f (t; θ, k) =
1

θΓ(k)

( t
θ

)k−1
exp

(
− t/θ

)
, t > 0

with θ > 0 and k > 0.

I E (T ) = kθ, Var(T ) = kθ2

I S(t)

I h(t)

I T1,T2 indpt and Tj ∼ Γ(αj , θ): T1 + T2 ∼ Γ(α1 + α2, θ)

I 2
θT ∼ χ

2(2k)

– Wikimedia Commons



Part II.2 Commonly Used Parametric Distributions

Log-normal distribution T ∼ logN(µ, σ2), ie logT ∼ N(µ, σ2):

T ∼ 1

tσ
√

2π
exp

(
− (logt − µ)2

2σ2

)
, t > 0

with σ > 0.

I E (T ) = exp(µ+ σ2/2)

I S(t)

I h(t)



Part II.2 Commonly Used Parametric Distributions

I Extreme value distribution

I Gumbel distribution

I ... ...

See books on reliability, such as Lawless (2003), for more examples
of parametric models for event time



Part II.3 Incomplete Data Structures – Censoring

Consider event time r.v. T : to make inference on its distn

I When there are iid observations on T ,
⇒ various approaches such as likelihood-based methods,
especially when n >> 1

I What if it is not allowed to collect iid observations from the
population?

A Reliability Example: at a lab to conduct an experiment to assess
the quality of a certain kind of light bulb ... ... (the distn of T , the
lifetime of such light bulb?)



Part II.3 Incomplete Data Structures – Censoring

... select n such light bulbs randomly, plug in them at the same
time,

I wait till all of them burned out: record the lifetimes
T1, . . . ,Tn; take them as iid observations on T

I alternatively, choosing a time c before the experiment, stop
the experiment after time c elapses: only available are Ti if
Ti ≤ c , i = 1, . . . , n ⇒ type I censoring

I or, choosing an interger r < n before the experiment, stop the
experiment after r number of light bulbs burn out: only
available are T(1) < T(2) < ... < T(r). ⇒ type II censoring



Part II.3 Incomplete Data Structures – Censoring

Consider event time r.v. T : to make inference on its distn
Let

{
T1, . . . ,Tn

}
be iid observations on T with the order statistics

T(1) < . . . < T(n)

I type I censoring with a predetermined time c , Ti is observed
only if Ti ≤ c for i = 1, . . . , n.

I type II censoring with a predetermined number r , Ti is
observed only if its one of T(1), . . . ,T(r) for i = 1, . . . , n.

What if it is in a clinical trial ...
... staggered entries of the study subjects, predetermined study
duration of A



Part II.3 Incomplete Data Structures – Censoring

I right-censoring Let Ci be the censoring time associated with
unit i . Ti is observed if Ti ≤ Ci for i = 1, . . . , n

In general, the right-censored data are presented as follows:{
(Ui , δi ) : i = 1, . . . , n

}
with Ui = min(Ti ,Ci ) (or denoted by Ti ∧ Ci ),

and δi = I (Ti ≤ Ci ) =

{
1, Ti ≤ Ci

0, otherwise

Example. n = 3 and {(4, 1), (10, 0), (9, 1)}



Special Cases

I type I censoring. Ci ≡ c for all i ;

I type II censoring. Ci = T(r) for all i

How to make inference with right-censored data?
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