What to do this week (2022/02/08, 02/10)?

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference Part III.1. Introduction and Overview: Motivation Part III.2. Kaplan-Meier Estimator Part III.3. Nonparametric Tests Part III.4. Cox Proportional Hazards Model

Part III.2. Kaplan-Meier Estimator

Consider r.v. $T \sim F(\cdot)$ with the goal to estm $F(\cdot)$ without any strong model assumption.

 If only right-censored event times {(U_i, δ_i) : i = 1,..., n} available, provided indpt censoring, ⇒ the Kaplan-Meier estimator (left-continuous)

$$\hat{S}(t) = \prod_{j:V_j < t} \left(1 - rac{n_j}{N_j}
ight) = \left\{ egin{array}{cc} 1 & t \leq V_1 \ \prod_{l=1}^j (1 - \hat{h}_j) & V_j < t \leq V_{j+1} \ ? & t > V_{J+1} \end{array}
ight.$$

the distinct observed event times: $0 = V_0 \leq V_1 < \ldots < V_J \leq V_{J+1}$

- $\{V_j : j = 1, ..., J\} = \{U_i : i = 1, ..., n\}$
- $S(t) = P(T \ge t) = \prod_{l=1}^{J} (1 h_l)$ if $t \in (V_j, V_{j+1}]$.
- the nonparametric MLE
- the general case vs the discrete case

Part III.2. Kaplan-Meier Estimator: Applications

- ▶ for comparing two populations' distn with censored data e.g. $\sup_{t>0} |\hat{S}_{1,KM}(t) - \hat{S}_{2,KM}(t)|$? an extension of the Kolmogorov-Smirnov test statistic $\sup_{t>0} |F_{1,n}(t) - F_{2,m}(t)|$ no need to specify the population distributions into parametric models
- for justifying actuarial life table

Part III.2. Kaplan-Meier Estimator: Applications

for assessing parametric goodness-of-fit with censored data

• e.g. is $T \sim NE(\lambda)$ $(H(t) = \lambda t)$? \implies to check if log $S(t) = -\lambda t$? using the scatter plot of log $\hat{S}(t)$ vs t: is log $\hat{S}(t)$ linear function of t?

• e.g. is
$$T \sim Weibull(\lambda, \rho) (H(t) = \lambda t^{\rho})$$
?
 \implies to check if $\log (-\log S(t)) = \log \lambda + \rho \log t$?
using the scatter plot of $\log (-\log \hat{S}(t))$ vs $\log t$: look for linearity?

Part III.3. Nonparametric Tests: Introduction

Consider to compare two groups wrt the event time distns

For example,

- ▶ in the placebo group, iid $T_{0i} \sim F_0(\cdot)$: i = 1, ..., n
- ▶ in the treatment group, iid $T_{1j} \sim F_1(\cdot)$: j = 1, ..., m $\implies H_0 : F_0(\cdot) = F_1(\cdot)$

... Many different ways to differ: any UMP?

- directional tests: designated/oriented to a specific type of difference between the two population distns
 e.g. S₁(t) = S₀(t)^c
- omnibus tests: there is power to detect all or most types of differences but not with great power for a specific difference

Part III.3. Nonparametric Tests: Introduction

Early work with censored data

- Gehan (1965, Biometrika): modifying rank tests to allow censoring
- Mantel (1966, Cancer Chem): adapting data to use methods for several 2 × 2 tables
- Application of the Cox partial likelihood approach (Cox, 1975)*

Recall that, without censoring and provided the two populations are indpt, the Wilcoxon sign test:

$$\Phi(T_{1i}, T_{0j}) = \begin{cases} 1 & T_{0j} > T_{1i} \\ -1 & T_{0j} < T_{1i} \\ 0 & T_{0j} = T_{1i} \end{cases}$$

 $W = \sum_{i=1}^{n} \sum_{j=1}^{m} \Phi(T_{1i}, T_{0j})$

$$\blacktriangleright E_{H_0}(W) = 0$$

• $W/SE(W) \sim N(0,1)$ in distn as $n, m \to \infty$

 \implies the Wilcoxon sign test

• what if $T_1 \not\perp T_0$?

▶ what if the data are right-censored? $\{(U_{1i}, \delta_{1i}) : i = 1, ..., n\} \bigcup \{(U_{0j}, \delta_{0j}) : j = 1, ..., m\}$

With the right-cenosred data $\{(U_{1i}, \delta_{1i}) : i = 1, ..., n\} \bigcup \{(U_{0j}, \delta_{0j}) : j = 1, ..., m\}$: $\begin{pmatrix} 1, & U_{0j} > U_{1i}; \delta_{1i} = 1 \end{pmatrix}$

$$\Phi(U_{1i}, \delta_{1i}; U_{0j}, \delta_{0j}) = \begin{cases} 1, & 0 \\ -1, & U_{0j} < U_{1i}; \delta_{0j} = 1 \\ 0, & otherwise \end{cases}$$

 $GW = \sum_{i} \sum_{j} \Phi(U_{1i}, \delta_{1i}; U_{0j}, \delta_{0j}) \text{ provided indpt censoring,}$ $E_{H_0}(GW) = 0$

• $GW/SE(GW) \sim N(0,1)$ in distn as $n, m \to \infty$

 \implies Wilcoxon-Gehan testing procedure ...

efficiency?

- what if $T_1 \not\perp T_0$?
- how is it compared to the extended Kolmogorov-Smirnov test based on the KM estm?

with all observed distinct event times: $0 < V_1 < \ldots, V_{\mathcal{K}}$

First, consider what happens at time $t = V_I \dots$

	at $t = V_l$		
Group	failure	not	at risk
placebo	n _{0/}	-	N ₀₁
treatment	<i>n</i> 1/	-	N ₁ /
total	n. ₁	-	N./

The number of observed failures at time V_l from the treatment group $O_l = n_{1l} \sim$ Hypergeometric distn under $H_0 : S_0(\cdot) = S_1(\cdot)$

$$P(O_{l} = a) = \frac{\begin{pmatrix} N_{1l} \\ a \end{pmatrix} \begin{pmatrix} N_{0l} \\ n_{.l} - a \end{pmatrix}}{\begin{pmatrix} N_{.l} \\ n_{l} \end{pmatrix}}$$

with all observed distinct event times: $0 < V_1 < \ldots, V_K$

First, consider what happens at time $t = V_1 \dots$

	at $t = V_l$		
Group	failure	not	at risk
placebo	n _{0/}	_	N ₀₁
treatment	<i>n</i> _{1/}	-	N _{1/}
total	n.1	_	N./

▶ the expected number of failures from treatment group $E_l = E(O_l) = n_l \frac{N_{1l}}{N_l}$ under H_0

•
$$V(O_l) = \frac{N_l - N_{1l}}{N_l - 1} N_{1l} \left(\frac{n_l}{N_l}\right) \left(1 - \frac{n_l}{N_l}\right)$$
 under H_0

Now, pull together the information at all the observed failure times ...

$$Z = \frac{\sum_{l=1}^{K} (O_l - E_l)}{\sqrt{\sum_{l=1}^{K} V(O_l)}} \sim N(0, 1)$$

approximately under H_0

 \implies the Mantel (logrank) testing procedure ...

•
$$Z^2 \sim \chi^2(1)$$
 under H_0
• $Z = (\sum_I O_I - \sum_I E_I)/SE(O)$

Example. Group 0: 3.1, 6.8⁺, 9, 9, 11.3⁺, 16.2 Group 1: 8.7, 9, 10.1⁺, 12.1⁺, 18.7, 23.1⁺

Remarks

similar to the techniques for combining 2 × 2 tables across strata to test for independence

efficiency?

- Mantel (logrank) test vs Gehan test?
- oriented towards $S_1(t) = S_0(t)^c$, a directional test

What if the subjects are stratified according to a factor, say, gender?

Stratified Logrank Test with the factor of K levels

$$Z = \frac{\sum_{k=1}^{K} (O^{(k)} - E^{(k)})}{\left(\sum_{k} V^{(k)}\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

 \implies the testing procedure

What if there is a need to weight the information at different times differently?

Weighted Logrank Test

$$Z_{W} = \frac{\sum_{l=1}^{L} w_{l}(O_{l} - E_{l})}{\left(\sum_{l} w_{l}^{2} V_{l}\right)^{1/2}} \sim N(0, 1)$$

approximately under H_0 .

 \Longrightarrow the testing procedure

How to choose the weights in general?

• If
$$w_l = N_{.l}$$
, the test is similar to Gehan test.

What if to compare *p* treatment groups with the placebo group? $H_0: S_0(\cdot) = S_1(\cdot) = \ldots = S_p(\cdot)$ Given all the distinct failure times are $0 < V_1 < \ldots < V_L < \infty$,

	at $t = V_l$		
Group	failure	not	at risk
placebo	n 0/		N ₀ ,
treatment 1	<i>n</i> _{1/}		N ₁ /
÷	•	÷	:
treatment p	n _{pl}		N _{pl}
total	n.1		N.1

$$\mathbf{O}_{l} = \begin{pmatrix} n_{1l} \\ \vdots \\ n_{pl} \end{pmatrix}; \ \mathbf{E}_{l} = E\{\mathbf{O}_{l}\} = \begin{pmatrix} N_{1l} \\ \vdots \\ N_{pl} \end{pmatrix} \frac{n.l}{N_{l}}; \ \mathbf{V}_{l} = Var\{\mathbf{O}\}$$

$$\begin{split} \tilde{\mathbf{O}} &= \sum_{l=1}^{L} \mathbf{O}_{l}, \ \tilde{\mathbf{E}} = \sum_{l=1}^{L} \mathbf{E}_{l}, \ \tilde{\mathbf{V}} = \sum_{l=1}^{L} \mathbf{V}_{l} \\ & \left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}} \right)^{'} \tilde{\mathbf{V}}^{-1} \left(\tilde{\mathbf{O}} - \tilde{\mathbf{E}} \right) \sim \chi^{2}(p) \end{split}$$

approximately under H_0 , provided the sample size is large.

 \Longrightarrow the testing procedure

► The test is *omnibus*.

► If a trend test is intended?
to consider
$$\mathbf{c}' \left(\mathbf{\tilde{O}} - \mathbf{\tilde{E}} \right) \sim N(0, \mathbf{c}' \mathbf{\tilde{V}c})$$
?

What to study next?

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference

- Part III.1. Introduction and Overview
- Part III.2. Kaplan-Meier Estimator
- Part III.3. Nonparametric Tests
- Part III.4. Cox Proportional Hazards Model

Part IV. Advanced Topics