What to do this week (2022/02/15, 02/17)?

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference Part III.1. Introduction and Overview: Motivation Part III.3. Kaplan-Meier Estimator Part III.3. Nonparametric Tests Part III.4. Cox Proportional Hazards Model Part III.4.1 Modeling Part III.4.2 Inference Part III.4.3 Extensions A Brief Summary of Part III A. Practical Example B. Talk on Survival Analysis by A.A. Tsiatis

Part IV. Advanced Topics

Part III.4.1 Cox Proportional Hazards Model: Modeling

Cox Proportional Hazards Model: (Cox, JRSSB 1972) The hazard function of event time T|Z = z is

$$h(t|z) = h_0(t)e^{\beta z}, \quad t > 0$$

The conditional survivor function is

$$S(t|z) = \exp(-\int_0^t h_0(u)e^{\beta z}du) = \exp(-H_0(t)e^{\beta z}), \ t > 0$$

Part III.4.1 Cox Proportional Hazards Model: Modeling

Remarks

• the hazard ratio $h(t|Z = z_1)/h(t|Z = z_0) = e^{\beta(z_1 - z_0)}$ for all t > 0 proportional!

$$\blacktriangleright Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}, e^{\beta}: treatment effect$$

•
$$Z_1 = \begin{cases} 1 & \text{treatment} \\ 0 & \text{placebo} \end{cases}$$
, $Z_2 = \begin{cases} 1 & \text{male} \\ 0 & \text{female} \end{cases}$, $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$,
 $\mathbf{Z} = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$, $h(t|\mathbf{Z}) = h_0(t)e^{\beta'\mathbf{Z}}$: relative impacts of the treatment to female and male are the same.

Often is interested to estm β in the Cox PH model, for comparison/evaluate/assess effect \ldots \ldots

With right-censored event times along with the covariates

$$\left\{ (U_i, \delta_i, Z_i) : i = 1, \ldots, n \right\}$$

from *n* indpt subjects and indpt censoring $T_i \perp C_i$

$$L(\beta, h_0(\cdot)|data) = \prod_{i=1}^n \left(h_0(u_i)e^{\beta z_i}\right)^{\delta_i} \exp(-H_0(u_i)e^{\beta z_i})$$

 $L(\beta, h_0(\cdot)|data) = L_1(\beta|data)L_2(\beta, h_0(\cdot)|data)$

 \implies the Cox partial likelihood function (Cox, Biometrika 1975)

the Cox partial likelihood function (Cox, Biometrika 1975)

$$L_1(etaig| data) = \prod_{i=1}^n \Big(rac{e^{eta z_i}}{\sum_{l\in \mathcal{R}_i} e^{eta z_l}}\Big)^{\delta_l}$$

the risk set at time u_i : $\mathcal{R}_i = \{j : u_j \ge u_i\}$

 \implies the MPLE (maximum partial likelihood estimator) of β :

$$\hat{eta} = {\sf argmax}_{{\sf all}\,|eta} {\sf L}_1(etaig|{\sf data})$$

With some conditions, as $n \to \infty$

•
$$\hat{\beta} \rightarrow \beta$$
 a.s.
• $\sqrt{n}(\hat{\beta} - \beta) \rightarrow N(0, ?)$ in distn

Example III.4. n = 5 indpt subjects and $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$ $(u_i, \delta_i, z_i) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)$ $\implies \hat{\beta} = \frac{1}{2} \log 2 - \log 3$

Remarks

• implementation
• to use log
$$L_1(\beta) = \sum_{i=1}^n \delta_i \{\beta z_i - \log(\sum_{l \in \mathcal{R}_i} e^{\beta z_l})\}$$

or $U(\beta) = \partial \log L_1(\beta) / \partial \beta = \sum_{i=1}^n \delta_i \{z_i - \frac{\sum_{l \in \mathcal{R}_i} z_l e^{\beta z_l}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l}}\} = 0$
• e.g. *R*: coxph

Remarks (cont'd)

interpretation

 recall likelihood, marginal likelihood, conditional likelihood, partial likelihood

the Cox partial likelihood function of β

- conditional arguments
- the marginal distn of the rank statistic when no tie, no censored observation, cfs: Kalbfleisch and Prentice (1980, 2011)

Part III.4.2B Cox Proportional Hazards Model: Testing on β

Consider $H_0: \beta = 0$ vs $H_1: \beta \neq 0$

the partial score test

$$U(\beta) = \partial \log L_1(\beta) / \partial \beta = \sum_{i=1}^n \delta_i \left[z_i - \frac{\sum_{l \in \mathcal{R}_i} z_l e^{\beta z_l}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l}} \right]$$

Based on $U(\beta)/\sqrt{n} \sim AN(0,??)$ as $n \to \infty$ with some conditions,

 \implies the partial score testing procedure ...

Part III.4.2B Cox Proportional Hazards Model: Testing on β

Remarks.

• e.g. when
$$Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$$

 $U(\beta)|_{\beta=0} = \sum_{l=1}^{L} \left(O_l - n_{.l} \frac{N_{1l}}{N_{.l}}\right) = O - E$, the numerator of the logrank test statistic

- the Wald-type, using the MPLE of β and its asymptotic normality?
- the PLRT, using the structure of LRT?

To learn about the whole hazard function, to predict

Thinking ..., if β is known,

- ▶ at time V_l , subject j in $\mathcal{R}_{(l)}$ with prob of failing $h_0(V_l)e^{\beta z_j}$;
- the 'average' prob of failing at V_l for all N_l subjects in R_(l) is h₀(V_l) ∑_{j∈R_(l) e^{βz_j}/N_l;}
- on the other hand, the proportion of failing at V_I is d_I/N_I

Thus

$$\hat{h}_{0}(t) = \left\{ egin{array}{cc} rac{d_{l}}{\sum_{j \in \mathcal{R}_{(l)}} e^{eta^{z_{j}}}} & t = V_{l} \ 0 & otherwise \end{array}
ight.$$

$$\hat{H}_0(t) = \int_0^t \hat{h}_0(u;\beta) du = \sum_{V_l \leq t} \hat{h}_0(V_l;\beta)$$

Finally, $\hat{H}_0(t) = H_0(t; \hat{\beta})$ (Breslow estimator)

Remarks

Breslow estimator: NPMLE

uniform consistency, weak convergence

▶ If
$$\beta = 0$$
, $H_0(t) = H(t)$
▶ $\hat{H}(t) = \sum_{V_l \le t} \frac{d_l}{N_l}$: Nelson-Aalen estimator

• $\hat{S}(t) = \exp(-\hat{H}(t))$: Fleming-Harrington estimator, an alternative to Kaplan-Meier estimator $\hat{S}_{KM}(t)$

Example III.4. (cont'd) n = 5 indpt subjects and $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$

 (u_i, δ_i, z_i) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

Part III.4.3 Cox PH Model: Extensions

III.4.3A. To include strata e.g. $Z = \begin{cases} 1 & treatment \\ 0 & placebo \end{cases}$, $W = \begin{cases} 1 & male \\ 0 & female \end{cases}$, $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ To consider the Cox PH model with covariates Z, W:

$$h(t|Z,W)=h_0(t)e^{\beta_1Z+\beta_2W},$$

four hazards proportional to each other

Alternatively, stratify the subjects according to the categories of W, and consider the Cox PH model:

$$h(t|Z, W = w) = h_{w0}(t)e^{\beta Z}, w = 1, 2, ..., K$$

K pairs of proportional hazards: the same effect across different strata

Inference: in stratum
$$k \Longrightarrow L_P^{(k)}(\beta)$$
; over all $\prod_{k=1}^{K} L_P^{(k)}(\beta)$

What if different treatment effects in difference strata?

Part III.4.3 Cox PH Model: Extensions

III.4.3B. Time-varying (time-dependent) covariates:

e.g. air pollution level at time t: Z(t); time till an asthma attack

$$h(t|Z(t)) = h_0(t)e^{\beta Z(t)}$$

Inference:
$$L_P(\beta) = \prod_{i=1}^n \left(\frac{e^{\beta z_i(u_i)}}{\sum_{l \in \mathcal{R}_i} e^{\beta z_l(u_i)}} \right)^{\delta_i}$$

Remarks

- interpretation of the effect of $Z(\cdot)$ on T?
- required information of $\{Z_i(t) : t > 0\}$?

Part III.4.3 Cox Proportional Hazards Model: Extensions

III.4.3C. Time-varying (time-dependent) coefficient:

e.g. treatment effect at time t: $\beta(t)$; time till an asthma attack

$$h(t|Z) = h_0(t)e^{\beta(t)Z}$$

Inference:

- assuming a lot of ties of observed event times, or
- specifying β(t) into (i) β(t; α), (ii) a spline (piecewise-polynomial real function)

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference

- Part III.1. Introduction and Overview
- Part III.2. Kaplan-Meier Estimator
- Part III.3. Nonparametric Tests
- Part III.4. Cox Proportional Hazards Model
- ► A Summary of Part III.
 - A. Practical Example
 - B. Talk on Survival Analysis by A.A. Tsiatis

Part IV. Advanced Topics