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Part III.4.1 Cox Proportional Hazards Model:
Modeling

Cox Proportional Hazards Model: (Cox, JRSSB 1972)
The hazard function of event time T |Z = z is

h(t|z) = h0(t)eβz , t > 0

The conditional survivor function is

S(t|z) = exp(−
∫ t

0
h0(u)eβzdu) = exp(−H0(t)eβz), t > 0



Part III.4.1 Cox Proportional Hazards Model:
Modeling

Remarks

I the hazard ratio h(t|Z = z1)/h(t|Z = z0) = eβ(z1−z0) for all
t > 0 proportional!

I Z =

{
1 treatment
0 placebo

, eβ: treatment effect

I Z1 =

{
1 treatment
0 placebo

, Z2 =

{
1 male
0 female

, β =

(
β1
β2

)
,

Z =

(
Z1

Z2

)
, h(t|Z) = h0(t)eβ

′
Z: relative impacts of the

treatment to female and male are the same.



Part III.4.2A Cox Proportional Hazards Model:
Estimation of β

Often is interested to estm β in the Cox PH model, for
comparison/evaluate/assess effect ... ...

With right-censored event times along with the covariates{
(Ui , δi ,Zi ) : i = 1, . . . , n

}
from n indpt subjects and indpt censoring Ti ⊥⊥ Ci

L(β, h0(·)
∣∣data) =

n∏
i=1

(
h0(ui )e

βzi
)δi

exp(−H0(ui )e
βzi )

L(β, h0(·)
∣∣data) = L1(β

∣∣data)L2(β, h0(·)
∣∣data)

=⇒ the Cox partial likelihood function (Cox, Biometrika 1975)



Part III.4.2A Cox Proportional Hazards Model:
Estimation of β

the Cox partial likelihood function (Cox, Biometrika 1975)

L1(β
∣∣data) =

n∏
i=1

( eβzi∑
l∈Ri

eβzl

)δi
the risk set at time ui : Ri = {j : uj ≥ ui}

=⇒ the MPLE (maximum partial likelihood estimator) of β:

β̂ = argmaxall βL1(β
∣∣data)

With some conditions, as n→∞

I β̂ → β a.s.

I
√
n(β̂ − β)→ N(0, ?) in distn



Part III.4.2A Cox Proportional Hazards Model:
Estimation of β

Example III.4. n = 5 indpt subjects and Z =

{
1 treatment
0 placebo

(ui , δi , zi ) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)

=⇒ β̂ = 1
2 log 2− log 3



Part III.4.2A Cox Proportional Hazards Model:
Estimation of β

Remarks

I implementation
I to use log L1(β) =

∑n
i=1 δi

{
βzi − log(

∑
l∈Ri

eβzl )
}

or U(β) = ∂ log L1(β)
/
∂β =

∑n
i=1 δi

{
zi −

∑
l∈Ri

zle
βzl∑

l∈Ri
eβzl

}
= 0

I e.g. R: coxph



Part III.4.2A Cox Proportional Hazards Model:
Estimation of β

Remarks (cont’d)

I interpretation
I recall likelihood, marginal likelihood, conditional likelihood,

partial likelihood

I the Cox partial likelihood function of β
I conditional arguments

I the marginal distn of the rank statistic when no tie, no
censored observation, cfs: Kalbfleisch and Prentice (1980,
2011)



Part III.4.2B Cox Proportional Hazards Model:
Testing on β

Consider H0 : β = 0 vs H1 : β 6= 0

the partial score test

U(β) = ∂ log L1(β)
/
∂β =

n∑
i=1

δi
[
zi −

∑
l∈Ri

zle
βzl∑

l∈Ri
eβzl

]

Based on U(β)
/√

n ∼ AN(0, ??) as n→∞ with some conditions,

=⇒ the partial score testing procedure ...



Part III.4.2B Cox Proportional Hazards Model:
Testing on β

Remarks.

I e.g. when Z =

{
1 treatment
0 placebo

U(β)
∣∣
β=0

=
∑L

l=1

(
Ol − n.l

N1l
N.l

)
= O − E , the numerator of

the logrank test statistic

I the Wald-type, using the MPLE of β and its asymptotic
normality?

I the PLRT, using the structure of LRT?



Part III.4.2C Cox Proportional Hazards Model:
Estimation of h0(·)

To learn about the whole hazard function, to predict ... ...

Thinking ..., if β is known,

I at time Vl , subject j in R(l) with prob of failing h0(Vl)e
βzj ;

I the ‘average’ prob of failing at Vl for all Nl subjects in R(l) is

h0(Vl)
∑

j∈R(l)
eβzj

/
Nl ;

I on the other hand, the proportion of failing at Vl is dl/Nl



Part III.4.2C Cox Proportional Hazards Model:
Estimation of h0(·)

Thus

ĥ0(t) =


dl∑

j∈R(l)
e
βzj

t = Vl

0 otherwise

Ĥ0(t) =

∫ t

0
ĥ0(u;β)du =

∑
Vl≤t

ĥ0(Vl ;β)

Finally, Ĥ0(t) = H0(t; β̂) (Breslow estimator)



Part III.4.2C Cox Proportional Hazards Model:
Estimation of h0(·)

Remarks
I Breslow estimator: NPMLE

I uniform consistency, weak convergence

I If β = 0, H0(t) = H(t)
I Ĥ(t) =

∑
Vl≤t

dl
Nl

: Nelson-Aalen estimator

I Ŝ(t) = exp(−Ĥ(t)): Fleming-Harrington estimator, an
alternative to Kaplan-Meier estimator ŜKM(t)



Part III.4.2C Cox Proportional Hazards Model:
Estimation of h0(·)

Example III.4. (cont’d) n = 5 indpt subjects and

Z =

{
1 treatment
0 placebo

(ui , δi , zi ) : (16, 1, 1), (13, 0, 0), (21, 1, 1), (11, 1, 0), (12, 1, 1)



Part III.4.3 Cox PH Model: Extensions

III.4.3A. To include strata

e.g. Z =

{
1 treatment
0 placebo

, W =

{
1 male
0 female

, β =

(
β1
β2

)
To consider the Cox PH model with covariates Z ,W :

h(t|Z ,W ) = h0(t)eβ1Z+β2W ,

four hazards proportional to each other

Alternatively, stratify the subjects according to the categories of W , and
consider the Cox PH model:

h(t|Z ,W = w) = hw0(t)eβZ , w = 1, 2, ...,K

K pairs of proportional hazards: the same effect across different strata

Inference: in stratum k =⇒ L
(k)
P (β); over all

∏K
k=1 L

(k)
P (β)

What if different treatment effects in difference strata?



Part III.4.3 Cox PH Model: Extensions

III.4.3B. Time-varying (time-dependent) covariates:
e.g. air pollution level at time t: Z (t); time till an asthma attack

h(t|Z (t)) = h0(t)eβZ(t)

Inference: LP(β) =
∏n

i=1

(
eβzi (ui )∑

l∈Ri
eβzl (ui )

)δi
Remarks

I interpretation of the effect of Z (·) on T?

I required information of {Zi (t) : t > 0}?



Part III.4.3 Cox Proportional Hazards Model:
Extensions

III.4.3C. Time-varying (time-dependent) coefficient:
e.g. treatment effect at time t: β(t); time till an asthma attack

h(t|Z ) = h0(t)eβ(t)Z

Inference:

I assuming a lot of ties of observed event times, or

I specifying β(t) into (i) β(t;α), (ii) a spline
(piecewise-polynomial real function)
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