
What to do this week (2022/03/8 - 03/10)?

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference

Part IV. Advanced Topics
Part IV.1 Counting Process Formulation

Part IV.1.1 Theoretical Preparation



Planning ... ...

I Data Analysis Project
I Phase I. Analysis Plan (due by Mar 14)
I Phase II. Presentation (the in-class presentation: Mar 31, Apr

5 and 7)
I Phase III. Analysis Report (the final project: Apr 22)

I Part IV. Advanced Topics (Homework 4)
I Part IV.1 Counting Process Formulation

(Revisits to KM estm, logrank test, and Cox PH model)
I Part IV.2 Selected Recent Topics in LIDA

I Alternative models to Cox PH model: accelerated failure time
model (AFT), linear transformation model, ...

I Multivariate survival analysis
I Other incomplete data structures: competing risk, interval

censoring, current status, truncation, missing covariates in
LIDA ...

I Alternative approach to the martingale-based one

I Part IV.3 Beyond Lifetime Data Analysis



Part IV.1 Counting Process Formulation

Revisits to the nonparametric/semi-parametric approaches of Part
III ... ...

Part IV.1.1 Theoretical Preparation

I IV.1.1A Basic concepts

I IV.1.1B An introduction to stochastic process

I IV.1.1C Counting process and martingale: the key results



Part IV.1.1A Theoretical Preparation: Basic
concepts

Probability Space: a triplet (Ω,F ,P)

I the sample space Ω: a non-empty set

I F is ⊆ 2Ω (the collection of all subsets of Ω), and a σ-algebra.

(i) ∅ ∈ F ;
(ii) If A ∈ F , Ā ∈ F (closed under complements);
(iii) If Aj ∈ F , j = 1, . . .,

⋃
j Aj ∈ F (closed under countable

unions, and thus under countable intersections)

I P is a probability measure: F → [0, 1]

(i) P(Ω) = 1
(ii) measure: non-negative, countable additive, P(∅) = 0



Part IV.1.1A Theoretical Preparation: Basic
concepts

Random Variable: Given (Ω,F ,P), r.v. X : Ω→ R (real-valued)
and is measurable.
That is, ∀x ∈ R,

{
ω : X (ω) ≤ x

}
∈ F .

I FX (x) = P(ω : X (ω) ≤ x) is the cumulative distribution of X .

I The r.v. X then induces another probability space, (X ,B,PX ):

(i) X is the collection of all possible values of X , a subset of R
(ii) B is the Borel σ-algebra, the σ-algebra generated by all
(−∞, x ] sets
(iii) P is the probability measure: B → [0, 1] with
PX ((−∞, x ]) = FX (x).



Part IV.1.1A Theoretical Preparation: Basic
concepts

Example 4.1: Consider (i) “tossing an even coin”, (ii) “a student’s
mark at the final exam of STAT-475 taught by JHu”



Part IV.1.1A Theoretical Preparation: Basic
concepts

Integration – Riemann Integral:

∫ b

a
f (x)dx = lim

∆xi→0

n∑
i=1

f (ui )(xi − xi−1),

provided the limit exists.

I With the definition, the integrand needs to be almost
continuous.

I e.g. f (x) = 1, 0 if x is rational or not



Part IV.1.1A Theoretical Preparation: Basic
concepts

Integration – Lebesgue Integral:
Given a measure space (E ,S, µ) with E an Euclidean space and the
Lebesgue measure µ,

∫
E fdµ =

∫
Ex

f (x)µ(dx)

(i) for a set indicator,
∫

1Sdµ = µ(S) for S ∈ S.

(ii) for a simple function,
∫ ∑

ak1Skdµ =
∑

k akµ(Sk) for
disjoint Sk ∈ S.

(iii) for a non-negative function,∫
E fdµ = sup

{ ∫
E gdµ : 0 ≤ g ≤ f , g simple

}
, provided exist

(iv) for a general function, f = f + − f − and∫
E fdµ =

∫
E f +dµ−

∫
E f −dµ, provided

∫
|f |dµ <∞.



Part IV.1.1A Theoretical Preparation: Basic
concepts

I If f (·) is Riemann-integrable, it is Lebesgue-integrable.
e.g. the example of the indicator of rational numbers

I the commonly used properties

I linearity

I monotonicity

I monotone convergence theorem



Part IV.1.1A Theoretical Preparation: Basic
concepts

Riemann-Stieltjes Integral∫ b

a
f (x)dg(x) = lim

∆xi→0

n∑
i=1

f (ui )[g(xi )− g(xi−1)], provided exist

Lebesgue-Stieltjes Integral∫ b

a
f (x)dg(x) =

∫ b

a
f (x)µg (dx)

Provided g : [a, b]→ R with bounded variation, there exists the
unique Boreal measure µg on [a, b] such that
µg ((s, t]) = g(t)− g(s).



Example 4.2. the expectation of a r.v. X



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Stochastic Process A collection of r.v.s defined on a probability
space (Ω,F ,P), and indexed by t in a set I :

{X (ω; t) : ω ∈ Ω, t ∈ I},

donoted by X (·)

I I = {1, 2, 3, . . .} =⇒ a sequence of r.v.s

I I = [0,∞) =⇒ a time continuous process

I I = [0, 1]× [0, 1] =⇒ a random field



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Examples

I survival process of a subject

I counts of asthma attacks over time of a child

I air pollution level over time at Vancouver airport

I air pollution level over time across Canada



I Realization/Sample Path
With ω0 ∈ Ω,

{X (ω0; t) : t ∈ I},
a function of t ∈ I
I continuous sample path
I cadlag path: right-continuous and left-limit-exist

I Modification vs Indistinguishable
I If ∀t ∈ I , P(ω : X (ω, t) = Y (ω, t)) = 1, X (·) is a modification

of Y (·).
I If P(ω : X (ω; t) = Y (ω; t),∀t) = 1, X (·) and Y (·) are

indistinguishable.

I Filtration (History) Given a probability space (Ω,F ,P), a
sequence of non-decreasing σ-algebra Ft ⊆ F for t ∈ I :
{Ft : t ∈ I}
I “history” Ht = σ(Xs : 0 ≤ s ≤ t)



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Gaussian Process X (·) = {Xt : t ∈ I} is a Gaussian process, if
any its finite dimensional distribution are multivariate normal,
characterized by mean µ(t) = E (Xt) and covariance
c(s, t) = Cov(Xt ,Xs).

Special Cases:

I Wiener Process (Brownian Motion)

I Brownian Bridge on [0, 1]

I Gaussian Random Walk



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Poisson Process A stochastic process {N(ω; t) : ω ∈ Ω, t ≥ 0} is
the Poisson process of rate ρ, if, as δ → 0+,

I (i) P(N(t + δ)− N(t) = 1|Ht) = ρδ + o(δ), and

I (ii) P(N(t + δ)− N(t) > 1|Ht) = o(δ), so that

I (iii) P(N(t + δ)− N(t) = 0|Ht) = 1− ρδ + o(δ).

Intensity Specification: The intensity of N(·) is

lim
δ→0+

1

δ
P(N(t + δ)− N(t) ≥ 1|Ht) = ρ



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

I Interval Specification: N(·) is a Poisson process with rate ρ if
the subsequent points where N(·) have jumps are at times
X1,X1 + X2, . . . and r.v.s X1,X2, . . . (the gap times) are iid
∼ ρe−ρx .

I Tr = X1 + . . .+ Xr , the time of the rth point (event),
∼ 1

Γ(r)ρ(ρt)r−1e−ρt , a Gamma distn.
I a convenient way to simulate a Poisson process

I Counting Specification N(·) is a Poisson process with rate ρ if
∀A1, . . . ,Ak disjoint sets of B(0,∞), N(A1), . . . ,N(Ak) are ⊥⊥
and with the Poisson distn of mean ρ|Aj |, where N(A), a
non-negative integer r.v., is the count of events over time
period A.
I |Aj | is the Lebesgue measure of Aj : the length of Aj if it’s an

interval.



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Extensions of Poisson Process:
The intensity of a Poisson process N(·) with rate of ρ is

lim
δ→0+

1

δ
P(N(t + δ)− N(t) ≥ 1|Ht) = ρ.

time-homogeneous

I time-inhomogeneous Poisson process N(·) with its intensity function
of ρ(t):

lim
δ→0+

1

δ
P(N(t + δ)− N(t) ≥ 1|Ht) = ρ(t).

I mixed Poisson process Conditional on ξ ∼ G (·), N(·) is a Poisson
process with rate of ξρ

I N(·)’s increments are not indepdent.
I overdispersion



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Concepts of Convergence with Stochastic Process
Recall ... ...

I With {x1, x2, . . .}, a sequence of constants,

lim
n→∞

xn = x∗

I With {X1,X2, . . .}, a sequence of r.v.s,
I limn→∞ Xn = X ∗ a.s. (almost surely)

I limn→∞ Xn = X ∗ in prob

I limn→∞ Xn = X ∗ in distn (weak convergence)



With {X1(·),X2(·), . . .}, a sequence of stochastic processes,
||Xn(·)− X ∗(·)|| = supt∈I |Xn(t)− X ∗(t)|,
I limn→∞ Xn(·) = X ∗(·) in prob
∀ε > 0,P(ω : ||Xn(·)− X ∗(·)|| > ε)→ 0 as n→∞

I limn→∞ Xn(·) = X ∗(·) a.s. (almost surely)
||Xn(·)− X ∗(·)|| → 0 a.s.

I limn→∞ Xn(·) = X ∗(·) in distn (weak convergence)

if ∀f , real valued, bounded, measurable on (M, δ),∫
M fdPn →

∫
M fdP∗ as n→∞. That is,

E
[
f (Xn)

]
→ E

[
f (X ∗)

]
.



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Often-Used Results (an analogue in stochastic processes to its
version in r.v.s)

I Slutsky’s Theorem. If Xn(·)→ X (·) in distn and Yn(·)→ m(·)
in prob, m(·) a constant function, then
Xn(·) + Yn(·)→ X (·) + m(·) in distn and
Xn(·)Yn(·)→ m(·)X (·) in distn

e.g. when m(·) = a

I Continuous Mapping Theorem. If Xn(·)→ X (·) in distn, ∀f ,
continuous, f ◦ Xn(·) = f

[
Xn(·)

]
→ f ◦ X (·) in distn.

e.g. Yn = supt |Xn(t)|



Example. T1, . . . ,Tn ∼ F (·) iid. The empirical distn based on the
data:

F̂n(t) =
1

n

n∑
i=1

I (Ti ≤ t)

I With t = t0

I Over t ∈ [0,∞)

Empirical Process Theory



Part IV.1.1C Martingale: An Introduction

Martingale Definition
Consider a stochastic process X (·) = {X (ω; t) : ω ∈ Ω, t ≥ 0} on
(Ω,F ,P), adapted to a filtration {Ft : t ≥ 0}.

Suppose X (·) is right-continuous left-hand limits. It is a martingale wrt
the filtration {Ft} if

I (a) ∀t, E |X (t)| <∞ (integrable)

I (b) ∀t, E
[
X (t + s)|Ft

]
= X (t) a.s. for s ≥ 0.

I “fair game” in gambling: E (X (t)) = E (X (0))

I Sub (Super) Martingale: “=” in (b) of a martingale definition is
replaced by ≥ (≤)



Part IV.1.1C Martingale: An Introduction
Example. Random Walk Xt =

∑t
j=1 Yj , t = 1, 2, . . . and iid

Yj =

{
1, with Pr 1/2
−1, with Pr 1/2



Part IV.1.1C Martingale: An Introduction

I Predictable. stochastic process X (·) is predictable wrt {Ht} if
X (t) is determined by Ht− = σ(X (u) : 0 ≤ u < t).

Processes with left-continuous sample path are predictable.

I Stopping Time. r.v. τ is a stopping time wrt a filtration {Ft}
if {τ ≤ t} ∈ Ft , ∀t.



I Stopped Process. Suppose X (·) is a stochastic process
adapted to {Ft}, and τ a stopping time wrt {Ft}. We call
X τ (·) a stopped process by τ : X τ (t) = X (t ∧ τ).

I Notion of “Localization” in Theory.
I A sequence of stopping times, non-decreasing {τn} is called

“localizing sequence” if P(τn ≥ t)→ 1 as n→∞ for t ∈ T .
I We say X (·) has a certain property locally if there is a

localizing sequence {τn} such that, ∀n, I (τn > 0)X τn(·) has
the property.

e.g. X (·) is locally bounded.

e.g. X (·) is a local martingale.



Part IV.1.1C Martingale: An Introduction

Important Martingale Results
I Provided {M(t) : t ∈ T } is a martingale wrt {Ft} and

M(0) = 0,
I E (M(t)) = 0,∀t ∈ T
I Cov(M(t + s)−M(t),M(t)) = 0 and

Cov(M(t),M(t + s)) = Var(M(t)), ∀t ∈ T , s > 0

I Provided {M1(t) : t ∈ T } and {M2(t) : t ∈ T } are
martingales wrt {Ft}, M(·) = aM1(·) + bM2(·) is a
martingale.

I Provided {M(t) : t ∈ T } is a martingale wrt {Ft}, M2(·) is a
submartingale wrt {Ft}.



Part IV.1.1C Martingale: An Introduction

Doob-Meyer Decomposition. If X (·) is a submartingale adapted
to {Ft : t ≥ 0}, there exists a unique, right-continuous,
non-decreasing, predictable process A(·) with A(0) = 0 and
M(·) = X (·)− A(·) is a martingale wrt {Ft : t ≥ 0}. The process
A(·) is called the compensator for X (·).

Example. N(·) is a Poisson process with intensity function ρ. (i)
N(·) is a submartingale. (ii) Its compensator A(·) is
A(t) =

∫ t
0 ρ(u)du, t ≥ 0.

This result holds for any counting process N(·).



Part IV.1.1C Martingale: An Introduction

I If M(.) is martingale and (locally) square integrable, M2 is a
(local) sub-martingale and has a compensator, denoted by
< M,M > (.) such that M2(.)− < M,M > (.) is a
martingale.

The process < M,M > (.) is called the predictable quadratic
variation of M(.).

I If E [M(t)] = 0, then
var [M(t)] = E [M2(t)] = E [< M,M > (t)].

I If the zero mean martingale M = N − A satisfies
E [M2(t)] <∞ and A(.) is continuous, then
< M,M > (.) = A(.), a.s.



Part IV.1.1C Martingale: An Introduction

I M1,M2, . . . are zero mean martingales defined on the same
filtration.

I If both M1 and M2 are (locally) square integrable, then there is
a right continuous predictable process < M1,M2 > such that
< M1,M2 > (0) = 0, E [

∣∣ < M1,M2 >
∣∣] <∞, and

M1(.)M2(.)− < M1,M2 > (.) is a martingale.

I If < M1,M2 >= 0, a.s., M1 and M2 are called orthogonal.

I If Mj = Nj − Aj , where Nj is a counting process and Aj its
(continuous) compensator, then if Ni and Nj don’t jump at the
same ime, < Mi ,Mj > (.) = 0, a.s.



Suppose that N(.) is a counting process with E [N(t)] <∞, that A(.) is
the compensator for N(.) and H(.) a bunded, predictable process. Define
Q(.) by

Q(t) =

∫ t

0

H(s)dM(s), where M(.) = N(.)− A(.).

I Q(.) is a zero-mean martingale.

I var [Q(t)] = E [Q2(t)]

I Q2(.) is a sub-martingale, and thus there is < Q,Q > (.) such that
Q2(.)− < Q,Q > (.) is a martingale. Hence,
var [Q(t)] = E [< Q,Q > (t)]

I If A(.) is continuous, < Q,Q > (t) =
∫ t

0
H2(s)dA(s), a.s.

I If M1,M2 are martingales, H1,H2 bounded predictable processes,
and Q1,Q2 are defined in the same way as Q(.), the predictable
quadratic covariance process < Q1,Q2 > satisfies
< Q1,Q2 > (t) =

∫ t

0
H1(s)H2(s)d < M1,M2 > (s).



Local Properties:

I M is a local martingale (sub-martingale) if ∃ a localizing
sequence {τn} such that for each n,
Mn(.) = {M(t) : 0 ≤ t ≤ τn} is a martingale (sub-martingale).

I If as above but we also have supt E [M2
n(t)] <∞ for all n, M

is called a locally square-integrable martingale.

I Extended Doob-Meyer Decomposition: If X (.) is a local
sub-martingale, ∃ a right continuous, nondecreasing
predictable process A(.) such that X (.)− A(.) is a local
martingale.



By the extended Doob-Meyer Decomposition,

I If N(.) is a counting process (not necessaryly E [N(t)] <∞),
then N(.) is a local sub-martingale. Thus, ∃ a unique A(.)
(nondecreasing, right-continuous, predictable) such that
M(.) = N(.)− A(.) is a local martingale.

I If A(.) is locally bounded, then M(.) above is a local square
integrable martingale.

I If H(.) is locally-bounded and predictable, and M(.) is a local
martingale, then Q =

∫
HdM is a locally square integrable

martingale.



Part IV.1.1C Martingale: An Introduction

Martingale Central Limit Theorem (CLT)
For i = 1, . . . , n, let Nin(.) be counting process, Ain(.) its
continuous compensator, Hin(.) locally bounded predictable
process. Define

Min = Nin − Ain, Uin =

∫
HindMin, Uin,ε =

∫
H∗indMin,

H∗in = Hin1[|Hin| ≥ ε], Ūn =
∑
i

Uin, , Ūn,ε =
∑
i

Uin,ε

Suppose that

(a) < Ūn, Ūn > (t)→ α(t) in prob, ∀t ≥ 0 and some function
α(.).

(b) < Ūn,ε, Ūn,ε > (t)→ 0 in prob, ∀t ≥ 0 and ∀ε ≥ 0.

Then Ūn → U =
∫
fdW weakly, where W (.) is a Wiener process

and
∫ t

0 f 2(s)ds = α(t).



Part IV.1.1C Martingale: An Introduction

That is, the limiting process U(.) is a zero-mean Gaussian process
with independent increments and var [U(t)] = α(t).
By the definitions of Nin,Ain, and Hin,

< Ūn, Ūn > (t) =
n∑

i=1

∫ t

0

H2
in(s)dAin(s),

< Ūn,ε, Ūn,ε > (t) =
n∑

i=1

∫ t

0

H∗2in (s)dAin(s).



What to study next?

Part IV. Advanced Topics

I Part IV.1 Counting Process Formulation (Revisits to KM
estm, logrank test, and Cox PH model)
I Part IV.1.1 Theoretical Preparation
I Part IV.1.2 Counting Process Formulation in LIDA and

Applications: Revisits to KM, logrank, Cox PH

I Part IV.2 Selected Recent Topics in LIDA

I Part IV.3 Beyond Lifetime Data Analysis
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