What to do this week $(2022 / 03 / 8-03 / 10) ?$

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference

Part IV. Advanced Topics
Part IV. 1 Counting Process Formulation
Part IV.1.1 Theoretical Preparation

Planning

- Data Analysis Project
- Phase I. Analysis Plan (due by Mar 14)
- Phase II. Presentation (the in-class presentation: Mar 31, Apr 5 and 7)
- Phase III. Analysis Report (the final project: Apr 22)
- Part IV. Advanced Topics (Homework 4)
- Part IV. 1 Counting Process Formulation (Revisits to KM estm, logrank test, and Cox PH model)
- Part IV. 2 Selected Recent Topics in LIDA
- Alternative models to Cox PH model: accelerated failure time model (AFT), linear transformation model, ...
- Multivariate survival analysis
- Other incomplete data structures: competing risk, interval censoring, current status, truncation, missing covariates in LIDA ...
- Alternative approach to the martingale-based one
- Part IV. 3 Beyond Lifetime Data Analysis

Part IV. 1 Counting Process Formulation

Revisits to the nonparametric/semi-parametric approaches of Part III

Part IV.1.1 Theoretical Preparation

- IV.1.1A Basic concepts
- IV.1.1B An introduction to stochastic process
- IV.1.1C Counting process and martingale: the key results

Part IV.1.1A Theoretical Preparation: Basic concepts

Probability Space: a triplet $(\Omega, \mathcal{F}, \mathcal{P})$

- the sample space Ω : a non-empty set
$-\mathcal{F}$ is $\subseteq 2^{\Omega}$ (the collection of all subsets of Ω), and a σ-algebra.
(i) $\emptyset \in \mathcal{F}$;
(ii) If $A \in \mathcal{F}, \bar{A} \in \mathcal{F}$ (closed under complements);
(iii) If $A_{j} \in \mathcal{F}, j=1, \ldots, \bigcup_{j} A_{j} \in \mathcal{F}$ (closed under countable unions, and thus under countable intersections)
- \mathcal{P} is a probability measure: $\mathcal{F} \rightarrow[0,1]$
(i) $\mathcal{P}(\Omega)=1$
(ii) measure: non-negative, countable additive, $\mathcal{P}(\emptyset)=0$

Part IV.1.1A Theoretical Preparation: Basic concepts

Random Variable: Given $(\Omega, \mathcal{F}, \mathcal{P})$, r.v. $X: \Omega \rightarrow \mathcal{R}$ (real-valued) and is measurable.
That is, $\forall x \in \mathcal{R},\{\omega: X(\omega) \leq x\} \in \mathcal{F}$.

- $F_{X}(x)=\mathcal{P}(\omega: X(\omega) \leq x)$ is the cumulative distribution of X.
- The r.v. X then induces another probability space, $\left(\mathcal{X}, \mathcal{B}, P_{X}\right)$:
(i) \mathcal{X} is the collection of all possible values of X, a subset of \mathcal{R}
(ii) \mathcal{B} is the Borel σ-algebra, the σ-algebra generated by all
$(-\infty, x]$ sets
(iii) P is the probability measure: $\mathcal{B} \rightarrow[0,1]$ with

$$
P_{X}((-\infty, x])=F_{X}(x) .
$$

Part IV.1.1A Theoretical Preparation: Basic

 conceptsExample 4.1: Consider (i) "tossing an even coin", (ii) "a student's mark at the final exam of STAT-475 taught by JHu"

Part IV.1.1A Theoretical Preparation: Basic concepts

Integration - Riemann Integral:

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(u_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

provided the limit exists.

- With the definition, the integrand needs to be almost continuous.
- e.g. $f(x)=1,0$ if x is rational or not

Part IV.1.1A Theoretical Preparation: Basic concepts

Integration - Lebesgue Integral:

Given a measure space $(\mathcal{E}, \mathcal{S}, \mu)$ with \mathcal{E} an Euclidean space and the Lebesgue measure $\mu, \int_{E} f d \mu=\int_{E_{x}} f(x) \mu(d x)$
(i) for a set indicator, $\int 1_{S} d \mu=\mu(S)$ for $S \in \mathcal{S}$.
(ii) for a simple function, $\int \sum a_{k} 1_{S_{k}} d \mu=\sum_{k} a_{k} \mu\left(S_{k}\right)$ for disjoint $S_{k} \in \mathcal{S}$.
(iii) for a non-negative function,
$\int_{E} f d \mu=\sup \left\{\int_{E} g d \mu: 0 \leq g \leq f, g\right.$ simple $\}$, provided exist
(iv) for a general function, $f=f^{+}-f^{-}$and
$\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu$, provided $\int|f| d \mu<\infty$.

Part IV.1.1A Theoretical Preparation: Basic concepts

- If $f(\cdot)$ is Riemann-integrable, it is Lebesgue-integrable. e.g. the example of the indicator of rational numbers
- the commonly used properties
- linearity
- monotonicity
- monotone convergence theorem

Part IV.1.1A Theoretical Preparation: Basic concepts

Riemann-Stieltjes Integral

$$
\int_{a}^{b} f(x) d g(x)=\lim _{\Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(u_{i}\right)\left[g\left(x_{i}\right)-g\left(x_{i-1}\right)\right] \text {, provided exist }
$$

Lebesgue-Stieltjes Integral

$$
\int_{a}^{b} f(x) d g(x)=\int_{a}^{b} f(x) \mu_{g}(d x)
$$

Provided $g:[a, b] \rightarrow \mathcal{R}$ with bounded variation, there exists the unique Boreal measure μ_{g} on $[a, b]$ such that $\mu_{g}((s, t])=g(t)-g(s)$.

Example 4.2. the expectation of a r.v. X

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Stochastic Process A collection of r.v.s defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and indexed by t in a set I :

$$
\{X(\omega ; t): \omega \in \Omega, t \in I\}
$$

donoted by $X(\cdot)$

- $I=\{1,2,3, \ldots\} \Longrightarrow$ a sequence of r.v.s
- $I=[0, \infty) \Longrightarrow$ a time continuous process
- $I=[0,1] \times[0,1] \Longrightarrow$ a random field

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Examples

- survival process of a subject
- counts of asthma attacks over time of a child
- air pollution level over time at Vancouver airport
- air pollution level over time across Canada
- Realization/Sample Path With $\omega_{0} \in \Omega$,

$$
\left\{X\left(\omega_{0} ; t\right): t \in I\right\}
$$

a function of $t \in I$

- continuous sample path
- cadlag path: right-continuous and left-limit-exist
- Modification vs Indistinguishable
- If $\forall t \in I, P(\omega: X(\omega, t)=Y(\omega, t))=1, X(\cdot)$ is a modification of $Y(\cdot)$.
- If $P(\omega: X(\omega ; t)=Y(\omega ; t), \forall t)=1, X(\cdot)$ and $Y(\cdot)$ are indistinguishable.
- Filtration (History) Given a probability space ($\Omega, \mathcal{F}, \mathcal{P}$), a sequence of non-decreasing σ-algebra $\mathcal{F}_{t} \subseteq \mathcal{F}$ for $t \in I$: $\left\{\mathcal{F}_{t}: t \in I\right\}$
- "history" $\mathcal{H}_{t}=\sigma\left(X_{s}: 0 \leq s \leq t\right)$

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Gaussian Process $X(\cdot)=\left\{X_{t}: t \in I\right\}$ is a Gaussian process, if any its finite dimensional distribution are multivariate normal, characterized by mean $\mu(t)=E\left(X_{t}\right)$ and covariance $c(s, t)=\operatorname{Cov}\left(X_{t}, X_{s}\right)$.

Special Cases:

- Wiener Process (Brownian Motion)
- Brownian Bridge on $[0,1]$
- Gaussian Random Walk

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Poisson Process A stochastic process $\{N(\omega ; t): \omega \in \Omega, t \geq 0\}$ is the Poisson process of rate ρ, if, as $\delta \rightarrow 0+$,

- (i) $P\left(N(t+\delta)-N(t)=1 \mid \mathcal{H}_{t}\right)=\rho \delta+o(\delta)$, and
- (ii) $P\left(N(t+\delta)-N(t)>1 \mid \mathcal{H}_{t}\right)=o(\delta)$, so that
- (iii) $P\left(N(t+\delta)-N(t)=0 \mid \mathcal{H}_{t}\right)=1-\rho \delta+o(\delta)$.

Intensity Specification: The intensity of $N(\cdot)$ is

$$
\lim _{\delta \rightarrow 0+} \frac{1}{\delta} P\left(N(t+\delta)-N(t) \geq 1 \mid \mathcal{H}_{t}\right)=\rho
$$

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

- Interval Specification: $N(\cdot)$ is a Poisson process with rate ρ if the subsequent points where $N(\cdot)$ have jumps are at times $X_{1}, X_{1}+X_{2}, \ldots$ and r.v.s X_{1}, X_{2}, \ldots (the gap times) are iid $\sim \rho e^{-\rho x}$.
- $T_{r}=X_{1}+\ldots+X_{r}$, the time of the r th point (event), $\sim \frac{1}{\Gamma(r)} \rho(\rho t)^{r-1} e^{-\rho t}$, a Gamma distn.
- a convenient way to simulate a Poisson process
- Counting Specification $N(\cdot)$ is a Poisson process with rate ρ if $\forall A_{1}, \ldots, A_{k}$ disjoint sets of $\mathcal{B}(0, \infty), N\left(A_{1}\right), \ldots, N\left(A_{k}\right)$ are \Perp and with the Poisson distn of mean $\rho\left|A_{j}\right|$, where $N(A)$, a non-negative integer r.v., is the count of events over time period A.
- $\left|A_{j}\right|$ is the Lebesgue measure of A_{j} : the length of A_{j} if it's an interval.

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Extensions of Poisson Process:
The intensity of a Poisson process $N(\cdot)$ with rate of ρ is

$$
\lim _{\delta \rightarrow 0+} \frac{1}{\delta} P\left(N(t+\delta)-N(t) \geq 1 \mid \mathcal{H}_{t}\right)=\rho
$$

time-homogeneous

- time-inhomogeneous Poisson process $N(\cdot)$ with its intensity function of $\rho(t)$:

$$
\lim _{\delta \rightarrow 0+} \frac{1}{\delta} P\left(N(t+\delta)-N(t) \geq 1 \mid \mathcal{H}_{t}\right)=\rho(t)
$$

- mixed Poisson process Conditional on $\xi \sim G(\cdot), N(\cdot)$ is a Poisson process with rate of $\xi \rho$
- $N(\cdot)$'s increments are not indepdent.
- overdispersion

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Concepts of Convergence with Stochastic Process Recall

- With $\left\{x_{1}, x_{2}, \ldots\right\}$, a sequence of constants,

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*}
$$

- With $\left\{X_{1}, X_{2}, \ldots\right\}$, a sequence of r.v.s,
- $\lim _{n \rightarrow \infty} X_{n}=X^{*}$ a.s. (almost surely)
- $\lim _{n \rightarrow \infty} X_{n}=X^{*}$ in prob
- $\lim _{n \rightarrow \infty} X_{n}=X^{*}$ in distn (weak convergence)

With $\left\{X_{1}(\cdot), X_{2}(\cdot), \ldots\right\}$, a sequence of stochastic processes,
$\left\|X_{n}(\cdot)-X^{*}(\cdot)\right\|=\sup _{t \in I}\left|X_{n}(t)-X^{*}(t)\right|$,

- $\lim _{n \rightarrow \infty} X_{n}(\cdot)=X^{*}(\cdot)$ in prob $\forall \epsilon>0, P\left(\omega:\left\|X_{n}(\cdot)-X^{*}(\cdot)\right\|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$
- $\lim _{n \rightarrow \infty} X_{n}(\cdot)=X^{*}(\cdot)$ a.s. (almost surely)

$$
\left\|X_{n}(\cdot)-X^{*}(\cdot)\right\| \rightarrow 0 \text { a.s. }
$$

- $\lim _{n \rightarrow \infty} X_{n}(\cdot)=X^{*}(\cdot)$ in distn (weak convergence)
if $\forall f$, real valued, bounded, measurable on (\mathcal{M}, δ), $\int_{\mathcal{M}} f d \mathcal{P}_{n} \rightarrow \int_{\mathcal{M}} f d \mathcal{P}^{*}$ as $n \rightarrow \infty$. That is, $E\left[f\left(X_{n}\right)\right] \rightarrow E\left[f\left(X^{*}\right)\right]$.

Part IV.1.1B Theoretical Preparation: An introduction to Stochastic Process

Often-Used Results (an analogue in stochastic processes to its version in r.v.s)

- Slutsky's Theorem. If $X_{n}(\cdot) \rightarrow X(\cdot)$ in distn and $Y_{n}(\cdot) \rightarrow m(\cdot)$ in prob, $m(\cdot)$ a constant function, then
$X_{n}(\cdot)+Y_{n}(\cdot) \rightarrow X(\cdot)+m(\cdot)$ in distn and $X_{n}(\cdot) Y_{n}(\cdot) \rightarrow m(\cdot) X(\cdot)$ in distn
e.g. when $m(\cdot)=a$
- Continuous Mapping Theorem. If $X_{n}(\cdot) \rightarrow X(\cdot)$ in distn, $\forall f$, continuous, $f \circ X_{n}(\cdot)=f\left[X_{n}(\cdot)\right] \rightarrow f \circ X(\cdot)$ in distn.
e.g. $Y_{n}=\sup _{t}\left|X_{n}(t)\right|$

Example. $T_{1}, \ldots, T_{n} \sim F(\cdot)$ iid. The empirical distn based on the data:

$$
\hat{F}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} I\left(T_{i} \leq t\right)
$$

- With $t=t_{0}$
- Over $t \in[0, \infty)$

Empirical Process Theory

Part IV.1.1C Martingale: An Introduction

Martingale Definition

Consider a stochastic process $X(\cdot)=\{X(\omega ; t): \omega \in \Omega, t \geq 0\}$ on $(\Omega, \mathcal{F}, \mathcal{P})$, adapted to a filtration $\left\{\mathcal{F}_{t}: t \geq 0\right\}$.

Suppose $X(\cdot)$ is right-continuous left-hand limits. It is a martingale wrt the filtration $\left\{\mathcal{F}_{t}\right\}$ if

- (a) $\forall t, E|X(t)|<\infty$ (integrable)
- (b) $\forall t, E\left[X(t+s) \mid \mathcal{F}_{t}\right]=X(t)$ a.s. for $s \geq 0$.
- "fair game" in gambling: $E(X(t))=E(X(0))$
- Sub (Super) Martingale: " $=$ " in (b) of a martingale definition is replaced by $\geq(\leq)$

Part IV.1.1C Martingale: An Introduction

Example. Random Walk $X_{t}=\sum_{j=1}^{t} Y_{j}, t=1,2, \ldots$ and iid

$$
Y_{j}=\left\{\begin{array}{cl}
1, & \text { with } \operatorname{Pr} 1 / 2 \\
-1, & \text { with } \operatorname{Pr} 1 / 2
\end{array}\right.
$$

Part IV.1.1C Martingale: An Introduction

- Predictable. stochastic process $X(\cdot)$ is predictable wrt $\left\{\mathcal{H}_{t}\right\}$ if $X(t)$ is determined by $\mathcal{H}_{t-}=\sigma(X(u): 0 \leq u<t)$.

Processes with left-continuous sample path are predictable.

- Stopping Time. r.v. τ is a stopping time wrt a filtration $\left\{\mathcal{F}_{t}\right\}$ if $\{\tau \leq t\} \in \mathcal{F}_{t}, \forall t$.
- Stopped Process. Suppose $X(\cdot)$ is a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}$, and τ a stopping time wrt $\left\{\mathcal{F}_{t}\right\}$. We call $X^{\tau}(\cdot)$ a stopped process by $\tau: X^{\tau}(t)=X(t \wedge \tau)$.
- Notion of "Localization" in Theory.
- A sequence of stopping times, non-decreasing $\left\{\tau_{n}\right\}$ is called "localizing sequence" if $P\left(\tau_{n} \geq t\right) \rightarrow 1$ as $n \rightarrow \infty$ for $t \in \mathcal{T}$.
- We say $X(\cdot)$ has a certain property locally if there is a localizing sequence $\left\{\tau_{n}\right\}$ such that, $\forall n, I\left(\tau_{n}>0\right) X^{\tau_{n}}(\cdot)$ has the property.
e.g. $X(\cdot)$ is locally bounded.
e.g. $X(\cdot)$ is a local martingale.

Part IV.1.1C Martingale: An Introduction

Important Martingale Results

- Provided $\{M(t): t \in \mathcal{T}\}$ is a martingale wrt $\left\{\mathcal{F}_{t}\right\}$ and $M(0)=0$,
- $E(M(t))=0, \forall t \in \mathcal{T}$
- $\operatorname{Cov}(M(t+s)-M(t), M(t))=0$ and $\operatorname{Cov}(M(t), M(t+s))=\operatorname{Var}(M(t)), \forall t \in \mathcal{T}, s>0$
- Provided $\left\{M_{1}(t): t \in \mathcal{T}\right\}$ and $\left\{M_{2}(t): t \in \mathcal{T}\right\}$ are martingales wrt $\left\{\mathcal{F}_{t}\right\}, M(\cdot)=a M_{1}(\cdot)+b M_{2}(\cdot)$ is a martingale.
- Provided $\{M(t): t \in \mathcal{T}\}$ is a martingale wrt $\left\{\mathcal{F}_{t}\right\}, M^{2}(\cdot)$ is a submartingale wrt $\left\{\mathcal{F}_{t}\right\}$.

Part IV.1.1C Martingale: An Introduction

Doob-Meyer Decomposition. If $X(\cdot)$ is a submartingale adapted to $\left\{\mathcal{F}_{t}: t \geq 0\right\}$, there exists a unique, right-continuous, non-decreasing, predictable process $A(\cdot)$ with $A(0)=0$ and $M(\cdot)=X(\cdot)-A(\cdot)$ is a martingale wrt $\left\{\mathcal{F}_{t}: t \geq 0\right\}$. The process $A(\cdot)$ is called the compensator for $X(\cdot)$.

Example. $N(\cdot)$ is a Poisson process with intensity function ρ. (i) $N(\cdot)$ is a submartingale. (ii) Its compensator $A(\cdot)$ is $A(t)=\int_{0}^{t} \rho(u) d u, t \geq 0$.

This result holds for any counting process $N(\cdot)$.

Part IV.1.1C Martingale: An Introduction

- If $M($.$) is martingale and (locally) square integrable, M^{2}$ is a (local) sub-martingale and has a compensator, denoted by $<M, M>($.$) such that M^{2}()-.<M, M>($.$) is a$ martingale.

The process $<M, M>($.$) is called the predictable quadratic$ variation of $M($.$) .$

- If $E[M(t)]=0$, then

$$
\operatorname{var}[M(t)]=E\left[M^{2}(t)\right]=E[<M, M>(t)] .
$$

- If the zero mean martingale $M=N-A$ satisfies $E\left[M^{2}(t)\right]<\infty$ and $A($.$) is continuous, then$ $<M, M>()=.A($.$) , a.s.$

Part IV.1.1C Martingale: An Introduction

- M_{1}, M_{2}, \ldots are zero mean martingales defined on the same filtration.
- If both M_{1} and M_{2} are (locally) square integrable, then there is a right continuous predictable process $<M_{1}, M_{2}>$ such that $<M_{1}, M_{2}>(0)=0, E\left[\left|<M_{1}, M_{2}>\right|\right]<\infty$, and $M_{1}(.) M_{2}()-.<M_{1}, M_{2}>($.$) is a martingale.$
- If $<M_{1}, M_{2}>=0$, a.s., M_{1} and M_{2} are called orthogonal.
- If $M_{j}=N_{j}-A_{j}$, where N_{j} is a counting process and A_{j} its (continuous) compensator, then if N_{i} and N_{j} don't jump at the same ime, $<M_{i}, M_{j}>()=$.0 , a.s.

Suppose that $N($.$) is a counting process with E[N(t)]<\infty$, that $A($.$) is$ the compensator for $N($.$) and H($.$) a bunded, predictable process. Define$ $Q($.$) by$

$$
Q(t)=\int_{0}^{t} H(s) d M(s), \text { where } M(.)=N(.)-A(.)
$$

- $Q($.$) is a zero-mean martingale.$
- $\operatorname{var}[Q(t)]=E\left[Q^{2}(t)\right]$
- $Q^{2}($.$) is a sub-martingale, and thus there is \langle Q, Q\rangle($.$) such that$ $Q^{2}()-.<Q, Q>($.$) is a martingale. Hence,$ $\operatorname{var}[Q(t)]=E[<Q, Q>(t)]$
- If $A($.$) is continuous, \langle Q, Q\rangle(t)=\int_{0}^{t} H^{2}(s) d A(s)$, a.s.
- If M_{1}, M_{2} are martingales, H_{1}, H_{2} bounded predictable processes, and Q_{1}, Q_{2} are defined in the same way as $Q($.$) , the predictable$ quadratic covariance process $<Q_{1}, Q_{2}>$ satisfies $<Q_{1}, Q_{2}>(t)=\int_{0}^{t} H_{1}(s) H_{2}(s) d<M_{1}, M_{2}>(s)$.

Local Properties:

- M is a local martingale (sub-martingale) if \exists a localizing sequence $\left\{\tau_{n}\right\}$ such that for each n , $M_{n}()=.\left\{M(t): 0 \leq t \leq \tau_{n}\right\}$ is a martingale (sub-martingale).
- If as above but we also have $\sup _{t} E\left[M_{n}^{2}(t)\right]<\infty$ for all n, M is called a locally square-integrable martingale.
- Extended Doob-Meyer Decomposition: If $X($.$) is a local$ sub-martingale, \exists a right continuous, nondecreasing predictable process $A($.$) such that X()-.A($.$) is a local$ martingale.

By the extended Doob-Meyer Decomposition,

- If $N($.$) is a counting process (not necessaryly E[N(t)]<\infty$), then $N($.$) is a local sub-martingale. Thus, \exists$ a unique $A($. (nondecreasing, right-continuous, predictable) such that $M()=.N()-.A($.$) is a local martingale.$
- If $A($.$) is locally bounded, then M($.$) above is a local square$ integrable martingale.
- If $H($.$) is locally-bounded and predictable, and M($.$) is a local$ martingale, then $Q=\int H d M$ is a locally square integrable martingale.

Part IV.1.1C Martingale: An Introduction

Martingale Central Limit Theorem (CLT)
For $i=1, \ldots, n$, let $N_{\text {in }}($.$) be counting process, A_{i n}($.$) its$ continuous compensator, $H_{\text {in }}($.$) locally bounded predictable$ process. Define

$$
\begin{gathered}
M_{i n}=N_{i n}-A_{i n}, \quad U_{i n}=\int H_{i n} d M_{i n}, \quad U_{i n, \epsilon}=\int H_{i n}^{*} d M_{i n} \\
H_{i n}^{*}=H_{i n} \mathbf{1}\left[\left|H_{i n}\right| \geq \epsilon\right], \quad \bar{U}_{n}=\sum_{i} U_{i n}, \quad, \quad \bar{U}_{n, \epsilon}=\sum_{i} U_{i n, \epsilon}
\end{gathered}
$$

Suppose that
(a) $<\bar{U}_{n}, \bar{U}_{n}>(t) \rightarrow \alpha(t)$ in prob, $\forall t \geq 0$ and some function $\alpha($.$) .$
(b) $<\bar{U}_{n, \epsilon}, \bar{U}_{n, \epsilon}>(t) \rightarrow 0$ in prob, $\forall t \geq 0$ and $\forall \epsilon \geq 0$.

Then $\bar{U}_{n} \rightarrow U=\int f d W$ weakly, where $W($.$) is a Wiener process$ and $\int_{0}^{t} f^{2}(s) d s=\alpha(t)$.

Part IV.1.1C Martingale: An Introduction

That is, the limiting process $U($.$) is a zero-mean Gaussian process$ with independent increments and $\operatorname{var}[U(t)]=\alpha(t)$. By the definitions of $N_{i n}, A_{i n}$, and $H_{i n}$,

$$
\begin{aligned}
& <\bar{U}_{n}, \bar{U}_{n}>(t)=\sum_{i=1}^{n} \int_{0}^{t} H_{i n}^{2}(s) d A_{i n}(s), \\
< & \bar{U}_{n, \epsilon}, \bar{U}_{n, \epsilon}>(t)=\sum_{i=1}^{n} \int_{0}^{t} H_{i n}^{* 2}(s) d A_{i n}(s) .
\end{aligned}
$$

What to study next?

Part IV. Advanced Topics

- Part IV. 1 Counting Process Formulation (Revisits to KM estm, logrank test, and Cox PH model)
- Part IV.1.1 Theoretical Preparation
- Part IV.1.2 Counting Process Formulation in LIDA and Applications: Revisits to KM, logrank, Cox PH
- Part IV. 2 Selected Recent Topics in LIDA
- Part IV. 3 Beyond Lifetime Data Analysis

