What to do this week (2022/03/8 - 03/10)?

Part I. Preliminaries

Part II. Parametric Inference

Part III. Nonparametric/Semi-parametric Inference

Part IV. Advanced Topics

Part IV.1 Counting Process Formulation Part IV.1.1 Theoretical Preparation

Planning

Data Analysis Project

- Phase I. Analysis Plan (due by Mar 14)
- Phase II. Presentation (the in-class presentation: Mar 31, Apr 5 and 7)

Phase III. Analysis Report (the final project: Apr 22)

Part IV. Advanced Topics (Homework 4)

- Part IV.1 Counting Process Formulation (Revisits to KM estm, logrank test, and Cox PH model)
- Part IV.2 Selected Recent Topics in LIDA
 - Alternative models to Cox PH model: accelerated failure time model (AFT), linear transformation model, ...
 - Multivariate survival analysis
 - Other incomplete data structures: competing risk, interval censoring, current status, truncation, missing covariates in LIDA ...
 - Alternative approach to the martingale-based one
- Part IV.3 Beyond Lifetime Data Analysis

Part IV.1 Counting Process Formulation

Revisits to the nonparametric/semi-parametric approaches of Part III $\ldots\ \ldots$

Part IV.1.1 Theoretical Preparation

- ► IV.1.1A Basic concepts
- ▶ IV.1.1B An introduction to stochastic process
- ▶ IV.1.1C Counting process and martingale: the key results

Probability Space: a triplet $(\Omega, \mathcal{F}, \mathcal{P})$

 \blacktriangleright the sample space Ω : a non-empty set

$$\mathcal{P}$$
 is a probability measure: $\mathcal{F} \to [0, 1]$
(i) $\mathcal{P}(\Omega) = 1$
(ii) measure: non-negative, countable additive, $\mathcal{P}(\emptyset) = 0$

Random Variable: Given $(\Omega, \mathcal{F}, \mathcal{P})$, r.v. $X : \Omega \to \mathcal{R}$ (real-valued) and is measurable.

That is, $\forall x \in \mathcal{R}$, $\{\omega : X(\omega) \leq x\} \in \mathcal{F}$.

• $F_X(x) = \mathcal{P}(\omega : X(\omega) \le x)$ is the cumulative distribution of X.

▶ The r.v. X then induces another probability space, (X, B, P_X) :

(i) X is the collection of all possible values of X, a subset of R.
(ii) B is the Borel σ-algebra, the σ-algebra generated by all (-∞, x] sets
(iii) P is the probability measure: B → [0, 1] with P_X((-∞, x]) = F_X(x).

concepts

Example 4.1: Consider (i) "tossing an even coin", (ii) "a student's mark at the final exam of STAT-475 taught by JHu"

Integration – Riemann Integral:

$$\int_a^b f(x)dx = \lim_{\Delta x_i \to 0} \sum_{i=1}^n f(u_i)(x_i - x_{i-1}),$$

provided the limit exists.

With the definition, the integrand needs to be almost continuous.

• e.g.
$$f(x) = 1, 0$$
 if x is rational or not

Integration – Lebesgue Integral:

Given a measure space $(\mathcal{E}, \mathcal{S}, \mu)$ with \mathcal{E} an Euclidean space and the Lebesgue measure μ , $\int_{\mathcal{E}} f d\mu = \int_{\mathcal{E}_x} f(x)\mu(dx)$

(i) for a set indicator,
$$\int \mathbf{1}_{S} d\mu = \mu(S)$$
 for $S \in S$.
(ii) for a simple function, $\int \sum a_{k} \mathbf{1}_{S_{k}} d\mu = \sum_{k} a_{k} \mu(S_{k})$ for disjoint $S_{k} \in S$.
(iii) for a non-negative function,
 $\int_{E} f d\mu = \sup \{ \int_{E} g d\mu : 0 \le g \le f, g \text{ simple} \}$, provided exist
(iv) for a general function, $f = f^{+} - f^{-}$ and
 $\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu$, provided $\int |f| d\mu < \infty$.

- If f(·) is Riemann-integrable, it is Lebesgue-integrable.
 e.g. the example of the indicator of rational numbers
- the commonly used properties
 - linearity
 - monotonicity
 - monotone convergence theorem

Riemann-Stieltjes Integral

$$\int_{a}^{b} f(x)dg(x) = \lim_{\Delta x_{i} \to 0} \sum_{i=1}^{n} f(u_{i})[g(x_{i}) - g(x_{i-1})], \text{ provided exist}$$

Lebesgue-Stieltjes Integral

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{b} f(x) \mu_{g}(dx)$$

Provided $g : [a, b] \to \mathcal{R}$ with bounded variation, there exists the unique Boreal measure μ_g on [a, b] such that $\mu_g((s, t]) = g(t) - g(s)$.

Example 4.2. the expectation of a r.v. X

Stochastic Process A collection of r.v.s defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$, and indexed by t in a set I:

$$\{X(\omega; t) : \omega \in \Omega, t \in I\},\$$

donoted by $X(\cdot)$

•
$$I = \{1, 2, 3, \ldots\} \Longrightarrow$$
 a sequence of r.v.s

• $I = [0, \infty) \Longrightarrow$ a time continuous process

•
$$I = [0,1] \times [0,1] \Longrightarrow$$
 a random field

Examples

- survival process of a subject
- counts of asthma attacks over time of a child
- air pollution level over time at Vancouver airport
- air pollution level over time across Canada

• Realization/Sample Path With $\omega_0 \in \Omega$,

$$\{X(\omega_0;t):t\in I\},\$$

- a function of $t \in I$
 - continuous sample path

cadlag path: right-continuous and left-limit-exist

Modification vs Indistinguishable

- If ∀t ∈ I, P(ω : X(ω, t) = Y(ω, t)) = 1, X(·) is a modification of Y(·).
- If $P(\omega : X(\omega; t) = Y(\omega; t), \forall t) = 1$, $X(\cdot)$ and $Y(\cdot)$ are indistinguishable.

Filtration (History) Given a probability space (Ω, F, P), a sequence of non-decreasing σ-algebra F_t ⊆ F for t ∈ I: {F_t : t ∈ I}

• "history"
$$\mathcal{H}_t = \sigma(X_s : 0 \le s \le t)$$

Gaussian Process $X(\cdot) = \{X_t : t \in I\}$ is a Gaussian process, if any its finite dimensional distribution are multivariate normal, characterized by mean $\mu(t) = E(X_t)$ and covariance $c(s, t) = Cov(X_t, X_s)$.

Special Cases:

- Wiener Process (Brownian Motion)
- Brownian Bridge on [0, 1]
- Gaussian Random Walk

Poisson Process A stochastic process $\{N(\omega; t) : \omega \in \Omega, t \ge 0\}$ is the Poisson process of rate ρ , if, as $\delta \to 0+$,

► (i)
$$P(N(t + \delta) - N(t) = 1 | \mathcal{H}_t) = \rho \delta + o(\delta)$$
, and

► (ii)
$$P(N(t + \delta) - N(t) > 1 | \mathcal{H}_t) = o(\delta)$$
, so that

(iii)
$$P(N(t+\delta) - N(t) = 0|\mathcal{H}_t) = 1 - \rho\delta + o(\delta).$$

Intensity Specification: The intensity of $N(\cdot)$ is

$$\lim_{\delta \to 0+} \frac{1}{\delta} P(N(t+\delta) - N(t) \ge 1 | \mathcal{H}_t) = \rho$$

- Interval Specification: N(·) is a Poisson process with rate ρ if the subsequent points where N(·) have jumps are at times X₁, X₁ + X₂,... and r.v.s X₁, X₂,... (the gap times) are iid ~ ρe^{-ρx}.
 - ► $T_r = X_1 + ... + X_r$, the time of the *r*th point (event), $\sim \frac{1}{\Gamma(r)} \rho(\rho t)^{r-1} e^{-\rho t}$, a Gamma distn.

a convenient way to simulate a Poisson process

- Counting Specification $N(\cdot)$ is a Poisson process with rate ρ if $\forall A_1, \ldots, A_k$ disjoint sets of $\mathcal{B}(0, \infty)$, $N(A_1), \ldots, N(A_k)$ are \bot and with the Poisson distn of mean $\rho|A_j|$, where N(A), a non-negative integer r.v., is the count of events over time period A.
 - ► |A_j| is the Lebesgue measure of A_j: the length of A_j if it's an interval.

Extensions of Poisson Process:

The intensity of a Poisson process $N(\cdot)$ with rate of ρ is

$$\lim_{\delta o 0+} rac{1}{\delta} P(N(t+\delta) - N(t) \geq 1 | \mathcal{H}_t) =
ho.$$

time-homogeneous

► time-inhomogeneous Poisson process $N(\cdot)$ with its intensity function of $\rho(t)$: $\lim_{\delta \to 0+} \frac{1}{\delta} P(N(t+\delta) - N(t) \ge 1 | \mathcal{H}_t) = \rho(t).$

mixed Poisson process Conditional on ξ ~ G(·), N(·) is a Poisson process with rate of ξρ

 \triangleright $N(\cdot)$'s increments are not indepdent.

overdispersion

Concepts of Convergence with Stochastic Process Recall

• With $\{x_1, x_2, \ldots\}$, a sequence of constants,

$$\lim_{n\to\infty}x_n=x^*$$

▶
$$\lim_{n\to\infty} X_n = X^*$$
 in prob

▶
$$\lim_{n\to\infty} X_n = X^*$$
 in distn (weak convergence)

With $\{X_1(\cdot), X_2(\cdot), \ldots\}$, a sequence of stochastic processes, $||X_n(\cdot) - X^*(\cdot)|| = \sup_{t \in I} |X_n(t) - X^*(t)|$,

$$\lim_{n \to \infty} X_n(\cdot) = X^*(\cdot) \text{ in prob} \\ \forall \epsilon > 0, P(\omega : ||X_n(\cdot) - X^*(\cdot)|| > \epsilon) \to 0 \text{ as } n \to \infty$$

$$\lim_{n\to\infty} X_n(\cdot) = X^*(\cdot) \text{ a.s. (almost surely)} \\ ||X_n(\cdot) - X^*(\cdot)|| \to 0 \text{ a.s.}$$

▶
$$\lim_{n\to\infty} X_n(\cdot) = X^*(\cdot)$$
 in distn (weak convergence)

if $\forall f$, real valued, bounded, measurable on (\mathcal{M}, δ) , $\int_{\mathcal{M}} f d\mathcal{P}_n \to \int_{\mathcal{M}} f d\mathcal{P}^*$ as $n \to \infty$. That is, $E[f(X_n)] \to E[f(X^*)].$

Often-Used Results (an analogue in stochastic processes to its version in r.v.s)

Slutsky's Theorem. If X_n(·) → X(·) in distn and Y_n(·) → m(·) in prob, m(·) a constant function, then X_n(·) + Y_n(·) → X(·) + m(·) in distn and X_n(·)Y_n(·) → m(·)X(·) in distn

e.g. when $m(\cdot) = a$

▶ Continuous Mapping Theorem. If $X_n(\cdot) \to X(\cdot)$ in distn, $\forall f$, continuous, $f \circ X_n(\cdot) = f[X_n(\cdot)] \to f \circ X(\cdot)$ in distn.

e.g. $Y_n = \sup_t |X_n(t)|$

Example. $T_1, \ldots, T_n \sim F(\cdot)$ iid. The empirical distributed based on the data:

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(T_i \leq t)$$

• With
$$t = t_0$$

• Over
$$t \in [0,\infty)$$

Empirical Process Theory

Martingale Definition

Consider a stochastic process $X(\cdot) = \{X(\omega; t) : \omega \in \Omega, t \ge 0\}$ on $(\Omega, \mathcal{F}, \mathcal{P})$, adapted to a filtration $\{\mathcal{F}_t : t \ge 0\}$.

Suppose $X(\cdot)$ is right-continuous left-hand limits. It is a martingale wrt the filtration $\{\mathcal{F}_t\}$ if

• (a)
$$\forall t, E|X(t)| < \infty$$
 (integrable)

► (b)
$$\forall t$$
, $E[X(t+s)|\mathcal{F}_t] = X(t)$ a.s. for $s \ge 0$.

• "fair game" in gambling: E(X(t)) = E(X(0))

Sub (Super) Martingale: "=" in (b) of a martingale definition is replaced by ≥ (≤) **Part IV.1.1C Martingale: An Introduction** Example. Random Walk $X_t = \sum_{j=1}^{t} Y_j$, t = 1, 2, ... and iid $Y_j = \begin{cases} 1, & \text{with } Pr \ 1/2 \\ -1, & \text{with } Pr \ 1/2 \end{cases}$

Predictable. stochastic process X(·) is predictable wrt {H_t} if X(t) is determined by H_{t−} = σ(X(u) : 0 ≤ u < t).</p>

Processes with left-continuous sample path are predictable.

Stopping Time. r.v. τ is a stopping time wrt a filtration $\{\mathcal{F}_t\}$ if $\{\tau \leq t\} \in \mathcal{F}_t, \forall t$.

Stopped Process. Suppose X(·) is a stochastic process adapted to {F_t}, and τ a stopping time wrt {F_t}. We call X^τ(·) a stopped process by τ: X^τ(t) = X(t ∧ τ).

► Notion of "Localization" in Theory.

- A sequence of stopping times, non-decreasing {τ_n} is called "localizing sequence" if P(τ_n ≥ t) → 1 as n → ∞ for t ∈ T.
- We say X(·) has a certain property locally if there is a localizing sequence {τ_n} such that, ∀n, I(τ_n > 0)X^{τ_n}(·) has the property.
- e.g. $X(\cdot)$ is locally bounded.

e.g. $X(\cdot)$ is a local martingale.

Important Martingale Results

Provided $\{M(t) : t \in \mathcal{T}\}$ is a martingale wrt $\{\mathcal{F}_t\}$ and M(0) = 0,

$$\blacktriangleright E(M(t)) = 0, \forall t \in \mathcal{T}$$

- Cov(M(t+s) M(t), M(t)) = 0 and $Cov(M(t), M(t+s)) = Var(M(t)), \forall t \in T, s > 0$
- Provided {M₁(t) : t ∈ T} and {M₂(t) : t ∈ T} are martingales wrt {F_t}, M(·) = aM₁(·) + bM₂(·) is a martingale.
- Provided {M(t) : t ∈ T} is a martingale wrt {F_t}, M²(·) is a submartingale wrt {F_t}.

Doob-Meyer Decomposition. If $X(\cdot)$ is a submartingale adapted to $\{\mathcal{F}_t : t \ge 0\}$, there exists a unique, right-continuous, non-decreasing, predictable process $A(\cdot)$ with A(0) = 0 and $M(\cdot) = X(\cdot) - A(\cdot)$ is a martingale wrt $\{\mathcal{F}_t : t \ge 0\}$. The process $A(\cdot)$ is called the *compensator* for $X(\cdot)$.

Example. $N(\cdot)$ is a Poisson process with intensity function ρ . (i) $N(\cdot)$ is a submartingale. (ii) Its compensator $A(\cdot)$ is $A(t) = \int_0^t \rho(u) du$, $t \ge 0$.

This result holds for any counting process $N(\cdot)$.

If M(.) is martingale and (locally) square integrable, M² is a (local) sub-martingale and has a compensator, denoted by < M, M > (.) such that M²(.)− < M, M > (.) is a martingale.

The process $\langle M, M \rangle$ (.) is called the predictable quadratic variation of M(.).

If *E*[*M*(*t*)] = 0, then *var*[*M*(*t*)] = *E*[*M*²(*t*)] = *E*[< *M*, *M* > (*t*)].
 If the zero mean martingale *M* = *N* − *A* satisfies *E*[*M*²(*t*)] < ∞ and *A*(.) is continuous, then < *M*, *M* > (.) = *A*(.), a.s.

- ► M₁, M₂,... are zero mean martingales defined on the same filtration.
 - ▶ If both M_1 and M_2 are (locally) square integrable, then there is a right continuous predictable process $< M_1, M_2 >$ such that $< M_1, M_2 > (0) = 0, E[| < M_1, M_2 > |] < \infty$, and $M_1(.)M_2(.) - < M_1, M_2 > (.)$ is a martingale.
 - If $< M_1, M_2 >= 0$, a.s., M_1 and M_2 are called orthogonal.
 - If M_j = N_j − A_j, where N_j is a counting process and A_j its (continuous) compensator, then if N_i and N_j don't jump at the same ime, < M_i, M_j > (.) = 0, a.s.

Suppose that N(.) is a counting process with $E[N(t)] < \infty$, that A(.) is the compensator for N(.) and H(.) a bunded, predictable process. Define Q(.) by

$$Q(t) = \int_0^t H(s) dM(s)$$
, where $M(.) = N(.) - A(.)$.

▶ Q(.) is a zero-mean martingale.

•
$$var[Q(t)] = E[Q^2(t)]$$

- ▶ $Q^2(.)$ is a sub-martingale, and thus there is $\langle Q, Q \rangle$ (.) such that $Q^2(.) \langle Q, Q \rangle$ (.) is a martingale. Hence, $var[Q(t)] = E[\langle Q, Q \rangle(t)]$
- If A(.) is continuous, $\langle Q, Q \rangle(t) = \int_0^t H^2(s) dA(s)$, a.s.
- If M₁, M₂ are martingales, H₁, H₂ bounded predictable processes, and Q₁, Q₂ are defined in the same way as Q(.), the predictable quadratic covariance process < Q₁, Q₂ > satisfies < Q₁, Q₂ > (t) = ∫₀^t H₁(s)H₂(s)d < M₁, M₂ > (s).

Local Properties:

- M is a local martingale (sub-martingale) if ∃ a localizing sequence {τ_n} such that for each n, M_n(.) = {M(t) : 0 ≤ t ≤ τ_n} is a martingale (sub-martingale).
- If as above but we also have sup_t E[M²_n(t)] < ∞ for all n, M is called a locally square-integrable martingale.</p>
- Extended Doob-Meyer Decomposition: If X(.) is a local sub-martingale, ∃ a right continuous, nondecreasing predictable process A(.) such that X(.) – A(.) is a local martingale.

By the extended Doob-Meyer Decomposition,

- If N(.) is a counting process (not necessaryly E[N(t)] < ∞), then N(.) is a local sub-martingale. Thus, ∃ a unique A(.) (nondecreasing, right-continuous, predictable) such that M(.) = N(.) A(.) is a local martingale.
- If A(.) is locally bounded, then M(.) above is a local square integrable martingale.
- ▶ If H(.) is locally-bounded and predictable, and M(.) is a local martingale, then $Q = \int H dM$ is a locally square integrable martingale.

Martingale Central Limit Theorem (CLT)

For i = 1, ..., n, let $N_{in}(.)$ be counting process, $A_{in}(.)$ its continuous compensator, $H_{in}(.)$ locally bounded predictable process. Define

$$M_{in} = N_{in} - A_{in}, \quad U_{in} = \int H_{in} dM_{in}, \quad U_{in,\epsilon} = \int H_{in}^* dM_{in},$$
$$H_{in}^* = H_{in} \mathbf{1}[|H_{in}| \ge \epsilon], \quad \bar{U}_n = \sum_i U_{in}, \quad , \bar{U}_{n,\epsilon} = \sum_i U_{in,\epsilon}$$

Suppose that

(a) $\langle \bar{U}_n, \bar{U}_n \rangle$ (t) $\rightarrow \alpha(t)$ in prob, $\forall t \ge 0$ and some function $\alpha(.)$. (b) $\langle \bar{U}_{n,\epsilon}, \bar{U}_{n,\epsilon} \rangle$ (t) $\rightarrow 0$ in prob, $\forall t \ge 0$ and $\forall \epsilon \ge 0$.

Then $\overline{U}_n \to U = \int f dW$ weakly, where W(.) is a Wiener process and $\int_0^t f^2(s) ds = \alpha(t)$.

That is, the limiting process U(.) is a zero-mean Gaussian process with independent increments and $var[U(t)] = \alpha(t)$. By the definitions of N_{in} , A_{in} , and H_{in} ,

$$(t)=\sum_{i=1}^n\int_0^t H_{in}^2(s)dA_{in}(s),$$

$$(t)=\sum_{i=1}^n\int_0^t H_{in}^{*2}(s)dA_{in}(s).$$

What to study next?

Part IV. Advanced Topics

- Part IV.1 Counting Process Formulation (Revisits to KM estm, logrank test, and Cox PH model)
 - Part IV.1.1 Theoretical Preparation
 - Part IV.1.2 Counting Process Formulation in LIDA and Applications: Revisits to KM, logrank, Cox PH
- Part IV.2 Selected Recent Topics in LIDA
- Part IV.3 Beyond Lifetime Data Analysis