What to do this week (2022/03/8 - 03/10)?

Part I. Preliminaries
Part Il. Parametric Inference
Part I1l. Nonparametric/Semi-parametric Inference

Part IV. Advanced Topics

Part IV.1 Counting Process Formulation
Part IV.1.1 Theoretical Preparation



Planning ... ...

> Data Analysis Project
> Phase I. Analysis Plan (due by Mar 14)
» Phase Il. Presentation (the in-class presentation: Mar 31, Apr

5 and 7)
» Phase Ill. Analysis Report (the final project: Apr 22)

» Part IV. Advanced Topics (Homework 4)

» Part IV.1 Counting Process Formulation
(Revisits to KM estm, logrank test, and Cox PH model)
» Part V.2 Selected Recent Topics in LIDA
> Alternative models to Cox PH model: accelerated failure time
model (AFT), linear transformation model, ...
»  Multivariate survival analysis
» Other incomplete data structures: competing risk, interval
censoring, current status, truncation, missing covariates in
LIDA ...
> Alternative approach to the martingale-based one

» Part IV.3 Beyond Lifetime Data Analysis



Part IV.1 Counting Process Formulation

Revisits to the nonparametric/semi-parametric approaches of Part
" ... ..

Part IV.1.1 Theoretical Preparation
> |V.1.1A Basic concepts

» |V.1.1B An introduction to stochastic process

» |V.1.1C Counting process and martingale: the key results



Part IV.1.1A Theoretical Preparation: Basic
concepts

Probability Space: a triplet (2, F, P)

> the sample space €2: a non-empty set

> Fis C 29 (the collection of all subsets of Q), and a o-algebra.

()0 eF; B

(i) If Ae F, A€ F (closed under complements);

(i) If A e F, j=1,..., U;Aj € F (closed under countable
unions, and thus under countable intersections)

» P is a probability measure: F — [0, 1]

(i) P()=1
(ii) measure: non-negative, countable additive, P()) =0



Part IV.1.1A Theoretical Preparation: Basic
concepts

Random Variable: Given (Q,F,P), rv. X : Q — R (real-valued)
and is measurable.
That is, Vx € R, {w : X(w) < X} e F.

> Fx(x) =P(w: X(w) < x) is the cumulative distribution of X.
» The r.v. X then induces another probability space, (X, BB, Px):

(i) X is the collection of all possible values of X, a subset of R
(ii) B is the Borel o-algebra, the o-algebra generated by all
(—o0, x] sets
(iii) P is the probability measure: B — [0, 1] with

x (=00, x]) = Fx(x).



Part IV.1.1A Theoretical Preparation: Basic

concepts
Example 4.1: Consider (i) “tossing an even coin”, (i) “a student's

mark at the final exam of STAT-475 taught by JHu"



Part IV.1.1A Theoretical Preparation: Basic
concepts

Integration — Riemann Integral:

b n
/a f(x)dx = AL'[E)O; f(ui)(xi — xi-1),

provided the limit exists.

» With the definition, the integrand needs to be almost
continuous.

> e.g. f(x)=1,0if x is rational or not



Part IV.1.1A Theoretical Preparation: Basic
concepts

Integration — Lebesgue Integral:
Given a measure space (€, S, 1) with £ an Euclidean space and the
Lebesgue measure i, [ fdu = [¢ f(x)u(dx)

(i) for a set indicator, [ 1sdu = pu(S) for S € S.

(i) for a simple function, [ >~ axls, du = >, aku(Sk) for
disjoint S, € S.

(iii) for a non-negative function,

Jefdu=sup{ [-gdu:0<g<f, gsimple}, provided exist
(iv) for a general function, f = f* — f~ and

Jefdu= [ ftdu— [ f~du, provided [ |f|du < oc.



Part IV.1.1A Theoretical Preparation: Basic
concepts

» If f(-) is Riemann-integrable, it is Lebesgue-integrable.
e.g. the example of the indicator of rational numbers

» the commonly used properties
» linearity
» monotonicity

» monotone convergence theorem



Part IV.1.1A Theoretical Preparation: Basic
concepts

Riemann-Stieltjes Integral

b n
[ F00dex) = Jlim S F(wlg() ~ gx-)), provided exist
a P =1

Lebesgue-Stieltjes Integral

/f(x dg(x /f(x g (dx)

Provided g : [a, b] — R with bounded variation, there exists the
unique Boreal measure pg on [a, b] such that

pe((s, t]) = g(t) — g(s).



Example 4.2. the expectation of a r.v. X



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Stochastic Process A collection of r.v.s defined on a probability
space (2, F,P), and indexed by t in a set /:

{X(w;t) :weQ,tel},

donoted by X(-)
> | ={1,2,3,...} = a sequence of r.v.s
» | =[0,00) = a time continuous process

» | =10,1] x [0,1] = a random field



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Examples
» survival process of a subject
» counts of asthma attacks over time of a child
P air pollution level over time at Vancouver airport

» air pollution level over time across Canada



» Realization/Sample Path
With wp € Q,
{X(wo; t) : t €1},

a function of t € /

P continuous sample path
» cadlag path: right-continuous and left-limit-exist

» Modification vs Indistinguishable
> IfvVtel, Plw: X(w,t) = Y(w,t)) =1, X(:) is a modification
of Y(+).
> If P(w: X(w; t) = Y(w;t),Vt) =1, X(-) and Y(-) are
indistinguishable.

» Filtration (History) Given a probability space (2, F,P), a
sequence of non-decreasing o-algebra F; C F for t € I:
{.Ft te /}

> “history” H;=0(Xs:0<s<t)



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Gaussian Process X(-) = {X; : t € I} is a Gaussian process, if
any its finite dimensional distribution are multivariate normal,
characterized by mean u(t) = E(X;) and covariance

c(s, t) = Cov (X, Xs).

Special Cases:

» Wiener Process (Brownian Motion)
» Brownian Bridge on [0, 1]

» Gaussian Random Walk



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Poisson Process A stochastic process {N(w;t) :w € Q,t > 0} is
the Poisson process of rate p, if, as § — 0+,

> (i) P(N(t + 8) — N(t) = 1|H¢) = pb + o(4), and

> (i) P(N(t +6) — N(t) > 1|H;) = o(5), so that

> (iii) P(N(t +6) — N(t) = 0/H¢) = 1 — po + o(6).
Intensity Specification: The intensity of N(-) is

lim %P(N(t +6) = N(E) > 1[He) = p



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

» Interval Specification: N(-) is a Poisson process with rate p if
the subsequent points where N(-) have jumps are at times
X1, X1+ Xa, ... and r.v.s Xq, Xa, ... (the gap times) are iid
~ pe P,

> T,=X;+...+ X, the time of the rth point (event),
~ ryP(pt) e ", a Gamma distn.
P a convenient way to simulate a Poisson process

» Counting Specification N(-) is a Poisson process with rate p if
VA1,..., Ak disjoint sets of B(0,00), N(A1),..., N(Ak) are L
and with the Poisson distn of mean p|A;|, where N(A), a
non-negative integer r.v., is the count of events over time
period A.

> |A;| is the Lebesgue measure of Aj: the length of A; if it's an
interval.



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Extensions of Poisson Process:
The intensity of a Poisson process N(-) with rate of p is

lim %P(N(t +6) = N(t) > 1[Hy) = p.

time-homogeneous
» time-inhomogeneous Poisson process N(-) with its intensity function
of p(t):

Jlim %P(N(t +0) — N(t) > 1|H:) = p(t).

» mixed Poisson process Conditional on & ~ G(-), N(-) is a Poisson
process with rate of £p

» N(-)'s increments are not indepdent.
» overdispersion



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Concepts of Convergence with Stochastic Process
Recall ... ...

» With {x1,xp,...}, a sequence of constants,
lim x, = x*

n—o0

» With {Xi, X2,...}, a sequence of r.v.s,
> lim,_ 00 X, = X* a.s. (almost surely)

> lim, 00 X, = X™ in prob

» lim, 00 X, = X* in distn (weak convergence)



With {Xi1(-), Xa(+), ...}, a sequence of stochastic processes,
[1Xn(+) = X* ()1 = supee; [Xa(t) — X* ()],
» limp_oo Xn(-) = X*(+) in prob
Ve >0, P(w : || Xn(-) = X*()|]| >€) > 0as n— oo

» lim, 00 Xn(-) = X*(-) a.s. (almost surely)
[|Xa(-) = X*(-)|] = 0 a.s.

> limp_o0 Xn(-) = X*(+) in distn (weak convergence)

if Vf, real valued, bounded, measurable on (M, J),
Sy fdPy = [, fdP* as n — co. That is,
E[f(Xn)] — E[f(X*)].



Part IV.1.1B Theoretical Preparation: An
introduction to Stochastic Process

Often-Used Results (an analogue in stochastic processes to its
version in r.v.s)
» Slutsky's Theorem. If X,(-) — X(:) in distn and Y,(-) — m(-)
in prob, m(-) a constant function, then
Xn(-) + Ya(:) = X(-) + m(-) in distn and
Xn(-)Ya(-) = m(-)X(:) in distn

e.g. when m(-) = a

» Continuous Mapping Theorem. If X,(-) — X(-) in distn, V7,
continuous, f o X,(-) = f[Xn(-)] = f o X(-) in distn.

e.g. Yn = sup, [Xp(t)|



Example. Ti,..., T, ~ F(-) iid. The empirical distn based on the
data:

Bo(t) = ,172”:/(7,- <1)
i=1

> With t = o
» Over t € [0, 00)

Empirical Process Theory



Part IV.1.1C Martingale: An Introduction

Martingale Definition
Consider a stochastic process X(:) = {X(w;t) :w € Q,t > 0} on
(2, F,P), adapted to a filtration {F; : t > 0}.

Suppose X(-) is right-continuous left-hand limits. It is a martingale wrt
the filtration {F:} if

> (a) Vt, E|X(t)] < oo (integrable)

> (b) Vt, E[X(t + s)|F:] = X(t) ass. for s > 0.

> “fair game” in gambling. E(X(t)) = E(X(0))

» Sub (Super) Martingale: "=""in (b) of a martingale definition is
replaced by > (<)



Part IV.1.1C Martingale: An Introduction
Example. Random Walk X; = ijl Y, t=1,2,... and iid
V. — 1, with Pr1/2

77T -1, with Pr1/2



Part IV.1.1C Martingale: An Introduction

» Predictable. stochastic process X(-) is predictable wrt {#H;} if
X(t) is determined by H;— = o(X(u) : 0 < u < t).

Processes with left-continuous sample path are predictable.

» Stopping Time. r.v. T is a stopping time wrt a filtration {F;}
if {'T S t} S ]:t,Vt.



» Stopped Process. Suppose X(+) is a stochastic process
adapted to {¥;}, and 7 a stopping time wrt {F:}. We call
X7(-) a stopped process by 7: X" (t) = X(t A T).

» Notion of “Localization” in Theory.

> A sequence of stopping times, non-decreasing {7,} is called
“localizing sequence” if P(r, >t)—lasn—ocoforteT.

> We say X(:) has a certain property locally if there is a
localizing sequence {7,} such that, Vn, /(7, > 0)X™(-) has
the property.

e.g. X(+) is locally bounded.

e.g. X(-) is a local martingale.



Part IV.1.1C Martingale: An Introduction

Important Martingale Results
» Provided {M(t): t € T} is a martingale wrt {F;} and
M(0) =0,
> E(M(t))=0,VteT
> Cov(M(t+s)— M(t), M(t)) =0 and
Cov(M(t), M(t +s)) = Var(M(t)), Vt € T,s >0

» Provided {My(t) :t € T} and {Mo(t):t € T} are
martingales wrt {F;}, M(-) = aMy(-) + bMy(-) is a
martingale.

» Provided {M(t): t € T} is a martingale wrt {F;}, M?(-) is a
submartingale wrt {F;}.



Part IV.1.1C Martingale: An Introduction

Doob-Meyer Decomposition. If X(-) is a submartingale adapted
to {F: : t > 0}, there exists a unique, right-continuous,
non-decreasing, predictable process A(-) with A(0) =0 and

M(-) = X(-) — A(-) is a martingale wrt {F; : t > 0}. The process
A(") is called the compensator for X(-).

Example. N(-) is a Poisson process with intensity function p. (i)
N(-) is a submartingale. (ii) Its compensator A(:) is
A(t) = [; p(u)du, t > 0.

This result holds for any counting process N(-).



Part IV.1.1C Martingale: An Introduction

> If M(.) is martingale and (locally) square integrable, M? is a
(local) sub-martingale and has a compensator, denoted by
< M,;M > (.) such that M?(.)— < M, M > (.) is a
martingale.

The process < M, M > (.) is called the predictable quadratic
variation of M(.).

> If E[M(t)] =0, then
var[M(t)] = E[M?(t)] = E[< M, M > (t)].

» |If the zero mean martingale M = N — A satisfies
E[M?(t)] < oo and A(.) is continuous, then
<M, M>(.)=A(), as.



Part IV.1.1C Martingale: An Introduction

> My, M,, ... are zero mean martingales defined on the same
filtration.

» If both My and M, are (locally) square integrable, then there is
a right continuous predictable process < My, M, > such that
< My, My > (0) =0, E[| < My, M, > |] < oo, and
My (YMa()— < My, My > (.) is a martingale.

> If < My, M, >=0, a.s., My and M, are called orthogonal.
> If M;j = N; — A;, where N; is a counting process and A; its

(continuous) compensator, then if N; and N; don't jump at the
same ime, < M;, M; > (.) =0, as.



Suppose that N(.) is a counting process with E[N(t)] < oo, that A(.) is
the compensator for N(.) and H(.) a bunded, predictable process. Define

Q(.) by

0 :/O H(s)dM(s), where M(.) = N(.) — A(.).

> Q(.) is a zero-mean martingale.
> var[Q(t)] = E[Q*(t)]
> Q2(.) is a sub-martingale, and thus there is < Q, Q > (.) such that

Q%(.)— < Q,Q > (.) is a martingale. Hence,
var[Q(t)] = E[< @, Q > (t)]

> If A(.) is continuous, < Q, Q > (t) = fot H?(s)dA(s), a.s.

» If My, M, are martingales, H;, H> bounded predictable processes,
and @, Q> are defined in the same way as Q(.), the predictable

quadratic covariance process < Qy, @, > satisfies
t
< Q1 Q> (l’) = fO Hl(S)H2(S)d < My, My > (S)



Local Properties:

» M is a local martingale (sub-martingale) if 3 a localizing
sequence {7} such that for each n,
M,(.) = {M(t): 0 <t < 7,}is a martingale (sub-martingale).

> If as above but we also have sup, E[M?(t)] < oo for all n, M
is called a locally square-integrable martingale.

» Extended Doob-Meyer Decomposition: If X(.) is a local
sub-martingale, 3 a right continuous, nondecreasing
predictable process A(.) such that X(.) — A(.) is a local
martingale.



By the extended Doob-Meyer Decomposition,

» If N(.) is a counting process (not necessaryly E[N(t)] < o0),
then N(.) is a local sub-martingale. Thus, 3 a unique A(.)
(nondecreasing, right-continuous, predictable) such that
M(.) = N(.) — A(.) is a local martingale.

» If A(.) is locally bounded, then M(.) above is a local square
integrable martingale.

» If H(.) is locally-bounded and predictable, and M(.) is a local
martingale, then Q = [ HdM is a locally square integrable
martingale.



Part IV.1.1C Martingale: An Introduction

Martingale Central Limit Theorem (CLT)
Fori=1,...,n, let Njy(.) be counting process, Aj,(.) its
continuous compensator, Hjy(.) locally bounded predictable
process. Define

My = Nip — Ain, Upp = / HindMin, U = / H: dM i,

H:;v = Hin1[|Hin| > G]a Un = Z Ul'na 3 Un,e = Z Uin,e

Suppose that
(a) < Uy, U, > (t) — a(t) in prob, ¥t > 0 and some function
af.).
(b) < Une, Une > (t) — 0 in prob, ¥Vt > 0 and Ve > 0.
Then U, — U = [ fdW weakly, where W(.) is a Wiener process
and [ f2(s)ds = a(t).



Part IV.1.1C Martingale: An Introduction

That is, the limiting process U(.) is a zero-mean Gaussian process

with independent increments and var[U(t)] = a(t).
By the definitions of N;,, Ain, and Hi,,

Z / s)dAin(s),
< U,., 0 Z / H:2(s)dAin(s



What to study next?

Part IV. Advanced Topics

» Part IV.1 Counting Process Formulation (Revisits to KM
estm, logrank test, and Cox PH model)

» Part IV.1.1 Theoretical Preparation
» Part 1V.1.2 Counting Process Formulation in LIDA and
Applications: Revisits to KM, logrank, Cox PH

» Part V.2 Selected Recent Topics in LIDA
» Part IV.3 Beyond Lifetime Data Analysis
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