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Part IV.1.1C Martingale: An Introduction

Martingale Definition
Consider a stochastic process X(:) = {X(w;t) :w € Q,t > 0} on
(2, F,P), adapted to a filtration {F; : t > 0}.

Suppose X(-) is right-continuous left-hand limits. It is a martingale wrt
the filtration {F:} if

> (a) Vt, E|X(t)] < oo (integrable)

> (b) Vt, E[X(t + s)|F:] = X(t) ass. for s > 0.

> “fair game” in gambling. E(X(t)) = E(X(0))

» Sub (Super) Martingale: "=""in (b) of a martingale definition is
replaced by > (<)



Part IV.1.1C Martingale: An Introduction

» Predictable. stochastic process X(-) is predictable wrt {H.} if X(t)
is determined by H;_ = o(X(u): 0 < u < t).

Processes with left-continuous sample path are predictable.

» Stopping Time. r.v. T is a stopping time wrt a filtration {F,} if
{r <t} € F,Vt.

> Stopped Process. Suppose X(-) is a stochastic process adapted to
{F:}, and T a stopping time wrt {F;}. We call X"(-) a stopped
process by 7: X7 (t) = X(t A 7).



Part IV.1.1C Martingale: An Introduction

» Notion of “Localization” in Theory.

> A sequence of stopping times, non-decreasing {7,} is called
“localizing sequence” if P(t, >t) —lasn—ooforteT.

> We say X(-) has a certain property locally if there is a
localizing sequence {7,} such that, Vn, I(7, > 0)X"(-) has
the property.

e.g. X() is locally bounded.

e.g. X(:) is a local martingale.



Part IV.1.1C Martingale: An Introduction

Important Martingale Results
» Provided {M(t): t € T} is a martingale wrt {F;} and
M(0) =0,
> E(M(t))=0,VteT
> Cov(M(t+s)— M(t), M(t)) =0 and
Cov(M(t), M(t +s)) = Var(M(t)), Vt € T,s >0

» Provided {My(t) :t € T} and {Mo(t):t € T} are
martingales wrt {F;}, M(-) = aMy(-) + bMy(-) is a
martingale.

» Provided {M(t): t € T} is a martingale wrt {F;}, M?(-) is a
submartingale wrt {F;}.
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Doob-Meyer Decomposition. If X(-) is a submartingale adapted
to {F: : t > 0}, there exists a unique, right-continuous,
non-decreasing, predictable process A(-) with A(0) =0 and

M(-) = X(-) — A(-) is a martingale wrt {F; : t > 0}. The process
A(") is called the compensator for X(-).

Example. N(-) is a Poisson process with intensity function p. (i)
N(-) is a submartingale. (ii) Its compensator A(:) is
A(t) = [; p(u)du, t > 0.

This result holds for any counting process N(-).



Part IV.1.1C Martingale: An Introduction

> If M(.) is martingale and (locally) square integrable, M? is a
(local) sub-martingale and has a compensator, denoted by
< M,;M > (.) such that M?(.)— < M, M > (.) is a
martingale.

The process < M, M > (.) is called the predictable quadratic
variation of M(.).

> If E[M(t)] =0, then
var[M(t)] = E[M?(t)] = E[< M, M > (t)].

» |If the zero mean martingale M = N — A satisfies
E[M?(t)] < oo and A(.) is continuous, then
<M, M>(.)=A(), as.
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> My, M,, ... are zero mean martingales defined on the same
filtration.

» If both My and M, are (locally) square integrable, then there is
a right continuous predictable process < My, M, > such that
< My, My > (0) =0, E[| < My, M, > |] < oo, and
My (YMa()— < My, My > (.) is a martingale.

> If < My, M, >=0, a.s., My and M, are called orthogonal.
> If M;j = N; — A;, where N; is a counting process and A; its

(continuous) compensator, then if N; and N; don't jump at the
same ime, < M;, M; > (.) =0, as.



Suppose that N(.) is a counting process with E[N(t)] < oo, that A(.) is
the compensator for N(.) and H(.) a bunded, predictable process. Define

Q(.) by

0 :/O H(s)dM(s), where M(.) = N(.) — A(.).

> Q(.) is a zero-mean martingale.
> var[Q(t)] = E[Q*(t)]
> Q2(.) is a sub-martingale, and thus there is < Q, Q > (.) such that

Q%(.)— < Q,Q > (.) is a martingale. Hence,
var[Q(t)] = E[< @, Q > (t)]

> If A(.) is continuous, < Q, Q > (t) = fot H?(s)dA(s), a.s.

» If My, M, are martingales, H;, H> bounded predictable processes,
and @, Q> are defined in the same way as Q(.), the predictable

quadratic covariance process < Qy, @, > satisfies
t
< Q1 Q> (l’) = fO Hl(S)H2(S)d < My, My > (S)



Local Properties:

» M is a local martingale (sub-martingale) if 3 a localizing
sequence {7} such that for each n,
M,(.) = {M(t): 0 <t < 7,}is a martingale (sub-martingale).

> If as above but we also have sup, E[M?(t)] < oo for all n, M
is called a locally square-integrable martingale.

» Extended Doob-Meyer Decomposition: If X(.) is a local
sub-martingale, 3 a right continuous, nondecreasing
predictable process A(.) such that X(.) — A(.) is a local
martingale.



By the extended Doob-Meyer Decomposition,

» If N(.) is a counting process (not necessaryly E[N(t)] < o0),
then N(.) is a local sub-martingale. Thus, 3 a unique A(.)
(nondecreasing, right-continuous, predictable) such that
M(.) = N(.) — A(.) is a local martingale.

» If A(.) is locally bounded, then M(.) above is a local square
integrable martingale.

» If H(.) is locally-bounded and predictable, and M(.) is a local
martingale, then Q = [ HdM is a locally square integrable
martingale.
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Martingale Central Limit Theorem (CLT)
Fori=1,...,n, let Njy(.) be counting process, Aj,(.) its
continuous compensator, Hjy(.) locally bounded predictable
process. Define

Miy = Niy — Ay, Upp = / HipdMy, Uy = / Hy, . dMy,

HiT‘I,e = Hin1[|Hin| > €]a Un = Z Un, Un,e = Z Uin,e

Suppose that
(a) < Uy, U, > (t) — a(t) in prob, ¥t > 0 and some function
af.).
(b) < Une, Une > (t) — 0 in prob, ¥Vt > 0 and Ve > 0.
Then U, — U = [ fdW weakly, where W(.) is a Wiener process
and [ f2(s)ds = a(t).
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That is, the limiting process U(.) is a zero-mean Gaussian process

with independent increments and var[U(t)] = a(t).
By the definitions of N;,, Ain, and Hi,,

Z / s)dAin(s),
< Un, Z/ HIT72€ dAl" )



Part IV.1.2 Counting Process Formulation in LIDA
and Applications: Revisits to KM, Logrank, Cox PH

Part IV.1.2A Formulation

» Consider T, a lifetime with hazard function h(-).

» Let C be a censoring time, U= T A C and 6 = 1,0 for
U= T,C, respectively.

» Define N(t) = I(U <t,6 =1) and Y(t) = I(U > t).
If T 1L Cand T ~ f(-), C~ g(-),

= E[N(t)] = E[A(t)] with A(t) = [; h(x)Y (x)dx.

E[N(t)] =P(T<t,T<C(C)= /; /> f(x)g(y)dydx

E[A(t)] = /0 ChGOE[Y ()] dx = /O "h()P(U > x)dx



Part IV.1.2A Formulation

» Consider T, a lifetime with hazard function h(-).
> Let C be a censoring time, U= T A C and § = 1,0 for
U= T,C, respectively.
» Define N(t) =I(U <t,d =1)and Y(t)=1I(U > t).
If TL Cand T ~f(:), C~g(),

=
A(*) is the continuous compensator of N(-) wrt {#;}, and denote
M(-) = N() = AC)-

E[N(u+ Au) — N(u)| Y (u)] = Y(u)h(u)Au



Part IV.1.2A Formulation

Recall right-censored lifetimes {(U;,d;) : i = 1,...,n} from n indpt
individuals.

Define N,'(t) = /(U,' <td = 1) and Y,(t) = /(U,' > t).

Let N.(t) = > ; Ni(t), number of failures observed till t, and
Y (t) =31 Yi(t), number of individuals at risk at time t.

1xdt whent=U;, §;=1

Denote dN;(t) = { 0 otherwise

Then N;(t) = [y dN;(v) for t > 0.



Part IV.1.2A Formulation

Let A;(t) = [5 Yi(x)h(x)dx and M;(t) = N;(t) — Ai(t).

Thus N.(t) = [y Y.(v)h(v)dv + M(t).



Part IV.1.2B Reuvisit to Logrank Test

Logrank Test.

» Consider T, T event times in the treatment, control group,
with hazard functions hy(+), ho(-). Assume T; L Ty and
indepdent censoring time C.

» Ho: hi(:) = ho(-) vs Hy : otherwise.

> Data are
{(Uliaéli) = 1, PPN nl}U{UOja(SOj) _j = 1, ey no}

P> Test statistic

ZOE

va%

under Hop as n — oo with n = n; + ng and n1/n — p € (0,1).

— N(0,1) in distn

to verify the asymptotic normality?



Part IV.1.2B Reuvisit to Logrank Test

Introducing N]_,'(t) = /(Ul,' <t b= 1) and Yl,'(t) = /(Ul,' > t),
Noj(t) = I(UOj <t 60j = 1) and Yoj(t) = /(UOj > t), and
Nl.(t)a Yl.(t)v NO.(t)v YO.(t)-

With 0 < Vi < ... < VK < o all the distinct observed failure

times,
0 = N (o Z / aM(e) =3

E =31, Ex with

Nkl . Vi Yl.(v)
Ef =di— N, /Vk 1 md[m.(v) + No.(v)]



Part IV.1.2B Reuvisit to Logrank Test

B ©© o0 Yl,(t)
O—E = /0 le.(t) — /0 md[Nl(t) + NO.(t)]
— / [1 — Hn(t)]dNy(t) —/ Hn(t)dNo.(t)
0 0
Further, introducing Mj;(t) = Nj;(t) — Aj;(t) and

A/,—foh/ Y/,( )dvforizl,...,n,,/zl,O.
Under Hp, hi(-) = ho(+), and

/[1— )My (¢ /O@H()d%()
Z / [1 — Hy(t)]dMy;(t Z / (£)dMoy( 1)

denoted by U(c0).



Part IV.1.2B Reuvisit to Logrank Test

(a) Let Un(t) = \% (t):

= tl — v 2 i\v tl v 2 0j(V
<UnUn>(t) = Z/O —[1 = Ha(v)dAu( sz:/o — Hn(v)*dAoj(v)
- / n- Hn(v)]zhl(v)Yl,(v)dv—o—/ ~ Hu(v) ho(v) Yo.(v)dv
0 0
converges to «(t) in prob, because
() Yi.(v)/m — P(U; = v);

(it) Ha(v) = pG1(v)/[pGi(u) + (1 — p) Go(u)].



Part IV.1.2B Reuvisit to Logrank Test

(b) Let Up((t) be
Z/ L H(O1(H ()] > dmi(e) 2/ IH: ()] = )Mot
< Upe, Une > (1) s
S [ J BRI (]2 i (e
+ Z/ (WPHH; ()] = ) Yo (v)ho(v)dv
converges to 0 in prob, because /(|H;(v)] > ) and

I(|H*(v)| > €) converge to 0 in prob.



Part IV.1.2B Reuvisit to Logrank Test

By the Martingale CLT,
Un(t) — Gaussian(0, o(t))

in distn as n — oo. Thus

1

U(oco N(0,1).
— V) e

in distn as n — oo.



Part IV.1.2B Reuvisit to Logrank Test

Recall that O — E = U(o0) is

oo Yo.(v) ) Yo (v)
/0 Yl‘(\/)‘i‘Y(J.(‘/)le'(V)_/O mng(v)

_ /°° Yo.(v)Y1.(v) [le.(V)_dNO,(v)]
o Yi.(W+Yo(WLYi(v)  Yo(v)




Part IV.1.2B Reuvisit to Logrank Test

Remarks

» Nelson-Aalen Estimator for the cumulative hazards H,(-):

~ | N to1
Hl(t):/o Yl'(v)le_(V), Ho(t):/o Yo.(v)dNO'(V)

(Nelson, 1969; Aalen, 1972)

— §(t) = exp{—Hi(1)},

an estimator for the survivor function S;(-): not the same as
KM estimator but asymptotically equivalent, with higher finite
sample efficiency.



Part IV.1.2B Reuvisit to Logrank Test

» A Class of Rank Tests: Hp : Ho(:) = Hi(")

/0 T Wa(8)[dA(t) — dF(D)]

with W,(+) predictable, non-negative and order of n.

> eg Wy(t) = % = Logrank Test

> eg. Wy(t)= M = Gehan-Wilcoxon Test

> eg Wy(t) = §*(t)% = Prentice-Wicoxon Test

(5~ (t) the left-cont’s version of SM estm)

> eg W,(t)=[5(t)]* YTO(SLY% )) = Fleming-Hurrington
Test



Part IV.1.2B Reuvisit to Logrank Test

» A Class of Rank Tests: Hp : Ho(:) = Hi(")

" Yo t)yl (t) ~ 2
/ W05 0 1y (g19Fh(t) — dPo(t)]

with W (-) predictable, bounded, and non-negative. How to

choose W;i(-) to achieve a powerful test?

> If Hy :log [hl( )/ho(t)] = ag(t), optimal weight?
e.g. Lagakos and Schoenfeld (1984).
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