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Part IV.1.1C Martingale: An Introduction

Martingale Definition
Consider a stochastic process X (·) = {X (ω; t) : ω ∈ Ω, t ≥ 0} on
(Ω,F ,P), adapted to a filtration {Ft : t ≥ 0}.

Suppose X (·) is right-continuous left-hand limits. It is a martingale wrt
the filtration {Ft} if

I (a) ∀t, E |X (t)| <∞ (integrable)

I (b) ∀t, E
[
X (t + s)|Ft

]
= X (t) a.s. for s ≥ 0.

I “fair game” in gambling: E (X (t)) = E (X (0))

I Sub (Super) Martingale: “=” in (b) of a martingale definition is
replaced by ≥ (≤)



Part IV.1.1C Martingale: An Introduction

I Predictable. stochastic process X (·) is predictable wrt {Ht} if X (t)
is determined by Ht− = σ(X (u) : 0 ≤ u < t).

Processes with left-continuous sample path are predictable.

I Stopping Time. r.v. τ is a stopping time wrt a filtration {Ft} if
{τ ≤ t} ∈ Ft ,∀t.

I Stopped Process. Suppose X (·) is a stochastic process adapted to
{Ft}, and τ a stopping time wrt {Ft}. We call X τ (·) a stopped
process by τ : X τ (t) = X (t ∧ τ).



Part IV.1.1C Martingale: An Introduction

I Notion of “Localization” in Theory.

I A sequence of stopping times, non-decreasing {τn} is called
“localizing sequence” if P(τn ≥ t)→ 1 as n→∞ for t ∈ T .

I We say X (·) has a certain property locally if there is a
localizing sequence {τn} such that, ∀n, I (τn > 0)X τn(·) has
the property.

e.g. X (·) is locally bounded.

e.g. X (·) is a local martingale.



Part IV.1.1C Martingale: An Introduction

Important Martingale Results
I Provided {M(t) : t ∈ T } is a martingale wrt {Ft} and

M(0) = 0,
I E (M(t)) = 0,∀t ∈ T
I Cov(M(t + s)−M(t),M(t)) = 0 and

Cov(M(t),M(t + s)) = Var(M(t)), ∀t ∈ T , s > 0

I Provided {M1(t) : t ∈ T } and {M2(t) : t ∈ T } are
martingales wrt {Ft}, M(·) = aM1(·) + bM2(·) is a
martingale.

I Provided {M(t) : t ∈ T } is a martingale wrt {Ft}, M2(·) is a
submartingale wrt {Ft}.
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Doob-Meyer Decomposition. If X (·) is a submartingale adapted
to {Ft : t ≥ 0}, there exists a unique, right-continuous,
non-decreasing, predictable process A(·) with A(0) = 0 and
M(·) = X (·)− A(·) is a martingale wrt {Ft : t ≥ 0}. The process
A(·) is called the compensator for X (·).

Example. N(·) is a Poisson process with intensity function ρ. (i)
N(·) is a submartingale. (ii) Its compensator A(·) is
A(t) =

∫ t
0 ρ(u)du, t ≥ 0.

This result holds for any counting process N(·).



Part IV.1.1C Martingale: An Introduction

I If M(.) is martingale and (locally) square integrable, M2 is a
(local) sub-martingale and has a compensator, denoted by
< M,M > (.) such that M2(.)− < M,M > (.) is a
martingale.

The process < M,M > (.) is called the predictable quadratic
variation of M(.).

I If E [M(t)] = 0, then
var [M(t)] = E [M2(t)] = E [< M,M > (t)].

I If the zero mean martingale M = N − A satisfies
E [M2(t)] <∞ and A(.) is continuous, then
< M,M > (.) = A(.), a.s.
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I M1,M2, . . . are zero mean martingales defined on the same
filtration.

I If both M1 and M2 are (locally) square integrable, then there is
a right continuous predictable process < M1,M2 > such that
< M1,M2 > (0) = 0, E [

∣∣ < M1,M2 >
∣∣] <∞, and

M1(.)M2(.)− < M1,M2 > (.) is a martingale.

I If < M1,M2 >= 0, a.s., M1 and M2 are called orthogonal.

I If Mj = Nj − Aj , where Nj is a counting process and Aj its
(continuous) compensator, then if Ni and Nj don’t jump at the
same ime, < Mi ,Mj > (.) = 0, a.s.



Suppose that N(.) is a counting process with E [N(t)] <∞, that A(.) is
the compensator for N(.) and H(.) a bunded, predictable process. Define
Q(.) by

Q(t) =

∫ t

0

H(s)dM(s), where M(.) = N(.)− A(.).

I Q(.) is a zero-mean martingale.

I var [Q(t)] = E [Q2(t)]

I Q2(.) is a sub-martingale, and thus there is < Q,Q > (.) such that
Q2(.)− < Q,Q > (.) is a martingale. Hence,
var [Q(t)] = E [< Q,Q > (t)]

I If A(.) is continuous, < Q,Q > (t) =
∫ t

0
H2(s)dA(s), a.s.

I If M1,M2 are martingales, H1,H2 bounded predictable processes,
and Q1,Q2 are defined in the same way as Q(.), the predictable
quadratic covariance process < Q1,Q2 > satisfies
< Q1,Q2 > (t) =

∫ t

0
H1(s)H2(s)d < M1,M2 > (s).



Local Properties:

I M is a local martingale (sub-martingale) if ∃ a localizing
sequence {τn} such that for each n,
Mn(.) = {M(t) : 0 ≤ t ≤ τn} is a martingale (sub-martingale).

I If as above but we also have supt E [M2
n(t)] <∞ for all n, M

is called a locally square-integrable martingale.

I Extended Doob-Meyer Decomposition: If X (.) is a local
sub-martingale, ∃ a right continuous, nondecreasing
predictable process A(.) such that X (.)− A(.) is a local
martingale.



By the extended Doob-Meyer Decomposition,

I If N(.) is a counting process (not necessaryly E [N(t)] <∞),
then N(.) is a local sub-martingale. Thus, ∃ a unique A(.)
(nondecreasing, right-continuous, predictable) such that
M(.) = N(.)− A(.) is a local martingale.

I If A(.) is locally bounded, then M(.) above is a local square
integrable martingale.

I If H(.) is locally-bounded and predictable, and M(.) is a local
martingale, then Q =

∫
HdM is a locally square integrable

martingale.
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Martingale Central Limit Theorem (CLT)
For i = 1, . . . , n, let Nin(.) be counting process, Ain(.) its
continuous compensator, Hin(.) locally bounded predictable
process. Define

Min = Nin − Ain, Uin =

∫
HindMin, Uin,ε =

∫
H∗

in,εdMin,

H∗
in,ε = Hin1[|Hin| ≥ ε], Ūn =

∑
i

Uin, , Ūn,ε =
∑
i

Uin,ε

Suppose that

(a) < Ūn, Ūn > (t)→ α(t) in prob, ∀t ≥ 0 and some function
α(.).

(b) < Ūn,ε, Ūn,ε > (t)→ 0 in prob, ∀t ≥ 0 and ∀ε ≥ 0.

Then Ūn → U =
∫
fdW weakly, where W (.) is a Wiener process

and
∫ t
0 f 2(s)ds = α(t).
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That is, the limiting process U(.) is a zero-mean Gaussian process
with independent increments and var [U(t)] = α(t).
By the definitions of Nin,Ain, and Hin,

< Ūn, Ūn > (t) =
n∑

i=1

∫ t

0

H2
in(s)dAin(s),

< Ūn,ε, Ūn,ε > (t) =
n∑

i=1

∫ t

0

H∗2
in,ε(s)dAin(s).



Part IV.1.2 Counting Process Formulation in LIDA
and Applications: Revisits to KM, Logrank, Cox PH

Part IV.1.2A Formulation

I Consider T , a lifetime with hazard function h(·).

I Let C be a censoring time, U = T ∧ C and δ = 1, 0 for
U = T ,C , respectively.

I Define N(t) = I (U ≤ t, δ = 1) and Y (t) = I (U ≥ t).

If T ⊥⊥ C and T ∼ f (·), C ∼ g(·),

=⇒ E
[
N(t)

]
= E

[
A(t)

]
with A(t) =

∫ t
0 h(x)Y (x)dx .

E
[
N(t)

]
= P(T ≤ t,T ≤ C) =

∫ t

0

∫
y≥x

f (x)g(y)dydx

E
[
A(t)

]
=

∫ t

0

h(x)E
[
Y (x)

]
dx =

∫ t

0

h(x)P(U ≥ x)dx



Part IV.1.2A Formulation

I Consider T , a lifetime with hazard function h(·).

I Let C be a censoring time, U = T ∧ C and δ = 1, 0 for
U = T ,C , respectively.

I Define N(t) = I (U ≤ t, δ = 1) and Y (t) = I (U ≥ t).

If T ⊥⊥ C and T ∼ f (·), C ∼ g(·),

=⇒
A(·) is the continuous compensator of N(·) wrt {Ht}, and denote
M(·) = N(·)− A(·).

E
[
N(u + ∆u)− N(u)

∣∣Y (u)
]
≈ Y (u)h(u)∆u



Part IV.1.2A Formulation

Recall right-censored lifetimes {(Ui , δi ) : i = 1, . . . , n} from n indpt
individuals.

Define Ni (t) = I (Ui ≤ t, δi = 1) and Yi (t) = I (Ui ≥ t).

Let N.(t) =
∑n

i=1Ni (t), number of failures observed till t, and
Y.(t) =

∑n
i=1 Yi (t), number of individuals at risk at time t.

Denote dNi (t) =

{
1× dt when t = Ui , δi = 1

0 otherwise

Then Ni (t) =
∫ t
0 dNi (v) for t ≥ 0.



Part IV.1.2A Formulation

Let Ai (t) =
∫ t
0 Yi (x)h(x)dx and Mi (t) = Ni (t)− Ai (t).

Thus N.(t) =
∫ t
0 Y.(v)h(v)dv + M.(t).



Part IV.1.2B Revisit to Logrank Test

Logrank Test.

I Consider T1,T0 event times in the treatment, control group,
with hazard functions h1(·), h0(·). Assume T1 ⊥⊥ T0 and
indepdent censoring time C .

I H0 : h1(·) = h0(·) vs H1 : otherwise.

I Data are
{(U1i , δ1i ) : i = 1, . . . , n1}

⋃
{U0j , δ0j) : j = 1, . . . , n0}

I Test statistic

Z =
O − E√

V
→ N(0, 1) in distn

under H0 as n→∞ with n = n1 + n0 and n1/n→ p ∈ (0, 1).

to verify the asymptotic normality?



Part IV.1.2B Revisit to Logrank Test

Introducing N1i (t) = I (U1i ≤ t, δ1i = 1) and Y1i (t) = I (U1i ≥ t),
N0j(t) = I (U0j ≤ t, δ0j = 1) and Y0j(t) = I (U0j ≥ t), and
N1.(t),Y1.(t),N0.(t),Y0.(t).

With 0 < V1 < . . . < VK <∞ all the distinct observed failure
times,

O = N1.(∞) =

n1∑
i=1

∫ ∞
0

dN1i (t) =
∑
k

d1k

E =
∑K

k=1 Ek with

Ek = dk
Nk1

Nk
=

∫ Vk

Vk−1

Y1.(v)

Y1.(v) + Y0.(v)
d [N1.(v) + N0.(v)]



Part IV.1.2B Revisit to Logrank Test

O − E =

∫ ∞
0

dN1.(t)−
∫ ∞
0

Y1.(t)

Y1.(t) + Y0.(t)
d [N1.(t) + N0.(t)]

=

∫ ∞
0

[1− Hn(t)]dN1.(t)−
∫ ∞
0

Hn(t)dN0.(t)

Further, introducing Mli (t) = Nli (t)− Ali (t) and
Ali =

∫ t
0 hl(v)Yli (v)dv for i = 1, . . . , nl , l = 1, 0.

Under H0, h1(·) = h0(·), and

O − E =

∫ ∞
0

[1− Hn(t)]dM1.(t)−
∫ ∞
0

Hn(t)dM0.(t)

=
∑
i

∫ ∞
0

[1− Hn(t)]dM1i (t)−
∑
j

∫ ∞
0

Hn(t)dM0j(t),

denoted by U(∞).



Part IV.1.2B Revisit to Logrank Test

(a) Let Un(t) = 1√
n
U(t):

< Un,Un > (t) =
∑
i

∫ t

0

1

n
[1− Hn(v)]

2dA1i (v) +
∑
j

∫ t

0

1

n
Hn(v)

2dA0j(v)

=

∫ t

0

1

n
[1− Hn(v)]

2h1(v)Y1.(v)dv +

∫ t

0

1

n
Hn(v)

2h0(v)Y0.(v)dv

converges to α(t) in prob, because

(i) Yl .(v)/nl → P(Ul ≥ v);

(ii) Hn(v)→ pG1(v)/[pG1(u) + (1− p)G0(u)].



Part IV.1.2B Revisit to Logrank Test

(b) Let Un,ε(t) be

∑
i

∫ t

0

1√
n
[1−Hn(t)]I (|H∗∗

n (v)| ≥ ε)dM1i (t)−
∑
j

∫ t

0

1√
n
Hn(t)I (|H∗

n (v)| ≥ ε)dM0j(t)

< Un,ε,Un,ε > (t) is∑
i

∫ t

0

1

n
[1− Hn(v)]

2I (|H∗∗
n (v)| ≥ ε)Y1i (v)h1(v)dv

+
∑
j

∫ t

0

1

n
Hn(v)

2I (|H∗
n (v)| ≥ ε)Y0j(v)h0(v)dv

converges to 0 in prob, because I (|H∗n(v)| ≥ ε) and

I (|H∗∗n (v)| ≥ ε) converge to 0 in prob.



Part IV.1.2B Revisit to Logrank Test

By the Martingale CLT,

Un(t)→ Gaussian
(
0, α(t)

)
in distn as n→∞. Thus

1√
nα(∞)

U(∞)→ N(0, 1).

in distn as n→∞.



Part IV.1.2B Revisit to Logrank Test

Recall that O − E = U(∞) is∫ ∞
0

Y0.(v)

Y1.(v) + Y0.(v)
dN1.(v)−

∫ ∞
0

Y1.(v)

Y1.(v) + Y0.(v)
dN0.(v)

=

∫ ∞
0

Y0.(v)Y1.(v)

Y1.(v) + Y0.(v)

[dN1.(v)

Y1.(v)
− dN0.(v)

Y0.(v)

]
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Remarks

I Nelson-Aalen Estimator for the cumulative hazards Hl(·):

Ĥ1(t) =

∫ t

0

1

Y1.(v)
dN1.(v), Ĥ0(t) =

∫ t

0

1

Y0.(v)
dN0.(v)

(Nelson, 1969; Aalen, 1972)

=⇒ Ŝl(t) = exp{−Ĥl(t)},

an estimator for the survivor function Sl(·): not the same as
KM estimator but asymptotically equivalent, with higher finite
sample efficiency.
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I A Class of Rank Tests: H0 : H0(·) = H1(·)∫ ∞
0

Wn(t)[dĤ1(t)− dĤ0(t)],

with Wn(·) predictable, non-negative and order of n.

I e.g. Wn(t) = Y0.(t)Y1.(t)
Y1.(t)+Y0.(t)

=⇒ Logrank Test

I e.g. Wn(t) = Y0.(t)Y1.(t)
n =⇒ Gehan-Wilcoxon Test

I e.g. Wn(t) = Ŝ−(t) Y0.(t)Y1.(t)
Y1.(t)+Y0.(t)

=⇒ Prentice-Wicoxon Test

(Ŝ−(t) the left-cont’s version of SM estm)
I e.g. Wn(t) = [Ŝ−(t)]α Y0.(t)Y1.(t)

Y1.(t)+Y0.(t)
=⇒ Fleming-Hurrington

Test



Part IV.1.2B Revisit to Logrank Test

I A Class of Rank Tests: H0 : H0(·) = H1(·)∫ ∞
0

W ∗
n (t)

Y0.(t)Y1.(t)

Y1.(t) + Y0.(t)
[dĤ1(t)− dĤ0(t)],

with W ∗
n (·) predictable, bounded, and non-negative. How to

choose W ∗
n (·) to achieve a powerful test?

I If H1 : log
[
h1(t)/h0(t)

]
= αg(t), optimal weight?

e.g. Lagakos and Schoenfeld (1984).
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