What to do today (2022/03/15)?

Part IV. Advanced Topics

Part IV.1 Counting Process Formulation

Part IV.1.1 Theoretical Preparation

- ► IV.1.1A Basic concepts
- IV.1.1B An introduction to stochastic process
- ► IV.1.1C Counting process and martingale: the key results
- Part IV.1.2 Counting Process Formulation in LIDA and Applications: Revisits to KM, logrank, Cox PH
 - **IV.1.2A** Formulation
 - IV.1.2B Revisit to Logrank Test
 - IV.1.2C Revisit to Cox's Partial Likelihood Approach
 - IV.1.2D Revisit to Kaplan-Meier Estimator
 - ► IV.1.2E Others
- Part IV.2 Selected Recent Topics in LIDA
- Part IV.3 Beyond Lifetime Data Analysis

Martingale Definition

Consider a stochastic process $X(\cdot) = \{X(\omega; t) : \omega \in \Omega, t \ge 0\}$ on $(\Omega, \mathcal{F}, \mathcal{P})$, adapted to a filtration $\{\mathcal{F}_t : t \ge 0\}$.

Suppose $X(\cdot)$ is right-continuous left-hand limits. It is a martingale wrt the filtration $\{\mathcal{F}_t\}$ if

• (a)
$$\forall t, E|X(t)| < \infty$$
 (integrable)

► (b)
$$\forall t$$
, $E[X(t+s)|\mathcal{F}_t] = X(t)$ a.s. for $s \ge 0$.

• "fair game" in gambling: E(X(t)) = E(X(0))

Sub (Super) Martingale: "=" in (b) of a martingale definition is replaced by ≥ (≤)

Predictable. stochastic process X(·) is predictable wrt {H_t} if X(t) is determined by H_{t−} = σ(X(u) : 0 ≤ u < t).</p>

Processes with left-continuous sample path are predictable.

- Stopping Time. r.v. τ is a stopping time wrt a filtration $\{\mathcal{F}_t\}$ if $\{\tau \leq t\} \in \mathcal{F}_t, \forall t$.
- Stopped Process. Suppose X(·) is a stochastic process adapted to {F_t}, and τ a stopping time wrt {F_t}. We call X^τ(·) a stopped process by τ: X^τ(t) = X(t ∧ τ).

Notion of "Localization" in Theory.

A sequence of stopping times, non-decreasing {τ_n} is called "localizing sequence" if P(τ_n ≥ t) → 1 as n → ∞ for t ∈ T.

We say X(·) has a certain property locally if there is a localizing sequence {τ_n} such that, ∀n, I(τ_n > 0)X^{τ_n}(·) has the property.

e.g. $X(\cdot)$ is locally bounded.

e.g. $X(\cdot)$ is a local martingale.

Important Martingale Results

Provided $\{M(t) : t \in \mathcal{T}\}$ is a martingale wrt $\{\mathcal{F}_t\}$ and M(0) = 0,

$$\blacktriangleright E(M(t)) = 0, \forall t \in \mathcal{T}$$

- Cov(M(t+s) M(t), M(t)) = 0 and $Cov(M(t), M(t+s)) = Var(M(t)), \forall t \in T, s > 0$
- Provided {M₁(t) : t ∈ T} and {M₂(t) : t ∈ T} are martingales wrt {F_t}, M(·) = aM₁(·) + bM₂(·) is a martingale.
- Provided {M(t) : t ∈ T} is a martingale wrt {F_t}, M²(·) is a submartingale wrt {F_t}.

Doob-Meyer Decomposition. If $X(\cdot)$ is a submartingale adapted to $\{\mathcal{F}_t : t \ge 0\}$, there exists a unique, right-continuous, non-decreasing, predictable process $A(\cdot)$ with A(0) = 0 and $M(\cdot) = X(\cdot) - A(\cdot)$ is a martingale wrt $\{\mathcal{F}_t : t \ge 0\}$. The process $A(\cdot)$ is called the *compensator* for $X(\cdot)$.

Example. $N(\cdot)$ is a Poisson process with intensity function ρ . (i) $N(\cdot)$ is a submartingale. (ii) Its compensator $A(\cdot)$ is $A(t) = \int_0^t \rho(u) du$, $t \ge 0$.

This result holds for any counting process $N(\cdot)$.

If M(.) is martingale and (locally) square integrable, M² is a (local) sub-martingale and has a compensator, denoted by < M, M > (.) such that M²(.)− < M, M > (.) is a martingale.

The process $\langle M, M \rangle$ (.) is called the predictable quadratic variation of M(.).

If *E*[*M*(*t*)] = 0, then *var*[*M*(*t*)] = *E*[*M*²(*t*)] = *E*[< *M*, *M* > (*t*)].
 If the zero mean martingale *M* = *N* − *A* satisfies *E*[*M*²(*t*)] < ∞ and *A*(.) is continuous, then < *M*, *M* > (.) = *A*(.), a.s.

- ► M₁, M₂,... are zero mean martingales defined on the same filtration.
 - ▶ If both M_1 and M_2 are (locally) square integrable, then there is a right continuous predictable process $< M_1, M_2 >$ such that $< M_1, M_2 > (0) = 0, E[| < M_1, M_2 > |] < \infty$, and $M_1(.)M_2(.) - < M_1, M_2 > (.)$ is a martingale.
 - If $< M_1, M_2 >= 0$, a.s., M_1 and M_2 are called orthogonal.
 - If M_j = N_j − A_j, where N_j is a counting process and A_j its (continuous) compensator, then if N_i and N_j don't jump at the same ime, < M_i, M_j > (.) = 0, a.s.

Suppose that N(.) is a counting process with $E[N(t)] < \infty$, that A(.) is the compensator for N(.) and H(.) a bunded, predictable process. Define Q(.) by

$$Q(t) = \int_0^t H(s) dM(s)$$
, where $M(.) = N(.) - A(.)$.

▶ Q(.) is a zero-mean martingale.

•
$$var[Q(t)] = E[Q^2(t)]$$

- ▶ $Q^2(.)$ is a sub-martingale, and thus there is $\langle Q, Q \rangle$ (.) such that $Q^2(.) \langle Q, Q \rangle$ (.) is a martingale. Hence, $var[Q(t)] = E[\langle Q, Q \rangle(t)]$
- If A(.) is continuous, $\langle Q, Q \rangle(t) = \int_0^t H^2(s) dA(s)$, a.s.
- If M₁, M₂ are martingales, H₁, H₂ bounded predictable processes, and Q₁, Q₂ are defined in the same way as Q(.), the predictable quadratic covariance process < Q₁, Q₂ > satisfies < Q₁, Q₂ > (t) = ∫₀^t H₁(s)H₂(s)d < M₁, M₂ > (s).

Local Properties:

- M is a local martingale (sub-martingale) if ∃ a localizing sequence {τ_n} such that for each n, M_n(.) = {M(t) : 0 ≤ t ≤ τ_n} is a martingale (sub-martingale).
- If as above but we also have sup_t E[M²_n(t)] < ∞ for all n, M is called a locally square-integrable martingale.</p>
- Extended Doob-Meyer Decomposition: If X(.) is a local sub-martingale, ∃ a right continuous, nondecreasing predictable process A(.) such that X(.) – A(.) is a local martingale.

By the extended Doob-Meyer Decomposition,

- If N(.) is a counting process (not necessaryly E[N(t)] < ∞), then N(.) is a local sub-martingale. Thus, ∃ a unique A(.) (nondecreasing, right-continuous, predictable) such that M(.) = N(.) A(.) is a local martingale.
- If A(.) is locally bounded, then M(.) above is a local square integrable martingale.
- ▶ If H(.) is locally-bounded and predictable, and M(.) is a local martingale, then $Q = \int H dM$ is a locally square integrable martingale.

Martingale Central Limit Theorem (CLT)

For i = 1, ..., n, let $N_{in}(.)$ be counting process, $A_{in}(.)$ its continuous compensator, $H_{in}(.)$ locally bounded predictable process. Define

$$M_{in} = N_{in} - A_{in}, \quad U_{in} = \int H_{in} dM_{in}, \quad U_{in,\epsilon} = \int H_{in,\epsilon}^* dM_{in},$$
$$H_{in,\epsilon}^* = H_{in} \mathbf{1}[|H_{in}| \ge \epsilon], \quad \bar{U}_n = \sum_i U_{in}, \quad , \bar{U}_{n,\epsilon} = \sum_i U_{in,\epsilon}$$

Suppose that

(a) $\langle \bar{U}_n, \bar{U}_n \rangle$ (t) $\rightarrow \alpha(t)$ in prob, $\forall t \ge 0$ and some function $\alpha(.)$. (b) $\langle \bar{U}_{n,\epsilon}, \bar{U}_{n,\epsilon} \rangle$ (t) $\rightarrow 0$ in prob, $\forall t \ge 0$ and $\forall \epsilon \ge 0$.

Then $\overline{U}_n \to U = \int f dW$ weakly, where W(.) is a Wiener process and $\int_0^t f^2(s) ds = \alpha(t)$.

That is, the limiting process U(.) is a zero-mean Gaussian process with independent increments and $var[U(t)] = \alpha(t)$. By the definitions of N_{in} , A_{in} , and H_{in} ,

$$(t)=\sum_{i=1}^n\int_0^t H_{in}^2(s)dA_{in}(s),$$

$$(t)=\sum_{i=1}^n\int_0^tH^{*2}_{in,\epsilon}(s)dA_{in}(s).$$

Part IV.1.2 Counting Process Formulation in LIDA and Applications: Revisits to KM, Logrank, Cox PH

Part IV.1.2A Formulation

- Consider T, a lifetime with hazard function $h(\cdot)$.
- Let C be a censoring time, U = T ∧ C and δ = 1,0 for U = T, C, respectively.

• Define $N(t) = I(U \le t, \delta = 1)$ and $Y(t) = I(U \ge t)$. If $T \perp C$ and $T \sim f(\cdot)$, $C \sim g(\cdot)$,

$$\implies E[N(t)] = E[A(t)] \text{ with } A(t) = \int_0^t h(x)Y(x)dx.$$
$$E[N(t)] = P(T \le t, T \le C) = \int_0^t \int_{y \ge x} f(x)g(y)dydx$$
$$E[A(t)] = \int_0^t h(x)E[Y(x)]dx = \int_0^t h(x)P(U \ge x)dx$$

Part IV.1.2A Formulation

• Consider T, a lifetime with hazard function $h(\cdot)$.

- Let C be a censoring time, U = T ∧ C and δ = 1,0 for U = T, C, respectively.
- Define $N(t) = I(U \le t, \delta = 1)$ and $Y(t) = I(U \ge t)$.

If $T \perp C$ and $T \sim f(\cdot)$, $C \sim g(\cdot)$,

 \implies

 $A(\cdot)$ is the continuous compensator of $N(\cdot)$ wrt $\{\mathcal{H}_t\}$, and denote $M(\cdot) = N(\cdot) - A(\cdot)$.

$$E[N(u + \Delta u) - N(u)|Y(u)] \approx Y(u)h(u)\Delta u$$

Part IV.1.2A Formulation

Recall *right-censored* lifetimes $\{(U_i, \delta_i) : i = 1, ..., n\}$ from *n* indpt individuals.

Define
$$N_i(t) = I(U_i \le t, \delta_i = 1)$$
 and $Y_i(t) = I(U_i \ge t)$.

Let $N_i(t) = \sum_{i=1}^n N_i(t)$, number of failures observed till t, and $Y_i(t) = \sum_{i=1}^n Y_i(t)$, number of individuals at risk at time t.

Denote
$$dN_i(t) = \left\{ egin{array}{cc} 1 imes dt & \textit{when } t = U_i, \ \delta_i = 1 \\ 0 & \textit{otherwise} \end{array}
ight.$$

Then $N_i(t) = \int_0^t dN_i(v)$ for $t \ge 0$.

Part IV.1.2A Formulation

Let
$$A_i(t) = \int_0^t Y_i(x)h(x)dx$$
 and $M_i(t) = N_i(t) - A_i(t)$.

Thus $N_{.}(t) = \int_{0}^{t} Y_{.}(v)h(v)dv + M_{.}(t).$

Logrank Test.

Consider T₁, T₀ event times in the treatment, control group, with hazard functions h₁(·), h₀(·). Assume T₁ ⊥ T₀ and indepdent censoring time C.

•
$$H_0: h_1(\cdot) = h_0(\cdot)$$
 vs $H_1:$ otherwise.

• Data are $\{(U_{1i}, \delta_{1i}) : i = 1, ..., n_1\} \bigcup \{U_{0j}, \delta_{0j}\} : j = 1, ..., n_0\}$

$$Z = rac{O-E}{\sqrt{V}} o N(0,1)$$
 in distn

under H_0 as $n \to \infty$ with $n = n_1 + n_0$ and $n_1/n \to p \in (0, 1)$.

to verify the asymptotic normality?

Introducing
$$N_{1i}(t) = I(U_{1i} \le t, \delta_{1i} = 1)$$
 and $Y_{1i}(t) = I(U_{1i} \ge t)$,
 $N_{0j}(t) = I(U_{0j} \le t, \delta_{0j} = 1)$ and $Y_{0j}(t) = I(U_{0j} \ge t)$, and
 $N_{1.}(t), Y_{1.}(t), N_{0.}(t), Y_{0.}(t)$.

With 0 < $V_1 < \ldots <$ $V_{\mathcal{K}} < \infty$ all the distinct observed failure times,

$$O = N_{1.}(\infty) = \sum_{i=1}^{n_1} \int_0^\infty dN_{1i}(t) = \sum_k d_{1k}$$

 $E = \sum_{k=1}^{K} E_k$ with

$$E_{k} = d_{k} \frac{N_{k1}}{N_{k}} = \int_{V_{k-1}}^{V_{k}} \frac{Y_{1.}(v)}{Y_{1.}(v) + Y_{0.}(v)} d[N_{1.}(v) + N_{0.}(v)]$$

$$O-E = \int_0^\infty dN_{1.}(t) - \int_0^\infty \frac{Y_{1.}(t)}{Y_{1.}(t) + Y_{0.}(t)} d[N_{1.}(t) + N_{0.}(t)]$$

=
$$\int_0^\infty [1 - H_n(t)] dN_{1.}(t) - \int_0^\infty H_n(t) dN_{0.}(t)$$

Further, introducing $M_{li}(t) = N_{li}(t) - A_{li}(t)$ and $A_{li} = \int_0^t h_l(v) Y_{li}(v) dv$ for $i = 1, ..., n_l$, l = 1, 0. Under H_0 , $h_1(\cdot) = h_0(\cdot)$, and

$$O-E = \int_0^\infty [1-H_n(t)] dM_{1.}(t) - \int_0^\infty H_n(t) dM_{0.}(t)$$

= $\sum_i \int_0^\infty [1-H_n(t)] dM_{1i}(t) - \sum_j \int_0^\infty H_n(t) dM_{0j}(t),$

denoted by $U(\infty)$.

(a) Let
$$U_n(t) = \frac{1}{\sqrt{n}} U(t)$$
:
 $< U_n, U_n > (t) = \sum_i \int_0^t \frac{1}{n} [1 - H_n(v)]^2 dA_{1i}(v) + \sum_j \int_0^t \frac{1}{n} H_n(v)^2 dA_{0j}(v)$
 $= \int_0^t \frac{1}{n} [1 - H_n(v)]^2 h_1(v) Y_{1.}(v) dv + \int_0^t \frac{1}{n} H_n(v)^2 h_0(v) Y_{0.}(v) dv$

converges to $\alpha(t)$ in prob, because

(i)
$$Y_{l.}(v)/n_l \to P(U_l \ge v);$$

(ii) $H_n(v) \to pG_1(v)/[pG_1(u) + (1-p)G_0(u)].$

(b) Let
$$U_{n,\epsilon}(t)$$
 be

$$\sum_{i} \int_{0}^{t} \frac{1}{\sqrt{n}} [1-H_{n}(t)] I(|H_{n}^{**}(v)| \ge \epsilon) dM_{1i}(t) - \sum_{j} \int_{0}^{t} \frac{1}{\sqrt{n}} H_{n}(t) I(|H_{n}^{*}(v)| \ge \epsilon) dM_{0j}(t)$$

$$< U_{n,\epsilon}, U_{n,\epsilon} > (t) \text{ is}$$

$$\sum_{i} \int_{0}^{t} \frac{1}{n} [1 - H_{n}(v)]^{2} I(|H_{n}^{**}(v)| \ge \epsilon) Y_{1i}(v) h_{1}(v) dv$$

+
$$\sum_{j} \int_{0}^{t} \frac{1}{n} H_{n}(v)^{2} I(|H_{n}^{*}(v)| \ge \epsilon) Y_{0j}(v) h_{0}(v) dv$$

converges to 0 in prob, because $I(|H_n^*(v)| \ge \epsilon)$ and

 $I(|H_n^{**}(v)| \ge \epsilon)$ converge to 0 in prob.

By the Martingale CLT,

$$U_n(t)
ightarrow Gaussian(0, lpha(t))$$

in distn as $n \to \infty$. Thus

$$rac{1}{\sqrt{nlpha(\infty)}}U(\infty)
ightarrow N(0,1).$$

in distn as $n \to \infty$.

Recall that $O - E = U(\infty)$ is

$$\int_{0}^{\infty} \frac{Y_{0.}(v)}{Y_{1.}(v) + Y_{0.}(v)} dN_{1.}(v) - \int_{0}^{\infty} \frac{Y_{1.}(v)}{Y_{1.}(v) + Y_{0.}(v)} dN_{0.}(v)$$

$$= \int_{0}^{\infty} \frac{Y_{0.}(v)Y_{1.}(v)}{Y_{1.}(v) + Y_{0.}(v)} \Big[\frac{dN_{1.}(v)}{Y_{1.}(v)} - \frac{dN_{0.}(v)}{Y_{0.}(v)} \Big]$$

Remarks

▶ Nelson-Aalen Estimator for the cumulative hazards $H_l(\cdot)$:

$$\hat{H}_{1}(t) = \int_{0}^{t} \frac{1}{Y_{1.}(v)} dN_{1.}(v), \quad \hat{H}_{0}(t) = \int_{0}^{t} \frac{1}{Y_{0.}(v)} dN_{0.}(v)$$

(Nelson, 1969; Aalen, 1972)

$$\implies \hat{S}_{l}(t) = \exp\{-\hat{H}_{l}(t)\},$$

an estimator for the survivor function $S_I(\cdot)$: not the same as KM estimator but asymptotically equivalent, with higher finite sample efficiency.

• A Class of Rank Tests: $H_0: H_0(\cdot) = H_1(\cdot)$

$$\int_0^\infty W_n(t)[d\hat{H}_1(t)-d\hat{H}_0(t)],$$

with $W_n(\cdot)$ predictable, non-negative and order of n.

• e.g.
$$W_n(t) = \frac{Y_{0.}(t)Y_{1.}(t)}{Y_{1.}(t)+Y_{0.}(t)} \Longrightarrow Logrank Test$$

• e.g. $W_n(t) = \frac{Y_{0.}(t)Y_{1.}(t)}{n} \Longrightarrow Gehan-Wilcoxon Test$
• e.g. $W_n(t) = \hat{S}^-(t)\frac{Y_{0.}(t)Y_{1.}(t)}{Y_{1.}(t)+Y_{0.}(t)} \Longrightarrow Prentice-Wicoxon Test$
($\hat{S}^-(t)$ the left-cont's version of SM estm)
• e.g. $W_n(t) = [\hat{S}^-(t)]^{\alpha} \frac{Y_{0.}(t)Y_{1.}(t)}{Y_{1.}(t)+Y_{0.}(t)} \Longrightarrow Fleming-Hurrington$
Test

A Class of Rank Tests:
$$H_0: H_0(\cdot) = H_1(\cdot)$$

$$\int_0^\infty W_n^*(t) \frac{Y_{0.}(t)Y_{1.}(t)}{Y_{1.}(t)+Y_{0.}(t)} [d\hat{H}_1(t)-d\hat{H}_0(t)],$$

with $W_n^*(\cdot)$ predictable, bounded, and non-negative. How to

choose $W_n^*(\cdot)$ to achieve a powerful test?

• If $H_1 : \log [h_1(t)/h_0(t)] = \alpha g(t)$, optimal weight? e.g. Lagakos and Schoenfeld (1984).

What to study next?

Part IV. Advanced Topics

- Part IV.1.1 Theoretical Preparation
- Part IV.1.2 Counting Process Formulation in LIDA and Applications: Revisits to KM, Logrank, Cox PH
 - Part IV.1.2A Formulation
 - Part IV.1.2B Revisit to Logrank Test
 - Part IV.1.2C Revisit to Cox's Partial Likelihood Approach
 - Part IV.1.2D Revisit to Kaplan-Meier Estimator
 - ▶ Part IV.1.2E Others
- Part IV.2 Selected Recent Topics in LIDA
- Part IV.3 Beyond Lifetime Data Analysis