
What to do today (2022/03/29)?

Part IV. Advanced Topics

I Part IV.1 Counting Process Formulation (Revisits to KM
estm, Logrank test, and Cox PH model)
I IV.1.1 Theoretical Preparation
I IV.1.2 Counting Process Formulation in LIDA and

Applications: Revisits to KM, Logrank, Cox PH

I Part IV.2 Selected Recent Topics in LIDA
I IV.2.1 Alternatives to Cox PH model
I IV.2.2 Multivariate event times
I IV.2.3 More unconventional data structures
I IV.2.4 Analysis of incomplete data

I Part IV.3 Beyond Lifetime Data Analysis*



Part IV.2.3A More unconventional data structures in
LIDA: Competing risks

What if to consider situations with J distinct causes of death?

I the ideal possibly available information on T : (T , j)

I envision Tj as the time to death due to jth cause, j = 1, . . . , J

=⇒ T = min(T1, . . . ,TJ)
I often available is (U, δ) with U = min(T ,C ), and δ = 0 for

T > C and δ = j for T = Tj

Problems of interest

I Estimate failure occurrence rates of specific types, and the
relationship between specific failure types and covariates.

I Study interrelation between failure types.

I Estimate failure rates for certain types given the “removal” of
some/all the other failure types.

How to achieve the goals?

I If T1, . . . ,TJ are ⊥⊥, ...

I If (T1, . . . ,TJ) ∼ f (t1, . . . , tj ; θ), ...

I If it is neither of the cases above?



Part IV.2.3A Competing risks

Useful concepts
Recall conditional hazard function of T :

h(t|Z ) = lim
∆t→0+

P(T ∈ [t, t + ∆t)|T ≥ t,Z )

∆t

S(t|Z ) = exp(−
∫ t

0
h(u|Z )du)

I cause-specific hazard function: for j ≥ 1

hj(t|Z ) = lim
∆t→0+

P(T ∈ [t, t + ∆t), δ = j |T ≥ t,Z )

∆t

h(t|Z ) =
∑J

j=1 hj(t|Z ); fj(t|Z ) = hj(t|Z )S(t|Z )

I sub-distribution: for j ≥ 1

P(T ≤ t, δ = j |Z ) =

∫ t

0
fj(u|Z )du



Part IV.2.3A Competing risks

Provided data of {(Ui , δi ,Zi ) : i = 1, . . . , n}

Statistical inference

I to estm cause-specific hazard function:
n∏

i=1

( J∏
j=1

hj(ui |zi )I (δi=j)
)
S(ui |zi )

identifiability of hj?

I to estm the regression parameters βj with
hj(t|Z ) = h0j(t)eβjZ : the partial likelihood function

LP(β1, . . . , βJ) =
J∏

j=1

∏
i :δi=j

( eβjzi∑
l∈R(ui )

eβjzl

)



Part IV.2.3A Competing risks

Provided data of {(Ui , δi ,Zi ) : i = 1, . . . , n}

what if to study (T1, . . . ,TJ) jointly?
It’s necessary to specify the dependence of (T1, . . . ,TJ) if only the
competing risks data are available.

e.g. J = 2, assume (T1,T2) ∼ C (F1(t1),F2(t2)) with
C : [0, 1]2 → [0, 1], a copula function.
Fj(tj) is the marginal cdf of Tj



Part IV.2.3B Censoring mechanisms

Recall right-censoring ... ...
Consider an event time T . Its observation is subject to right-censoring if
T is observed only when T ≤ C , where C is the censoring time:
U = min(T ,C ) and δ = I (T ≤ C ).
Right-censored event times

{
(Ui , δi ) : i = 1, . . . , n

}
I If T ⊥⊥ C ,

I studied by conditional on C ...
I or by modeling C ...

I What if T 6⊥⊥ C? identifiability problem!

I e.g. competing risks:
I e.g. conditional indpt? T ⊥⊥ C |Z



Part IV.2.3B Censoring mechanisms

Left-censoring
e.g. the HIV RNA example: due to the lower detection limit of the
“standard” assay
if HIV RNA ≤ 500, either no signal or unreliable

e.g. cost information in an insurance database



Part IV.2.3B Censoring mechanisms

Interval-censoring (cfs: Lawless, 2003; Sun, 2006)

I “the current status data”: observed only T ≤ O or T > O

I “interval censoring”: observed only T ∈ (W ,V ] due to
periodic observations

The observed data likelihood function:
∏n

i=1(F (Vi )− F (Wi ))

I parametric inference

I nonparametric inference (Turnbull, 1976 JRSSB)

Remarks:

I “coarsening”

I “panel counts”



Part IV.2.3C Truncation

Examples ...

I Lynden-Bell (1971, Monthly Notices of the Royal
Astronomical Society)
In an astronomical survey, a quantity, say, the luminosity (the
brightness in comparison with that of the sun), of stars in a
galaxy was observed as Y1, . . . ,YK : what’s the distn?
the observational selection? (if Yi ≥ O?)

I Lagakos, et al (1988, Biometrika)
In an AIDS study, the time between HIV infection and AIDS is
of interest (Y), and the available data are (Xi ,Yi ) for
i = 1, . . . , n, provided Yi + Xi ≤ Oi (the observation times):
what’s the distn of Y?



Part IV.2.3C Truncation

Consider an event time T with information collected from a study

Recall, with censoring, available information on Ti is “coarsened”
as min(Ti ,Ci ) for all i

The examples lead to ... ...

Truncation: the available data are {Ti : Ti ≥ τi} or {Ti : Ti ≤ τi}
(left/right-truncated data)

Truncated data arise in many contexts ... ...
e.g. Car Warranty Claims (Hu and Lawless, 1996a,b)

Compared to censored data, truncated data provides less
information on the target population.



Part IV.2.3C Truncation

Provided {Ti : Ti ≤ τi} (left-truncated data)

I nonparametric approaches, e.g. Lynden-Bell and Woodroofe
estimator; Woodroofe (1985)
an identifiability problem when both nonpara models are for
Y , T : only FY (·)/FY (τmax) is estimatable

I semiparametric approaches, e.g. Kalbfleisch and Lawless
(1991); Wang (1989)
“length bias sampling”: in Lagakos’s setting, if Xi ∼ a
uniform distn (e.g. Qin and Shen, 2010)

I using additional (supplementary) info, e.g. Hu and Lawless
(1996a,b)



Part IV.2.4A Analysis of incomplete data:
introduction

Incomplete data are prevalent. What are incomplete data?
Consider the following settings ... ...

Objective: Making inference about some aspect (parameter,
finite/infinite dimensional) of a population, such as

I A. the distn of r.v. Y , or

I B. the relationship of r.v. Y with X ,

based on a set of sample data: a random sample S ⊆ P is usually
selected and Data A.

{
Yi : i ∈ S

}
or Data B.

{
(Yi ,Xi ) : i ∈ S

}
is

designated to collect.

If the available data have less information than the designated ...
... incomplete data



Part IV.2.4A Analysis of incomplete data: introduction

Example A. Y = T , and Data A= {Ti : i = 1, . . . , n}, iid
observations on T : to estm Y ’s distn

I right-censored data {(Ui , δi ) : i = 1, . . . , n}
I missing data {Ti : i ∈ S∗}, with S∗ ⊂ S = {1, . . . , n}

Example B. Y = T and X = Z , and Data
B= {(Ti ,Zi ) : i = 1, . . . , n}, iid observations on (T ,Z ): to estm
T |Z ’s conditional distn

I right-censored data {(Ui , δi ,Zi ) : i = 1, . . . , n}
I missing data {Ti : i ∈ S∗}

⋃
{Zi : i ∈ S} or

{Ti : i ∈ S}
⋃
{Zi : i ∈ S∗}, with S∗ ⊂ S = {1, . . . , n}

I measurement errors {(Ti ,m(Z )i ) : i = 1, . . . , n}, with
E (m(Z )i |Zi ) = Zi .



Part IV.2.4A Analysis of incomplete data:
introduction

Inherent Problem. When data are incomplete, depending on how
and why they are incomplete,

I our ability to make an inference may be compromised;

I not accounting for the incompleteness properly when
analyzing the data can lead to severe biases.

A couple of examples ... ...

I sickle cell disease: neuro-cognitive damage? (Steen et al,
2002)

I TB contact study (Cook et al, 2011)

Most software packages, by default, delete records for which data
are incomplete and conduct the “complete-case analysis”.



Part IV.2.4B Analysis of incomplete data: models
and methods for missing data

Consider a study to assess the efficacy of a new drug in reducing blood

pressure for patients: the endpoint of interest is the decrease in blok

pressure after six months.

I Yi=subject i ’s reduction in blood pressure after six months

I Ri=1 or 0 corresponding to Yi was taken or not

I i = 1, . . . , n

I assume (Yi ,Ri ) to be iid and the population mean E (Yi ) = µ

Some terms:

I “complete data” (or full data): {(Yi ,Ri ) : i = 1, . . . , n}
I “observed data”: {(RiYi ,Ri ) : i = 1, . . . , n}
I “complete-case data”: {RiYi : Ri = 1, i = 1, . . . , n}



The sample mean with the full data: µ̂F =
∑n

i=1 Yi/n.

A natural estimator for µ with the observed data: µ̂C =
∑n

i=1 RiYi∑n
i=1 Ri

,

the complete-case sample average (observed sample mean).

As n→∞, by SLLN, a.s. µ̂F → µ and µ̂C → E(RY )
E(R)

Missing Completely at Random (MCAR): the probability of
missingness is independent of the variable.

I If the data are MCAR, R ⊥⊥ Y and E (RY ) = E (R)E (Y ) =⇒ µ̂C is
consistent (in fact, is also unbiased), provided E (R) > 0.

I How efficient is µ̂C , compared to µ̂F ? [ σ2

nE(R) ]

I What does it do imputing the missing observations with the average
based on the observed?

I What if not MCAR?



Part IV.2.4B Analysis of incomplete data: models
and methods for missing data

Not Missing at Random (NMAR): the probability of missingness
depends on the variable.

With E (R|Y ) = P(R = 1|Y ) = π(Y ),

µ̂C →
E (RY )

E (R)
=

E (Y π(Y ))

E (π(Y ))
6= E (Y ) = µ (in general)

e.g. π(y) ↑ as y ↑, E(Yπ(Y ))
E(π(Y )) > µ.

I If NMAR, does it help imputing the missing observation with the
average based on the observed?

I If NMAR, given the current formulation, no way (i) to know Yi if
Ri = 0 and (ii) to estm π(y)

=⇒ no way to find out whether MCAR or NMAR from the observed data

(an inherent nonidentifiability problem). A third possibility to consider ...

...



Suppose there are additional observations Wi , i = 1, . . . , n. [auxiliary
covariates: they represent variables not of the primary interest for
inference]

The “observed data” are now {(RiYi ,Ri ,Wi ) : i = 1, . . . , n}.

Missing at Random (MAR): conditional on the auxiliary covariate,
the probability of missingness does not depend on the primary
variable:
P(Ri = 1|Yi ,Wi ) = π(Wi ), that is, Ri ⊥⊥ Yi |Wi .

e.g. a survey on presidential election: gender, soci-economic status, race
can be W , and the assumption of MAR ...

How to account for the missingness when MAR?



Likelihood Methods: Consider
(Y ,W ) ∼ fY ,W (y ,w) = fY |W (y |w ; γ1)fW (w ; γ2).

µ = E (Y ) = E{E (Y |W )} =

∫
yfY |W (y |w ; γ1)fW (w ; γ2)dydw .

Since [RY ,R,W ] is either [Y |R = 1,W ][R = 1,W ] or [R = 0,W ],
and [Y |R = 1,W ] = [Y |W ] with MAR, the likelihood function

L(γ1, γ2|ObservedData) ∝
( n∏

i=1

fY |W (yi |wi ; γ1)ri
)( n∏

i=1

fW (wi ; γ2)
)
.

=⇒ the MLE of γ1, γ2 and then the MLE of µ, say, µ̂MLE .
Remark: γ1 estm by the complete cases and γ2 estm by all the
data.
numerical challenge: computing? the EM algorithm?



Imputation:

With the “full data”,

µ̂F = 1
n

∑n
i=1 Yi = 1

n

∑n
i=1

[
RiYi + (1− Ri )Yi

]
.

With MAR, E (Yi |Ri = 0,Wi ) = E (Yi |Wi ) is∫
yfY |W (y |Wi ; γ1)dy = µ(Wi ; γ1).

Using the MLE of γ1, a consistent estm

µ̂IMP = E
[1

n

n∑
i=1

Yi |ObservedData; γ̂1

]
=

1

n

n∑
i=1

[
RiYi+(1−Ri )µ(Wi ; γ̂1)

]



I Is µ̂IMP consistent?

I How about the efficiency of µ̂IMP? How does it compare with
µ̂C when MCAR?

I This is in fact µ̂IMP(W ′
i s); given γ̂2, an alternative:

µ̃IMP =
1

n

n∑
i=1

[
RiYi + (1− Ri )

∫
µ(wi ; γ̂1)fW (wi ; γ̂2)dwi

]

I Other imputation techniques, such as to impute the missing
Yi using a random draw (or more ) from fY |W (y |Wi ; γ̂1)?



Inverse Probability Weighted (IPW) Complete-Case
Estimator: With the “observed data”, RiYi with Ri = 1 should
present more than one but 1/P(R = 1|Wi ) many individuals.
=⇒ another consistent estm µ̂IPWCC = 1

n

∑n
i=1

RiYi
π̂(Wi )

This is because

E
[
E
( RY

π(W )

∣∣∣Y ,W)] = E
[ Y

π(W )
E
(
R
∣∣∣Y ,W)].

e.g. Hu, et al (2007): kindergarten readiness skills in children with
sickle cell disease [cognitive impairment?]
where π̂(w) = π(w ; γ̂) with γ̂ obtained from∏n

i=1 π(Wi ; γ)Ri
(
1− π(Wi ; γ)

)1−Ri .



I µ̂MLE and µ̂IMP require to specify fY |W (y |w ; γ1): what if it’s
misspecified?

I µ̂IPWCC requires to specify P(R = 1|w) = π(w ; γ): what if
it’s misspecified?

=⇒ the following ... ...
Double Robust Estimator: an augmented inverse probability
weighted complete-case estimator

µ̂AIPWCC =
1

n

n∑
i=1

[ RiYi

π(Wi ; γ̂)
+ (1− Ri

π(Wi ; γ̂)
)µ(Wi ; γ̂1)

]
.

consistent when MAR, if either of the two models is specified
correctly (Why?)



I How about the efficiency of µ̂AIPWCC?
the optimal (most efficient) AIPWCC?

I Does it require MAR? How to check for the MAR assumption?

I What if none of the two specified models is appropriate?

I What if, when to consider a regression analysis of (Y ,X ), a
portion of {Xi : i = 1, . . . , n} is missing?



Part IV.2.4B Analysis of incomplete data: models
and methods for missing data

Example. To study the relationship between the concentration of HIV
RNA, a viral biological marker, with a clinical outcome Y . Two blood
samples of equal volume are drawn from each subject in a study. The full
data are observations on (Y ,X1,X2); however, to save on expense, some
subjects’ HIV RNA concentrations were obtained from the combined
samples, and thus only available were the observations of (Y , X1+X2

2 ).

=⇒ the concentrations of those subjects are not missing but coarsened.
(Heitjan and Rubin, 1991)
Coarsened Data: When the full data are {Yi : i = 1, . . . , n}, the
observed data are

{Ci ,GCi (Yi )} : i = 1, . . . , n

C: the coarsening variable, specifying how the data are coarsened; GC(Y )
are the resulting data.

Missing, censoring are special cases of coarsening.



Part IV.2.4C Analysis of incomplete data:
measurement errors (imperfectly measured data)

Example. Nutrition Studies the NHANES-I Epidemiologic Study
Cohort (Jones, et al 1987)

I originally consisting of 8,596 women, interviewed about their
nutrition habits and then later examined for evidence of cancer

I response Y indicates the presence of breast cancer

I predictor variables S (measured without significant error, such as
age, poverty index, body mass index, etc), and predictor variables X
(the nutrition variables, such as long-term saturated fat intake,
known to be imprecisely measured): the measured W was a 24 hour
recall and then X was computed

I the study modeled the measurement error structure using an
external data set: parameters in the external study may differ from
parameters in the primary study, leading to bias

I alternative: an internal subset? the Nurses’ Health Study



Why it is needed to account for measurement error?

Let’s see a simple example ... ...
Simple Linear Regression with Additive Error:

I Consider Y = β0 + β1X + ε, X ⊥⊥ ε and E (X ) = µx ,
V (X ) = σ2

x , E (ε) = 0, V (ε) = σ2.

I Suppose X cannot be observed and instead one observes
W = X + U, with U ⊥⊥ X and E (U) = 0, V (U) = σ2

U .
[the classical additive measurement error model]

What if use W’s observations as X’s and fit the simple linear
regression line? See a simulation... ...



Part III.1.4A Measurement Error: Introduction

For i = 1, . . . , 30, indpt

I Xi ∼ N(1, 1); Ui ∼ N(0, 1); εi ∼ N(0, .25)

I Yi = 0 + 1 ∗ Xi + εi
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I blue line: Y = X ; red line: Y = −0.09955 + 1.07155X ; green line:
Y = 0.4677 + 0.5226X



In general,

I An ordinary least squares regression of Y on W is a consistent
estimator not of β1 but β∗1 = λβ1, where

λ =
σ2
x

σ2
x + σ2

u

< 1

λ: reliability ratio

I The residual variance of this regression of Y on W is

var(Y |W ) = σ2 +
β2

1σ
2
xσ

2
u

σ2
x + σ2

u

=⇒ “Measurement error causes a double-whammy: not only is the
slope attenuated, but the data are more noisy, with an increased
error about the line” – Carroll et al (1995)



How to “correct” the bias?

Method of Moments. Note that β1 = β∗1/λ

I β∗1 can be estm consistently

I if λ, the reliability ratio, can be estimated?

I σ̂2
w , the sample variance of Wi ’s

I σ2
u? If there’re ki replicate measurements of Xi ,

σ̂2
u =

1∑
i (ki − 1)

∑
i

ki∑
j=1

(Wij − W̄i )
2

Orthogonal Regression. If the ratio η = σ2/σ2
u is known, minimize the

weighted orthogonal distance of (Y ,W ) to the line β0 + β1X∑
i

[
(Yi − β0 − β1Xi )

2 + η(Wi − Xi )
2
]

in the unknown parameters β0, β1,X1, . . . ,Xn.



There are various models for measurement error. They may be
categorized into two modeling classes:

Functional modeling.

I the classical functional models: Xi ’s are a sequence of unknown
fixed constants

I extended to either fix or random: in the latter case no or at least
minimal assumptions are made about the ditn

Structural modeling.

I the classical structural models: Xi ’s are regarded as r.v.s.

I usuallythe distn are parametric



Analysis of data with measurement errors:

Likelihood or Pseudo-Likelihood Approaches, or their variations

I something from Econometrics ...
instrumental variables, the generalized method of moments

I data with measurement errors: an extended version of
coarsening



Thank-you for your participation in this course!

What have we studied?

I Part I. Preliminaries

I Part II. Parametric Interence in LIDA

I Part III. Nonparametric/Semi-parametric Inference

Part III.1. Introduction and Overview
Part III.2. Kaplan-Meier Estimator
Part III.3. Nonparametric Tests
Part III.4. Cox Proportional Hazards Model

I Part IV. Advanced Topics

Please be friendly reminded ...

I The Presentations on March 31, April 5, and April 7.

I See the posted schedule in the course webpage/canvas page FYI.

I The final reports are due on Friday April 22 by 5:00pm.
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