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Abstract

Immersed 	bres are a very useful tool for modeling moving� elastic interfaces that interact with a

surrounding 
uid� The Immersed Boundary Method is a computational tool based on the immersed

	bre model which has been used successfully to study a wide range of applications including blood


ow in the heart and arteries and motion of suspended particles�

This work centres around a linear analysis of an isolated 	bre in two dimensions� which pin�

points a discrete set of solution modes associated solely with the 	bre� We investigate the stability

and sti�ness characteristics of the 	bre modes and then relate the results to the severe time step

restrictions experienced in explicit and semiimplicit immersed boundary computations� A subset

of the modes corresponding to tangential oscillations of the 	bre are the main source of sti�ness�

which intensi	es when the 	bre force is increased or 
uid viscosity is decreased � this explains

why computations are limited to unrealistically small Reynolds numbers�

We also investigate the e�ects of smoothing the 	bre over a given thickness� which corresponds

to the delta function approximation that is central to the discrete scheme� The results can be

applied to explore the accuracy of various interpolation methods in an idealised setting�

The analysis is next extended to predict time step restrictions and convergence rates for various

explicit and semiimplicit discretisations� The results are veri	ed in numerical experiments�

Finally� we introduce a novel application of the Immersed Boundary Method to the motion of

pulp 	bres in a twodimensional shear 
ow� The method is shown to reproduce both theoretical

results and experimentally observed behaviour over a wide range of parameter values�
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Chapter �

Introduction

In modern times the belief that the ultimate

explanation of all things was to be found in

Newtonian mechanics was an adumbration of the

truth that all science� as it grows towards perfection�

becomes mathematical in its ideas�

� Alfred North Whitehead�

The physical world is replete with examples of free surfaces� material interfaces and moving

boundaries that interact with a surrounding 
uid� There are interfaces that separate air and water

�in the case of bubbles or free surface 
ows� and boundaries between two materials of di�ering

physical properties �in porous media 
ow or mixing layers�� Alternatively� the interface may be

a rigid wall that moves with some speci	ed timedependent motion� or an elastic membrane that

deforms and stretches in response to the 
uid motion�

One of the most challenging problems facing both modelers and computational scientists alike

is how to handle the twoway hydrodynamic coupling between a 
uid and an elastic interface or

membrane that transmits forces to the 
uid� Such problems are particularly common in living

systems� with examples including the interaction of muscle tissue with blood in the heart and

arteries swimming motion of marine worms� 	sh and microorganisms and locomotion of amoebae

through intercellular 
uid� to name a few� Peskin " McQueen remark #PM��$�

It is appropriate to ask whether there is any common theme that unites the diverse

problems that arise in the study of living systems interacting with �uids� The answer

that immediately comes to mind is this� biological �uid dynamics invariably involves

�
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the interaction of elastic �exible tissue with viscous incompressible �uid�

While the mathematical modeling of the interaction is a di�cult problem in itself� another formidable

task is developing a numerical method that solves these problems e�ectively and e�ciently� In an

excellent review article #Hou��$� Hou identi	es the salient issues that face investigators trying to

compute solutions to free and moving boundary problems�

� sensitivity to small perturbations� which leads to instabilities when na%&ve discretisation

schemes are applied 

� singularity formation and topological changes and

� severe timestepping constraints due to sti�ness introduced by high order regularisation

e�ects�

Furthermore� he points out that a common feature in many 
uid interface problems is an underlying

physical instability that generates rapid growth in high frequency solution components in the

absence of regularising forces such as surface tension or viscosity�

Fortunately� topological changes can be ruled out for the elastic boundaries we are considering

here� the 
uid is incompressible and the boundaries are solid� and so there is no separation of

boundary components or leakage that could cause a singularity to form� However� the magnitude

and highly localised nature of forces generated by the elastic 	bres also introduce a high level

of sti�ness in the problem� Consequently� the main di�culty in developing a numerical method

for this class of problem is coupling the 	bre motion with that of the 
uid in a way that avoids

spurious numerical instabilities and allows reasonable time steps to be taken�

A diverse range of numerical methods have been developed for dealing with these and other

di�culties� Among the schemes that have been applied to moving interface problems� the most

common approach used has been a moving or adaptive Eulerian mesh technique in which the


uid grid is evolved during each time step to conform with the moving boundary� One common

technique is local mesh re�nement� where a 	ner rectangular mesh is used near the interface� while



Chapter �� Introduction �

a more e�cient coarse grid is used in regions of the 
ow where the high level of re	nement is not

necessary for an equivalent level of accuracy� An example of this technique is the Adaptive Mesh

Re	nement algorithm� originally developed by Berger #Ber��$ for hyperbolic problems and recently

extended to handle incompressible 
ows #HB��� Rom��$�

In contrast with this local strategy� there are also �global� techniques which adapt the entire

grid to conform with the interface� Ohring and Lugt #OL��$� for example� use a 	nite di�erence

discretisation based on an orthogonal coordinate transformation to solve free surface 
ows �

this technique has the advantage that a complex irregular domain is solved on an equallyspaced

rectangular grid in �computational space�� Skalak " T%ozeren #ST��$� on the other hand� apply a

moving 	nite element technique to solve bio
uid mechanics problems� wherein the 	nite element

mesh is advanced within each time step to conform with a moving� deformable boundary� The

main drawback of these moving mesh approaches is the extra expense and complexity of regridding

all or part of the 
uid domain in every time step�

A method which avoids the issue of regridding altogether is the Level Set Method� developed

by Osher " Sethian #OS��$� This scheme propagates the interface along with the solution by

introducing an additional dependent function that is convected with the 
uid� the interface is

simply the zero level set of this function� This method handles the di�cult problems of singularity

formation and changes in topology in a natural way� However� the level set formulation lacks any

knowledge of the location of individual material points on the interface and hence is unable to

capture the stretched state of the interface� which is needed to compute an elastic force�

The Immersed Boundary Method is a mixed EulerianLagrangian scheme that combines the

simplicity and e�ciency inherent in using a 	xed Cartesian grid to compute the 
uid motion� along

with the geometric 
exibility of tracking the interface at a set of moving Lagrangian points� The

key idea in this method is to replace the 
uidmaterial interface with appropriate contributions to

a force density term in the 
uid equations� The internal boundaries are thereby eliminated and a

simple� 	nite di�erence scheme can be used to solve the 
uid equations� with the in
uence of the
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interface relegated to an inhomogeneous forcing term that is distributed onto 
uid points near the

interface�

The Immersed Boundary Method was originally developed by Peskin #Pes��$ to simulate the

motion of a heart valve in a twodimensional 
uid� The method has since been extended to three

dimensional heart valve simulations #PM��� PM��$ and has been applied to a wide variety of other

biological problems including swimming motions of marine worms #FP��a$� sperm #FF��� FM��$

and bi
agellated algal cells #Fau��$ aggregation of blood platelets #Fog��� FF��$ wave propaga�

tion in the 
uid	lled cavity of the inner ear #Bey��$ blood 
ow in arteries #VY��� Ros��� Art��$ 

bacterial motion and chemotaxis in bio	lms #DFG��� DFFG��$ and amoeboid locomotion #Bot��$�

It has also been applied to nonbiological situations� such as the 
ow of particulate suspen�

sions #SB��� FP��b$ interaction of particles in turbulent 
ows #Yus��$ and plasma simula�

tions #LIB��$ where a solid body is treated as an immersed boundary�

The method�s main advantages are its simplicity and geometric 
exibility� which account for

its widespread use� The Immersed Boundary Method is very e�cient due to its use of the Fast

Fourier Transform in combination with an �alternating direction implicit� �or ADI� approach to

solve the 
uid equations� and it is easily vectorisable #PM��� FP��b$� which makes �D calculations

feasible� The interface is modeled very simply using a data structure composed of �springlike�

links between adjacent points� which facilitates the handling of immersed boundaries of nearly

arbitrary shape� size and con	guration�

On the other hand� the method su�ers from some major de	ciencies� Computational evi�

dence #LL��� Rom��$ suggests that the method is only 	rst order accurate in space due to the

choice of interpolation scheme used to transfer quantities between 
uid and 	bre grid points #BL��$�

Roma #Rom��$ recently developed a twodimensional implementation of the Immersed Boundary

Method that uses a multilevel adaptive mesh algorithm to re	ne the 
uid grid near the immersed

interface� He achieved the same level of accuracy on a nonuniform mesh that was previously

obtainable only with a uniformly 	ne mesh� LeVeque " Li #LL��� LL��$ developed an alternative
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�but related� scheme� called the Immersed Interface Method� which attains secondorder accuracy

in space by replacing the interpolation between 
uid and 	bre points with modi	ed di�erence sten�

cils across the boundary� It has been tested on a variety of stationary 
ows in two dimensions and

recently extended by Li to �D elliptic problems #Li��b$ and timedependent �Stefanlike� prob�

lems in one dimension #Li��a$� However� the Immersed Interface Method has yet to be extended

to timedependent problems in two or three dimensions�

The Immersed Boundary Method does not avoid the numerical sti�ness issue� and requires

that extremely small time steps be taken for explicit �and also many semiimplicit� calculations�

Even in two dimensions� the method is restricted to relatively viscous 
ows �withRe on the order of

several hundred� and threedimensional simulations are only practical on supercomputers #PM��a�

PM��b$� We will see later on that there is an analytical justi	cation for the sti�ness observed in

computations� based on how the solution behaves when viscosity is small and 	bre sti�ness is

large� These limitations are not a consequence of any particular choice of spatial discretisation

in the Immersed Boundary Method� and would manifest themselves regardless of whether a 	nite

element or spectral approach was used� Considerable e�ort has gone into developing versions of

the method that better couple the 	bre force to the motion of the 
uid #TP��� MP��� FF��$�

Nevertheless� an e�ective semiimplicit method with a corresponding e�cient solver has yet to be

developed� and many computations are still being done using a simple time discretisation that is

explicit in the 	bre force #DFFG��� Ros��� PM��$�

Despite its shortcomings� the Immersed Boundary Method is still an extremely useful modeling

tool� Its utility has been demonstrated by its unparalleled ability to simulate a wide range of

complex physical phenomena� The power of the method is perhaps best demonstrated by its

central role in the design of an arti	cial heart valve� which has led to the granting of several

patents #MP��� MP��$�

Because of the widespread use of the Immersed Boundary Method� it therefore comes as a

surprise that there has been little analysis performed to date on either the model equations or



Chapter �� Introduction �

the numerical method� The limitations on the accuracy and e�ciency of the scheme are well

documented� and yet no satisfactory explanation has appeared in the literature� Our main goal in

this work is to gain a better understanding of the behaviour of solutions to the underlying equations

of motion for immersed boundaries� We will identify the sti�ness inherent in the problem and use

our insight into the mathematical structure of the solution to suggest improvements to the method

that will counteract the sti�ness and increase e�ciency�

We begin in Chapter � with a summary of the mathematical background on immersed 	bres

that has appeared in the literature� We provide an overview of the integrodi�erential equations

governing their motion� Two mathematically equivalent formulations of the problem are given�

one on which the Immersed Boundary Method is based and the other in terms of jumps in


uid quantities across the 	bre� which yields more easily to analysis� We present the Immersed

Boundary Method algorithm and outline the vital role of the interpolating functions that transfer


uid quantities to 	bre grid points and vice versa�

Chapter � contains a linear analysis of a twodimensional model problem which has appeared

in #SW��$� We identify the e�ect of a single 	bre on the motion of a 
uid by singling out a set

of discrete modes that are excited by the presence of the 	bre� The results are used to make

conclusions about the sti�ness of the problem� We also investigate the e�ect of smoothing the

	bre force� which is inherent in any discretisation of the problem� and relate this to the sti�ness

and spatial accuracy of the Immersed Boundary Method� The results and conclusions are veri	ed

in numerical experiments�

The analytical results for the continuous problem are extended to time discretisations in Chap�

ter �� We investigate the stability of explicit timestepping� as well as the convergence of iterative

methods based on two semiimplicit time discretisations� Computations are employed to illus�

trate our conclusions and to demonstrate the power of the analytical technique in developing and

investigating modi	cations and improvements to the Immersed Boundary Method�

In Chapter �� we digress from the more theoretical treatment of immersed 	bres in the previous
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two chapters and introduce a new application of the Immersed Boundary Method to the motion

of paper pulp 	bres� The relevant physics governing pulp 	bres is reviewed� and we identify the

importance of understanding the motion of individual pulp 	bres in the papermaking process�

We then present a series of numerical simulations that demonstrate the ability of the Immersed

Boundary Method to reproduce 	bre behaviour observed in experiments�

We conclude in Chapter � with a summary of the major results in this work� and the potential

areas for future research�
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Immersed Fibres

It�s good to express a matter in two ways

simultaneously so as to give it both a right foot and a

left� Truth can stand on one leg� but with two it can

walk and get about�

� Friedrich Nietzsche�

��� What is an �Immersed Fibre��

The original motivation for the development of the Immersed Boundary Method was to simulate

the motion of heart muscle immersed in blood� With this in mind� we will summarise the basic

assumptions of the model in terms of the application to cardiac 
uid dynamics� However� it is

important to remember that many of the assumptions we make can also be justi	ed for other

biological and nonbiological 
ows where an elastic or contractile 	bre or surface interacts with a

surrounding 
uid�

In Peskin and McQueen�s threedimensional heart model #PM��$� the muscle walls and valves

are composed of an interwoven mesh of 	bres� as is the arterial wall model of Rosar #Ros��$�

Figure ��� shows a schematic representation of an immersed surface in three dimensions and its

representation as a 	bre mesh� The 	bres are suspended within a Newtonian� incompressible


uid �the blood� and assumed to be neutrally buoyant� massless� and to occupy zero volume�

Consequently� the 	bres are also incompressible� and the 
uid	bre system can be regarded as a
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Figure ���� A three�dimensional immersed surface modeled as an interwoven mesh of im�

mersed �bres� with only �ve �bres shown�

composite viscoelastic material�a The main advantage to this model� as we will soon see� is that

the 
uid and 	bre can be described by a single system of equations� Immersed 	bres by themselves

are not accurate physical representations of heart muscle 	bres �or arterial wall 	bres�� since they

have no mass or volume� It is only in combination with its massive 
uid component that the

forcebearing 	bres can be thought of as actual physical �bres�

It still remains to describe how the immersed boundary interacts with the surrounding 
uid�

The 	bres exert on neighbouring 
uid particles a force whose direction and magnitude depend on

the con	guration of the boundary� One can think of successive points on a 	bre as being connected

by �springs� which transmit a force to the 
uid that depends on the stretched state of the springs�

To summarise� an immersed 	bre is a massless� neutrallybuoyant 	bre that exerts an elastic

aThe treatment of the �bres as an incompressible material has a further physical justi�cation in the work of
Ebin and Saxton �ES�	� ES�
�� who showed that the equations describing an incompressible elastic body
resemble those of an incompressible �uid�
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force on the surrounding 
uid� The force can be either a simple elastic function depending only

on the con	guration of the 	bres or more generally an active� timedependent �contractile� force

�which is certainly the case for heart muscle 	bres�� Immersed elastic structures of almost any shape

and function can be constructed by interweaving and joining together 	bres with varying elastic

force properties� thereby allowing such diverse biological structures as heart muscle� 
agellated

cells� and amoebae to be encompassed by the same model�

��� Mathematical Formulation for Immersed Fibres

The main focus of this chapter is a study of the behaviour of solutions to the equations underlying

the motion of immersed boundaries� Since any immersed elastic boundary is modeled as a collection

of onedimensional 	bres� we will restrict ourselves to the study of a single 	bre immersed in a

twodimensional 
uid�

For our twodimensional model problem� let us consider a square domain � � #�� �$� #�� �$�

periodic in both the x and ydirections� that is 	lled with an incompressible� viscous 
uid�

Suspended within the 
uid is a 	bre� which can be described by a continuous curve �� as pictured

in Figure ���� The motion of the 
uid	bre composite is governed by the incompressible Navier

Stokes equations



�u

�t
� �
u � ru' �(u� rp' F � �����

r � u � �� �����

where u�x� t� � �u�x� t�� v�x� t�� is the 
uid velocity� p�x� t� the pressure� F �x� t� is the external

force� and 
 and � are the �constant� 
uid density and viscosity� Let x � X �s� t� represent the

position of the 	bre� where s is a parameterisation of the 	bre in some reference con	guration�b

The 	bre moves at the same velocity as neighbouring 
uid particles� and so we can write

�X

�t
� u�X �s� t�� t�� �����

bTypically� s is taken to be the arclength of the �bre in an unstressed state� though as the �bre evolves in
time s will not necessarily be a measure of arclength�
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Figure ���� The two�dimensional model a �uid domain� �� which is divided into two parts�

�� and ��� by an isolated �bre � immersed in the �uid�

One more element is needed to close the system� namely� an expression for the force F to

couple the motion of the 
uid and 	bre in equations ����������� Gravitational e�ects are assumed

to be negligible since the 	bre is neutrally buoyant� and so the external force F arises solely from

the action of the elastic 	bre� Let T �s� t� be the tension force in the 	bre and assume that T is a

function of the 	bre strainc�

T � T

������X�s
����� � �����

It can be shown under further assumptions #PM��$ that the local force density per unit length ds

is given by the expression

f�s� t� �
�

�s
�T� � �����

cNote that jdX j � j�X��sj � jdsj� where jdX j is the distance between two points on the �bre and jdsj is
the distance between the same two points in the reference con�guration� If the reference con�guration is
unstressed� then �j�X ��sj � �� is a measure of the �bre strain�
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where

� �
�X
�s���X
�s

�� �����

is the unit tangent vector to the 	bre� For example� if we choose the tension to be T � � j�X ��sj�
then the force density is simply

f � �
��X

�s�
� �����

Taking this form of the force is analogous to linking successive 	bre points by linear springs with

spring constant � and zero resting length � we will see a similar forcing function appearing in the

linear stability analysis in Chapter �� Since the force is zero everywhere except on the 	bre� the


uid body force F can be regarded as a distribution and written compactly as the convolution of

the 	bre force density with a delta function�

F �x� t� �

Z
�
f�s� t� �x�X �s� t�� ds� �����

The twodimensional delta function �x� � �x� � �y� is the product of two Dirac delta functions�

We can now write a coupled system of integrodi�erential equations for the motion of the 
uid

and 	bre�

Delta Function Formulation



�u

�t
� �
u � ru' �(u� rp '

Z
�
f�s� t� �x�X �s� t�� ds ����a�

r �u � � ����b�

�X

�t
�

Z
�
u�x� t� �x�X �s� t�� dx ����c�

Because of the central role of the delta function in coupling together equations ����a�����c�� we

will refer to these equations as the delta function formulation of the immersed 	bre problem� The

right hand side of the 	bre evolution equation ����� has been rewritten in the equivalent form of a

convolution of the velocity with a delta function� thereby introducing a symmetry between ����a�
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and ����c� that will prove to be very useful in Section ��� from the standpoint of constructing a

numerical scheme� It is also worth mentioning that even though the integrals in ����a� and ����c�

look quite similar� they are fundamentally di�erent � the 	rst is a line integral that evaluates to a

singular function� while the latter is integrated over a twodimensional region and so is bounded�

����� An alternate formulation

The presence of the delta�function singularity in the formulation above leads us to recast the

equations in an alternate form which is more amenable to analysis� Following the derivation

in #PP��$� we integrate equation ����a� across the 	bre and assume the velocity is continuous� to

obtain a series of �jump conditions� relating the solution on either side of the 	bre�

##u$$ � �� ������

�� � ##n � ru$$ � �f � ����X
�s

�� � ������

� ##p$$ ' �n � ##n � ru$$ � �f � n���X
�s

�� � ������

Here� ##�$$ � ���j�� � ���j�� denotes the di�erence in a quantity on either side of the 	bre� and n is

the unit normal vector to the 	bre de	ned by n �� � � �see Figure ����� The last jump condition

reduces to

� ##p$$ � �f � n���X
�s

�� ������

after using the fact that the velocity is incompressible and continuous across �� From ������

and ������� it is clear that both the pressure and the normal derivative of the velocity may be

discontinuous across the 	bre� even though the velocity itself is continuous� In fact� it is only

possible for the tangential component of the normal derivative of velocity to be discontinuous�

since incompressibility requires that the normal component be continuous�

Since the 	bre � divides � into two subdomains� �� and ��� on both of which the velocity

is smooth� we may reformulate ����a�����c� as two separate NavierStokes problems with zero

external force� Rather than handling the interaction between 
uid and 	bre using delta functions�
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Figure ���� An illustration of the pressure jump across the interface� ��p�� � pj�� � pj�� �

including the unit normal and tangent vectors�

we instead use the jump conditions and the original 	bre evolution equation ������ The resulting

system of equations will be referred to as the jump formulation of the immersed 	bre problem�

Jump Formulation



�u

�t
� �
u � ru' �(u� rp in �� � �� �����a�

r �u � � in �� � �� �����b�

�X

�t
� u�X �s� t�� t� on � �����c�

##u$$ � � �����d�

�� � ##n � ru$$ � �f � ����X
�s

�� �����e�

� ##p$$ � �f � n���X
�s

�� �����f�
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��� The Immersed Boundary Method

In this section� we will describe the basic form of the Immersed Boundary Method 	rst proposed

by Peskin #Pes��� Pes��$ and which is still being used with minor modi	cations #PM��� DFFG��$�

The details of more recent improvements� particularly those related to semi�implicit discretisations�

will be postponed to Chapter � when they are needed�

The Immersed Boundary Method �discussed brie
y in the Introduction� is a mixed Eulerian

Lagrangian 	nite di�erence scheme for computing the motion of immersed 	bres� The 
uid vari�

ables are de	ned on a 	xed� Eulerian� N �N grid of points labeled �xi�j � �xi� yj� � �ih� jh�� with

spacing h � �
N in both directions� The 
uid domain is doublyperiodic so that the points x� and

xN are identi	ed with each other� and similarly with y� and yN � The 	bre position is a Lagrangian

quantity which is discretised as a set of Nb moving points� so that the parameter s � #�� �$ is taken

at discrete locations s� � � � hb� where hb � �
Nb

� Both 
uid and 	bre quantities are sampled at

equallyspaced times tn � n � k� where k is the time step� Figure ��� shows a typical 
uid	bre

grid�

We can now write discrete approximations of the 
uid velocity� pressure and force

�Un
i�j � u�xi� yj� tn�

Pn
i�j � p�xi� yj� tn� i� j � �� �� � � � � N � ��

�Fn
i�j � F �xi� yj � tn�

and the 	bre position and force density

�Xn
� � X �s�� tn�

�fn� � f�s�� tn� � � �� �� � � � � Nb � ��

for n � �� �� � � � � In addition� the delta function appearing in ����a� and ����c� is replaced by a

discrete approximation h�x�� which is the product of two onedimensional discrete delta functions
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Figure ���� The relationship between �uid ��� and �bre ��� grid points�
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h�xi� yj� � dh�xi� � dh�yj��

The choice of dh typically used in immersed boundary computations is

dh�r� �

�������
�

�h

	
� ' cos

�r

�h



if jrj � �h�

� if jrj 	 �h�

������

which is pictured in its one and twodimensional incarnations in Figure ���� It will become clear

in the algorithm to follow that h�x� acts to interpolate quantities between the 
uid and 	bre

grid points� This particular choice of approximate delta function is motivated by a set of discrete

��h
�

�h

��h
�

�h

�

�

�h�

xy

Figure ���� The cosine approximation dh�x� y� to the delta function�

compatibility properties which are discussed in Section ������

To simplify the notation when writing the scheme� we will make use of several 	nite di�erence

operators on 
uid grid quantities�
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� 	rst order onesided di�erence approximations to the 	rst derivative

D�
x �i�j �

�i���j � �i�j
h

�

D�
x �i�j �

�i�j � �i���j
h

�

and the secondorder centered formula

D�
x�i�j �

�i���j � �i���j
�h

 

� similar de	nitions for the yderivative D�
y �i�j � D

�
y �i�j and D�

y�i�j  

� a centered di�erence formula for the gradient

rh�i�j � �D�
x� D

�
y��i�j�

and the Laplacian

(h�i�j � �D�
xD

�
x ' D�

y D
�
y ��i�j�

Similarly� we can de	ne onesided di�erence approximations for the 	rst derivative of 	bre quan�

tities

D�
s �� �

���� � ��
hb

�

D�
s �� �

�� � ����
hb

�

We are now in a position to state the algorithm� which is a discrete version of equations

����a�����c�� Assuming that the velocity �Un
i�j and 	bre position �Xn

i�j are known at time tn��� the

procedure for updating these values to time tn is as follows�
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Immersed Boundary Method Algorithm �FE�ADI�

Step �� Compute the 	bre force density �assuming for simplicity that we have the linear force

density function �������

�fn� � �D�
s D

�
s
�Xn��
� �����a�

Step �� Distribute the 	bre force to 
uid grid points�

�Fn
i�j �

X
�

�fn� � h��xi�j � �Xn��
i�j � � hb �����b�

Step �� Solve the NavierStokes equations using a splitstep projection scheme �based on that

proposed by Chorin #Cho��$�

Step �a� Apply the force� convection and di�usion terms using an alternating direction

implicit �ADI� scheme #PT��� p� ���$




�
�Un��
i�j � �Un��

i�j

k

�
� �Fn

i�j � �����c�




�
�Un��
i�j � �Un��

i�j

k
' Un��

i�j D�
x
�U
n��
i�j

�
� �D�

xD
�
x
�U
n��
i�j � �����d�




�
�Un��
i�j � �Un��

i�j

k
' V n��

i�j D�
y
�Un��
i�j

�
� �D�

y D
�
y
�Un��
i�j � �����e�

where velocity components in the convection terms are �U � �U� V �� Equation �����c� is

an explicit formula for for �Un��
i�j � while the next two equations are periodic tridiagonal

systems for the intermediate velocities �Un�� and �Un���

Step �b� Solve for the pressure and the velocity at the next time step using




�
�Un
i�j � �Un��

i�j

k

�
'rhP

n
i�j � ��

rh � �Un
i�j � ��
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This simultaneous system of equations for �Un
i�j and Pn

i�j can be written in the more

convenient form of a splitstep projection procedure�

(�hP
n
i�j �




k
rh � �Un��

i�j � �����f�

�Un
i�j � �Un��

i�j �
k



rhP

n
i�j � �����g�

in which

� the Poisson equation �����f� is solved for the pressure Pn
i�j � where (�h ��rh � rh is

a wide 	vepoint di�erence stencil for the Laplacian operator and

� the computed pressure is used in �����g� to update the velocity 	eld� The intermedi�

ate velocity �Un��
i�j from the ADI step need not be incompressible� and so the pressure

acts as a Lagrange multiplier to generate a velocity 	eld �Un
i�j that is divergencefree�

This twostep process may be written more compactly as

�Un
i�j � Ph��Un��

i�j ��

where Ph represents the orthogonal projection operator onto the space of discretely

divergencefree vector 	elds� Since the domain is doublyperiodic and the mesh is 	xed

and equallyspaced� the most e�cient way to solve the pressure Poisson equation is by

a Fast Fourier Transform �FFT� technique�

Step �� Evolve the 	bre at the new local 
uid velocity

�Xn
� � �Xn��

�

k
�
X
i�j

�Un
i�j � h��xi�j � �Xn��

� � � h� �����h�

Since this algorithm applies an ADI step to di�usion terms and Forward Euler to the 	bre force

and position� we will refer to it from now on as the Forward Euler�ADI or FE�ADI method�

This designation will also serve to distinguish it from other schemes that we will consider later in

Chapter ��
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We complete this section with a summary of the main characteristics of the Immersed Bound�

ary Method�

�� The 
uid equations are solved on a regular grid� which makes coding the method relatively

simple and permits fast solvers to be applied �namely� an ADI step for the convection and

di�usion terms� in combination with an FFT solve for the pressure�� Furthermore� the

method is easily vectorizable #FP��b� PM��$�

�� Delta functions are used to interpolate quantities between the 	xed 
uid grid and moving

	bre points� In Step �� the force generated at a single 	bre point s� is �spread out� to

neighbouring 
uid points that lie within a square of dimensions �h��h centered on the 	bre

point �see Figure ����� Similarly� h�x� is used in Step � to compute the velocity of a 	bre

point as a weighted average of the 
uid velocities in a �h� �h neighbourhood�

�� A careful choice of approximation h is required to ensure volume conservation� but it is also

tied to the order of the scheme� Even though the Immersed Boundary Method is formally

secondorder accurate in space� Beyer " LeVeque prove #BL��$ that for a onedimensional

model� the cosine delta function ������ actually reduces the scheme to 	rst order� There

is computational evidence to suggest that the use of approximate delta functions limits the

discrete scheme to 	rst order accuracy in two dimensional 
uid 
ow as well #PM��� DFFG���

Rom��� LL��$�

�� Computational results show that the time step restriction for this semi�implicit scheme is

quite severe #PM��� TP��$� This limitation is due to the fact that the 	bre force is handled

explicitly� and many variations of the method have been proposed that handle the force

implicitly� several of which will be described in Chapter ��

To summarise� the main advantages of the scheme are its simplicity and geometric 
exibility�

While the 
uid solver is de	nitely not stateoftheart� the limitations on spatial accuracy and

time step do not arise from any choice of solver but rather from the presence of the 	bre and the

use of approximate delta functions to smooth the 	bre force� All things considered� the key role of
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iju

fl

Figure ��	� The approximate delta function is used to interpolate forces and velocities between

�uid and �bre grid points in a neighbourhood of size �h��h it �distributes� �bre forces to

�uid points� and computes the velocity of �bre points as a �weighted average� of velocities

at neighbouring �uid points�



Chapter �� Immersed Fibres ��

the Immersed Boundary Method as a qualitative tool for exploring complex biological phenomena

is still unmatched�

����� Choice of discrete delta function

The choice of an approximation to the delta function used to transfer quantities between the

Eulerian and Lagrangian mesh points is an integral part of the Immersed Boundary Method� The

particular choice of a cosine shape ������ is not unique� and we will see in Section ���� that the

choice of smoothing function for �x� has considerable in
uence on the behaviour of the solution

modes for the linearised equations of motion� It also has important consequences related to the

accuracy to which the solution modes for the �smoothed� problem match those of the exact or

�jump� problem in an asymptotic sense �also in Section �����

Peskin #Pes��� p� �������$ presents a list of discrete compatibility conditions that should be

satis	ed by the approximation dh�x� in the Immersed Boundary Method� The function dh�x� is

required to take the form

dh�x� �
�

h
�
	x
h



�

where ��r� is a function that satis	es the following properties�

I� ��r� is continuous � so that the coe�cients of the interpolation between 
uid and 	bre

points appearing in �����b� and �����h� vary continuously as the 	bre moves across 
uid

mesh lines�

II� ��r� � � for jrj 	 � � the support of the delta function must be 	nite in order that the cost

of the Immersed Boundary Method be kept reasonable� Without this assumption� each 
uid

point would interact with every point on the 	bre �and vice versa�� and the computational

cost would be prohibitive� The choice of two mesh points �that is� jrj 
 �� for the width of

support is the smallest integer that allows the remaining two properties to be satis	ed�

III�
P

i �even���r � i� �
P

i �odd���r � i� � �
� for all r � one consequence of this property is

that
P

i ��r � i� � � for all r� which guarantees that constant functions are interpolated
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exactly by dh �this has the physical interpretation of conserving momentum when applied

to force interpolation in �����b��� The motivation for the even�odd distinction is speci	c to

the use of the wide stencil (�h for Chorin�s projection scheme in �����f�� and ensures that

contributions from the disjoint even and odd sub�grids are equal� This avoids oscillations

that would otherwise be generated when interpolating the force�

IV�
P

i #��r � i�$� � C for all r � where C is a constant� This property ensures that
P

i ��r��
i���r�� i� 
 C for all r� and r� �after applying the Schwarz inequality�� which is analogous

to the physically reasonable requirement that when two 	bre points interact� the e�ect of

one boundary point on the other is maximised when the points coincide� It can be shown�

by setting r � � in IIIV� that C � 	

 �

The sums in the above are taken over all integers i�

The cosine function ������ can be shown to satisfy all of these properties� with

�c�r� �

�������
�

�

	
� ' cos

	�r
�




� if jrj 
 ��

�� if jrj 	 ��

However this choice is not unique� and Peskin and McQueen have derived an alternate approxi�

mation #PM��$ which satis	es the additional property

V�
P

i�r � i���r� i� � � for all r � which ensures that linear functions are interpolated ex�

actly by h �with the physical implication that angular momentum is conserved when apply�

ing forces to 
uid points��

This last property� in combination with IIV above� uniquely determines the following function

���r� �

���������������

�

�

	
�� �jrj'

p
� ' �jrj � �r�



� if jrj 
 ��

�

�
� ��� jrj� � if � � jrj 
 ��

�� if � � jrj�

������
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The function ���r� is plotted in Figure ��� alongside the cosine approximation� from which it

is clear that the two are nearly indistinguishable� It is because of this that Peskin " McQueen

remark #PM��� p� ���$�

�the change in delta functions from �c�r� to ���r�� is not likely to have any practical

e	ect on the computed results� We have gone ahead and made the change nonetheless


since it turns out that ���r� is slightly cheaper to compute than �c�r�
 and since it is

satisfying to have h uniquely determined by a reasonable list of axioms�

�

�

�

�� �� � � �

r

��
�c

Figure ��
� The cosine delta function �c plotted alongside the function �� that satis�es the

additional property V�

Another form of � that satis	es a similar set of properties �with a reduced radius of support

equal to ���� and no even�odd distinction in III� was derived by Roma #Rom��$� The corresponding

approximate delta function is applicable to computations on a staggered marker�and�cell �or MAC�

grid� where the problem of decoupled pressure modes inherent in Chorin�s projection scheme is

not an issue�

Something which has not been considered to date is the discrete second moment condition

VI�
P

i�r � i�� ��r� i� � � for all r � which guarantees that quadratic functions are interpo�

lated exactly by the corresponding h� This is the discrete analogue of the continuous second
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moment condition that we will encounter in Section ������ in relation to accuracy of the

interpolation in the continuous setting�

To 	nd a discrete delta function that satis	es the additional property VI� we must increase the

radius of support from �h to �h� We can show with the help of Maple #C���$ that properties

IVI uniquely determine the following function�

�new�r� �

�������������������������

�

��
jrj	 � ��

��
r� � ��

��
jrj' ��

���
'

p
�

���

	
��� ' ����jrj

� ���r� � ����jrj	 ' ���r� ' ���jrj�� ���r

 �

�

� if jrj 
 ��

�

�
jrj	 � �

�
r� '

�

��
jrj' ��

��
� �

�
�new �jrj � �� � if � � jrj 
 ��

� �

��
jrj	 '

�

�
r� � ��

��
jrj' �

�
'

�

�
�new �jrj � �� � if � � jrj 
 ��

�� if � � jrj�

������

The graph of �new is displayed in Figure ���� It is clear from an order of operations standpoint

0

0.25

0.5

0.75

-3 -2 -1 0 1 2 3

�
n
ew

r

Figure ���� The delta function �new with smoothing radius �� that satis�es the properties

I�VI�

alone that �new�r� is more expensive to compute than any of the above�mentioned delta functions�

Moreover� a more signi	cant cost increase is engendered by an increase in the number of points over

which the interpolation is performed from �� � �� to �� � ��� We will see later in Section �����

that there may be an improvement in the accuracy of the scheme by using this more expensive
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alternative� Whether or not the increase in accuracy is worth the extra computational e�ort is an

issue that will be investigated in computations�

There has been some work done by Beyer " LeVeque #BL��$ to increase the spatial accuracy

of a onedimensional analog of the Immersed Boundary Method to second order� They show that

the approximate delta function must satisfy one�sided discrete moment conditions� An extension

of this approach to two dimensions leads to the Immersed Interface Method #LL��$� which replaces

the delta function interpolation by modi	ed di�erence stencils� with coe�cients that are carefully

chosen to interpolate the jump conditions based on truncation error expansions�

��� Choice of Parameters

Since the Immersed Boundary Method is so closely tied to biological applications� a description of

the scheme and the underlying mathematical model would not be complete without a summary

of the typical values of physical parameters appearing in the model� Furthermore� there are very

standard computational test problems which appear over and over again in the literature� and so

we present characteristic values of the numerical parameters as well�

The 
uid within which the 	bres are immersed is typically very similar to water� In studies

of marine worms #FP��a$ and 
agellated cells #Fau��� FM��$ in water� and blood 
ow in the

heart #Pes��$ and arteries #Ros��$� the 
uid is assumed to have density 
 � � g�cm	 and viscosity

� � � g�cm � s� The 	bre is taken to have a force with stress parameter � in the range ������

������� g�cm �s�� The 
uid domain is a square with sides of length ��� cm and periodic boundary

conditions are applied in both directions�d

The choice for the 
uid viscosity requires some explanation� The viscosity of blood is approx�

imately ���� g�cm � s� which corresponds to a 
ow with Reynolds number Re approximately equal

to ���� when combined together with a characteristic length of ��� cm and velocity ��� cm�s� This

dThis particular choice of domain and boundary conditions is reasonable for many applications and allows
the use of fast solvers for the �uid equations�
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choice of parameters is justi	ed by Peskin #Pes��$ for the human mitral valve� He then states that

at this Reynolds number the problem is computationally intractable� since the time step required

for stability in the numerical scheme decreases as Re increases�e To avoid this problem� the pa�

rameters are modi	ed so that the Reynolds number is scaled by a factor of ���� to Re � �� This

change is justi	ed physically by Peskin as follows� there is a wide variation in Reynolds numbers

for mammalian hearts �in the range ������ and yet many are approximately scale models of each

other� Consequently� the 
ow 	elds should not be very sensitive to the Reynolds number� and

one can expect qualitatively reasonable results even though the viscosity is outside of the physical

range�

We will now give a brief summary of the numerical parameters we will use in computations�

The 
uid grid spacing is typically taken to be of dimensions ��� �� with the 	bre discretised at

������ points �which varies depending on the 	bre con	guration�� This choice of N � �� and

Nb � ������ ensures that there is adequate resolution of the 	bre relative to the 
uid grid for

the interpolation stages namely� that there are at least two 	bre grid points for every 
uid cell

�i�e�� hb �
�
�h�� while also not choosing hb so small that the 	bre is overresolved� The typical

time step used for a calculation is k � ����� but depends on the choice of N and the physical

parameters� The physical and numerical parameters that will be used in computations in the

remainder of this thesis are summarised in Table ��� below�

eThe actual dependence of the time step restriction on the parameters will be discussed in detail in Chapters �
and ��
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Parameter Description Value or range

� domain size �� � cm

� 	bre stress �� ���� ��	 g�cm � s�

� 
uid viscosity ��� g�cm � s

 
uid density ��� g�cm	

N ) of 
uid grid pts� ��

Nb ) of 	bre pts� ������

k time step ���� � ���	

Table ���� Typical values of physical parameters used in immersed boundary computations�
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Linear Stability Analysis

An approximate answer to the right problem is worth

a good deal more than an exact answer to an

approximate problem�

� John Tukey�

As mentioned in the Introduction� a great deal of e�ort has gone into improving the Immersed

Boundary Method and applying it to various physical problems� However� comparatively little

work has been done on analysing the behaviour of solutions to the underlying equations of motion�

LeVeque and others #LPL��� LPL��$ applied a Fourier transform technique to 	nd an explicit

solution to a twodimensional immersed boundary model of wave propagation in the basilar mem�

brane� which is suspended in the 
uid	lled cavity of the inner ear� They used a variation of

the immersed 	bre equations that was simpli	ed in two ways� the 	bre position is described by a

vertical displacement function y � h�x� t�� so that tangential stretching of the 	bre is neglected 

and the pressure jump is taken to have a special functional form� justi	ed by the physics of the

problem� Fogelson #Fog��$ has also applied a similar technique to determining the stability of the

elastic links between platelets in a model of blood clotting�

In this chapter we will use an approach akin to that used in #LPL��� LPL��$ and #Fog��$ to

perform a linear modal analysis of the immersed 	bre problem in a more general form� It is not

possible to solve the full problem explicitly� but we are able to obtain useful information about the

stability and conditioning of 
uid 
ows containing immersed 	bres� which relates to the sti�ness

observed in immersed boundary computations� We will proceed in two stages� 	rst by considering

the exact formulation of the problem� and then introducing smoothing e�ects with approximate

��
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delta functions� The analysis for the exact problem� which is based on the jump formulation� has

already appeared in #SW��$� though we have made several minor modi	cations and generalisations

in the discussion to follow�

��� Linear Stability of the Jump Problem

Consider a portion of the 
uid domain on which the immersed 	bre is approximately 
at� labeled

as �� in Figure ���� Suppose that the 	bre lies at equilibrium along the horizontal line y � ��

equilibrium
0
−Ω

+Ω0

state

x = 1

Ω 0Ω

Ω−
Ω+

Γ

y 

y

8
8

y = 0

-

Γ

x = 0

Figure ���� The two�dimensional �uid domain � with a subdomain �� on which the �bre is

approximately �at�

and that the current 	bre position is a small perturbation from this rest state� For the purpose of

isolating the in
uence of the 	bre on the 
ow� we extend the boundaries of �� to in	nity in the

ydirection� We can justify this modi	cation of the 
uid domain in three ways�

�� the important dynamics that distinguish 
uids with immersed 	bres from those without

should occur in the region near the 	bre 

�� there are no nontrivial discrete modes of Stokes� equations without an immersed 	bre on a

domain of in	nite extent� and so we expect to be able to pinpoint modes associated solely

with the 	bre 

�� the solution modes that we are most concerned with �that is� which have the most e�ect on
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stability� are those with the largest wavenumber� and these are precisely those modes that

are least a�ected by the presence of boundaries�

A common form of the 	bre tension used in immersed boundary computations #TP��� PP��$

is T � T �j�X��sj � �� with T ��� � �� corresponding to a 	bre which is slack in the reference

con	guration j�X��sj � �� In actual computations� however� the 	bre is almost always under

stress except for possibly isolated instants of time� Hence� we choose an equilibrium state de	ned

by j�X ��sj � � 	 �� around which the solution is linearised by supposing a perturbation of the

form

X �s� t� � ��s ' ��s� t�� ��s� t�� �����

�refer to Figure ����� We also make the linearity assumptions that �� �� u and their derivatives

equilibrium
state  x = (θs,0)

x = X(s,t)
fiber

ξ

η

fibre points (equilibrium)

fibre points (evolved)

Figure ���� Fibre con�guration for the linear stability analysis�

are small� at least for some 	nite time�
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The linear versions of equations �����a� and �����b� are simply Stokes� equations



�u

�t
� �(u �rp �����

r � u � �� �����

while the 	bre evolution equation �����c� becomes

�X

�t
� u��s� �� t�� �����

Di�erentiating ����� with respect to s and dropping the nonlinear terms yields

�X

�s
�
�
� '

��

�s
�
��

�s

�
������X�s

���� �
s�

� '
��

�s

��

'

�
��

�s

��

�

� � '
��

�s

which may then be used to obtain the linearised tangent vector �����

� �
�
� '

��

�s
�
��

�s

��
� '

��

�s

�
�
�

��
�

�

��

�s

�
�

Expand the tension T from ����� in a Taylor series about the equilibrium state j�X ��sj � � to get

T � T ��� ' T ����

������X�s
���� � �

�
' � � �

� T ��� ' T ����
��

�s
�

The above expressions for T and � may be substituted into ����� to obtain the linear force density

f �

�
�t
���

�s�
� �n

���

�s�

�
� �����

where �n ��T ����� and �t ��T ����� We make the physically reasonable assumption that the 	bre

tension is an increasing function of the 	bre strain� which for the linear force function amounts to

taking �n 	 � and �t 	 �� The following physical interpretation may be given to the two tension

parameter values�
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� �n� the normal stress coe�cient� represents a constant tension in the 	bre which �because of

its positive sign� acts to restore the 	bre to the horizontal whenever any portion is displaced

vertically from its equilibrium state� Taking �n � � corresponds to a 	bre which is slack in

its reference state�

� �t� the tangential stress coe�cient� measures the e�ect that changes in the length of the 	bre

have on the tension this parameter is also positive� since stretching ��
��

�s�
	 �� or compressing

��
��

�s�
� �� the 	bre amounts to increasing or decreasing the tension�

The jump conditions �����d������f� then reduce to

##u$$ � �� �����

##v$$ � �� �������
�
�u

�y

��
� ��t �

��

�s�
� �����

� ##p$$ � ��n �
��

�s�
� �����

The linearised version of the immersed 	bre problem is now given by equations �����������

����� Derivation of the dispersion relation

To isolate the solution modes associated with the immersed 	bre� we look for two separable solu�

tions to the linearised problem of the form�����������������������

u

v

p

�

�

�����������������������

�

� e�t���	x

�����������������������

bu�y�

bv�y�

bp�y�b�
b�

�����������������������

�

� ������
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one on each of the subdomains ��
� and ��

� � The wavenumber � is a real� positive number�a and

*� �
p�� is the imaginary unit� By substituting ������ into ���������� we obtain


�bu � �

�
d�

dy�
� ��

� bu� *��bp� ������


�bv � �

�
d�

dy�
� ��

� bv � dbp
dy
� ������

*��bu '
dbv
dy

� �� ������

We can then form the linear combination *�� � ������ ' d
dy ������ to get�


�' ��� � �
d�

dy�

� �
*��bu '

dbv
dy

�
� ��bp� d�bp

dy�
�

the left hand side of which is zero by ������� leaving a Poisson equation for the pressure

d�bp
dy�

� ��bp � �� ������

After imposing the requirement that bp be bounded as y � �� the solution is determined on

either side ����� of the 	bre to be

bp��y� � A�e�	y ������

where A� are as yet undetermined constants� We then substitute this expression for the pressure

into the velocity equations ������ and ������ to get

bu��y� � B�e�
y � *��


�
A�e�	y � ������

bv��y� � C�e�
y � �


�
A�e�	y � ������

where we have introduced the additional parameter � de	ned by

�� ���� '

�

�
������

aThe � � � case can be ruled out as it leads to the trivial solution� Furthermore� a symmetry argument can
be used to show that � � � leads to the same dispersion relation as for positive wavenumbers�
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for convenience of notation� We assume that Re��� 	 � and � �� � in the above derivation�b The

	bre unknowns b� and b� can then be found by substituting ������ and ������ into the expressions

for the interface position

b� �
�

�
B� � *��


��
A�� ������

b� �
�

�
C� '

�


��
A�� ������

We are now in a position to 	nd an explicit form of the solution� provided that the coe�cients

A�� B� and C� can be determined� After applying the incompressibility condition ����� to the

velocities on either side of the 	bre� as well as the four jump conditions ����������� we obtain a

homogeneous system of six linear equations in the six unknown coe�cients�������������������

�*��


�

*��


�
� �� � �

�


�

�


�
� � � ���

*����


�
'

*��t�	


��

�
*����


�

�
��� � �t�

�

�

�
��� � ��

��� �n�
	


��

�
� � � ��n�

�

�
�

� � *�� � �� �

� � � *�� � �

������������������
�

����������������

A�

A�

B�

B�

C�

C�

����������������
�

����������������

�

�

�

�

�

�

����������������
� ������

To ensure that there exists a non�trivial solution� we require that the determinant of the system

is zero� which after some manipulation reduces to the following expression�
�� ' ��	 � ���� � �	� '


�n
���

�	
�

� �z �
Sn��� � normal modes

�
�	 ' ��� � ��� � �	 '


�t
���

��
�

� �z �
St��� � tangential modes

� �� ������

This is a dispersion relation� that gives values of the exponential time constant � �via ������� in

terms of the wavenumber � and the other parameters�

An important consequence of the linearisation process is that the modes corresponding to the

normal and tangential motion of the 	bre are decoupled� Of the two factors in equation �������

bWe exclude the case � � � �that is� 	 � �� because then B� � C� � � and we are left with the trivial
solution�
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the 	rst� Sn���� depends on �n only and thus encompasses the normal motion of the 	bre St���

on the other hand corresponds to tangential motion� To illustrate this decoupling� we can 	x the

parameter values and solve explicitly for the coe�cients A�� B� and C�� We choose � � 
 � ��

� � �� and �n � �t � ���� for which there are four admissible roots of the dispersion relationc�

that is� four roots with Re��� 	 �� corresponding to two complex conjugate pairs� The four

solution modes are pictured at time t � � in Figures ��� and ���� which include for each mode a

vector plot of velocity and a surface plot of the pressure� Based on the mode plots� we can make

the following observations�

� The velocity vector plots of the two normal modes clearly illustrate a tendency for the 
uid

near y � � to move in the vertical �or normal� direction� Furthermore� the velocity appears to

be smooth� while the corresponding pressure plots have a discontinuity at the 	bre location

y � �� This is physically reasonable� as it is the pressure jump across the 	bre which

generates the normal motion�

� The second set of mode plots exhibit a velocity that moves tangentially to the 	bre near

y � �� The pressure for these two modes is continuous� whereas the velocity appears to be

nonsmooth near the 	bre� Hence� these are the tangential modes which arise from the jump

in the tangential component of the normal derivative�

����� Stability results

To investigate the stability of the solution modes� we need to solve the dispersion relation for �

given the wavenumber and the other parameters� We can then easily compute the corresponding

values of the exponential time constant � � ��
��� � ���� which embodies the behaviour of the

solution in time� The growth or decay character of solutions is given by the real part of �� if

Re��� 
 � for all 	bre modes� then the modes decay in time and are stable otherwise� solutions

are unstable� The oscillatory behaviour of the modes� on the other hand� is governed by the

cWe will see in Section ����� that these parameter values are typical for physical problems� and so the four
solution mode plots are representative of what is seen in actual computations�
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Figure ���� Plots of normal solution modes for the parameter values 
 � � � �� �n � ���

� � �� t � ��



Chapter �� Linear Stability Analysis �


−4 −2 0 2 4
−5

0

5

x

y

�a� Velocity �tangential mode ��

−4
−2

0
2

4

−5

0

5

−0.2

0

0.2

xy

�b� Pressure �tangential mode ��

−4 −2 0 2 4
−5

0

5

x

y

�c� Velocity �tangential mode ��

−4
−2

0
2

4

−5

0

5

−0.2

0

0.2

xy

�d� Pressure �tangential mode ��

Figure ���� Plots of tangential solution modes for the parameter values 
 � � � �� �t � ���
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imaginary part of �� The question of whether or not the 	bre modes are stable is equivalent to

showing that all roots of the dispersion relation satisfy Re��� 
 ��

Before moving on to a discussion of stability� it will prove helpful to write the dispersion

relation in nondimensional form� We de	ne the dimensionless parameters

e� � �
�
�t

��

�
e� � �

�
�t
��

�
e� � �

�
��t
�	

�
� �

�n
�t

and substitute into ������ to get

	e�� ' e� e�	 � e��e�� � e�	e� '
�

�
e�	
 � �e�	 ' e�e�� � e��e� � e�	 '

�

�
e��� � �� ������

From ������� it is easy to show that e� � e�� � e��� The use of dimensionless variables will make it

easier for us to present the solution modes in terms of the wavenumber and the single dimensionless

parameter ��

We now present the following proposition� which is a stability proof for the 	bre modes arising

from the linearised problem�

Proposition �� If e� 	 � and � 	 � are real and positive
 then all e� � C satisfying the dispersion

relation ����� with Re�e�� 	 � have the property

Re�e�� � e��� � ��

Proof� The proof gives a geometric representation of the roots of the dispersion relation and

stresses that the result holds for any positive values of the parameters e� and ��
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Let us 	rst denote the two polynomial factors in ������ by

f�z� � z� ' z	 � z� � z '
�

�e�� and

g�z� � z	 ' z� � z � � '
�

�e��
where we have used the substitution e� � e�z� z � x ' *�y � C � and x � Re�z� 	 �� We need to

show that all roots of f and g satisfy the condition

Re�e�� �x ' *�y�� � e��� � � or simply x� � y� ' �� ������

We proceed with the proof in two cases� 	rst for the quartic factor f�z��

Quartic factor� Any root of f must satisfy Re�f� � � and Im�f� � �� We show that for y �

Im�z� 	 �� we have Im�f�z�� 	 � on the region D ��
�
z � x ' *�y j x� 	 y� ' � and x� y 	 �

�
�

which is plotted in Figure ���� The situations y � � and y � � are discussed below�

D

2

1

x = y + 12

λRe(  ) > 0

0

y = Im(z)

x = Re(z)

Figure ���� The domain D from Proposition �� corresponding to the unstable solutions

Re�e	� � ��
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We proceed by simplifying Im�f� on the region D where �y� 	 �� x� and y 	 ��

Im�f� � y
�
�x	 ' �x� � �x� �� y� ��x' ��

�
	 y

�
�x	 ' �x� � �x� � ' ��� x�� ��x' ��

�
� �xy�x' ��

	 � when x� y 	 ��

Therefore� there are no roots of f on the region D and hence Re�e�� � � for all roots z � x'*�y�

y 	 �� of f�z��

When y � �� the argument proceeds in an identical fashion �for the re
ection of the region

D across the xaxis� except that

Im�f� � y
�
�x	 ' �x� � �x� �� y� ��x ' ��

�

 �xy�x' ��

� � when x 	 � and y � ��

If y � �� then Im�f� � � and we instead consider Re�f�z�� on D where we now have

x� � � 	 �� so that�

Re�f� � x��x� � �� ' x�x� � �� '
�

�e�
	 � since �� e� 	 ��

Again there are no roots of f when Re�e�� 	 �� This completes the proof for the quartic

polynomial�

Cubic factor� Using a similar argument� we can show that Re�e�� � � for all roots of g�

Im�g� � y
�
�x� ' �x� �� y�

�
	 y

�
�x� ' �x� � ' ��� x��

�
� �xy�x' ��

	 � for x� y 	 ��
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The results for y � � and y � � follow using a similar argument used for f above�

An immediate consequence of the proposition is that the discrete modes associated with the

linear immersed 	bre are stable for all physically reasonable parameter values� It does not prove�

however� that the immersed 	bre problem is stable� though we expect that this result is true� Such

a statement would require a full non�linear analysis of the continuous spectrum of the problem�

which is beyond the scope of this work�

We can now demonstrate our theoretical result by plotting the exponential time constants�

Since ������ is a polynomial equation in e� with factors of degree � and �� analytic expressions for

the roots are easily derived using a symbolic algebra package such as Maple #C���$� A contour

plot of the largest growth�decay rate� Re�e��� is given in Figure ��� for a range of e� and �� with

the region of stability �where Re�e�� � �� lying above and to the right of the zero contour� It is

not surprising that this is precisely the region where � 	 � �corresponding to �n 	 � and �t 	 �� 

that is� the 	bre modes are stable when the tension force acts to oppose any stretching or normal

displacement of the 	bre�

����� Asymptotic expansions of decay rates

Now that the modes associated with the 	bre are known to be linearly stable� we will attack the

question �How rapidly do perturbations in the 	bre die out in time�� and the related issue �How

sti� are the 	bre modes�� The answer to both questions is embodied in the dependence of � on

the wavenumber and the other physical parameters�

Even though we have explicit formulas for the roots of the dispersion relation� the expressions

are too complicated to exhibit any clear functional dependence� We will take an alternative ap�

proach� and derive asymptotic expansions of � for large and small nondimensionalised wavenum�

bers� The small e� case is the one we are actually interested in �since the physical parameters

lie in this range�� but we include the case of large and intermediate wavenumbers for the sake of
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Figure ��	� Contours of the maximum scaled growth�decay rate Re�e	� plotted versus � and

scaled wavenumber e�� The contours are all negative and so the �bre modes are stable�
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completeness�

Small wavenumber

Equation ������ was solved for � � �� and all admissible roots �that is� roots for which Re�e�� 	 ��

are plotted in Figures ��� for values of e� � #�� ���$� An explicit form for the dependence of

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

e�

R
e�
e �� n�

� n
�

t�

t�

0 0.2 0.4 0.6

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

e�

R
e�
e ��

n�� n�

t�

t�

Figure ��
� Plots of the real parts of e� and e	 versus wavenumber e� �� � ���� in the small

wavenumber regime�

the exponential time constant on the wavenumber may be determined by computing a regular

asymptotic expansion for each root in powers of the non�dimensionalised wavenumber e�� as e�� ��

There are in fact two complex conjugate pairs of roots� given in terms of dimensional variables as

�n�� � �n�� � �*��




�

�n
���

� �

�

�
�

� � ���� *��

�
p

�


�

�n
���

� �

�

�
�

� � �

�

�� 'O�e� �

� ��

�t�� � �
t�
� � �

���� *�
p

��

�


�

�t
���

� �

�

�
�

� � ���� *�
p

��

�


�

�t
���

� �

�

�
�

� 'O�e� �

� ��

������

which substantiates the results in Figure ���� Note that beyond a value of e� � ����� two of the

roots merge and split into a pair of real roots� and shortly thereafter �at e� � ����� one of those

roots ��t�� is inadmissible after Re��t�� becomes negative� These two complex conjugate pairs of

roots are what give rise to the solution modes pictured earlier in Figures ��� and ����
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Intermediate wavenumber

Plots of the roots e� and exponential time constants e� in the intermediate wavenumber range

e� � #�� ���$ are given in Figure ��� We can see another bifurcation point at e� � ��� where the
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Figure ���� Plots of e� and e	 for intermediate values of the wavenumber� �� � �����

complex conjugate pair of normal roots merges and splits into two distinct real solutions�

Large wavenumber

Figure ��� contains a plot of the scaled e� for values of e� in the intermediate range #�� �$� For values

of e� �	 ���� there are three real roots� corresponding to two normal modes and one tangential

mode� We can see investigate more closely the dependence of � on � for large � in this regime by

once again performing an asymptotic expansion of the roots as e��� from which we obtain the

following expressions�

�n�� � ��


�� '


��n
��	

� 
��	n
���

��� 'O�e�����

�n�� � ��n
��

�� �
��n
���	

� ��
��	n
������

��� ' O�e�����
�t�� � � �t

��
�� 
��t

���	
� �
��	t

������
��� 'O�e�����
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Figure ���� Plots of the real parts of e� and the scaled decay rate versus wavenumber for each

of the admissible roots in the large wavenumber regime�

By comparing the plots of the solution modes in Figure ��� to the corresponding asymptotic

formulas� it is easy to see that two of the three modes ��n� and �t�� are nearly identical for large

e� �when �n � �t� and depend linearly on the wavenumber�

The quadratic dependence of the remaining normal mode on � can also be seen on the graph

� to lowest order in � this mode behaves like a Stokes mode� Similar to solutions of Stokes

equations without an immersed 	bre� the mode represented by �n�� gives rise to sti�ness in the

problem� for as the wavenumber varies� the exponential time constants take on widely disparate

values�

����� Comparison with computations

Many researchers have observed in the course of immersed boundary computations #PM��� Rom���

DFFG��$ that a very small time step is required to achieve stability� This seems to suggest

that the problem is sti�� and we�d like to 	nd an explanation for this sti�ness in terms of the

analytical results above� Typical computations� such as those in #MP��$� are performed on a

domain � � #�� �$� with a grid spacing of h � ���� �all measurements being in cm�� On this grid
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Mode Normal� Interval of wavenumber e� �approximate�

Tangential #�� ����$ #����� ����$ #����� ����$ #�����$

�n� normal C R

�n� normal C R

�t� tangential C R R

�t� tangential C R R

�t	 tangential R

�n	 normal C

�n� normal C

Table ���� Summary of the character of e	 for various intervals of scaled wavenumber� with

R representing a real root� and C a complex root� The shaded entries correspond to the

inadmissible roots of the dispersion relation�
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the method can resolve modes with a maximum wavenumber of �max � ���h � ����� commonly

referred to as the Nyquist frequency� We can therefore assess the sti�ness of the method by

considering the decay of solution modes with wavenumbers � � ��n� for n � �� �� � � � � ���

As mentioned earlier� it is the small wavenumber regime which is of most interest� because

this is where the scaled wavenumbers are found to lie� based on the parameters values used in

typical computations� Using the information provided in #MP��$� we select the parameters to be

� � � g�cm � s� 
 � � g�cm	 and �n � �t � ���� ��� g�s� �that is� � � ��� We then restrict

ourselves to a discrete set of wavenumbers� � � �� � n� where n � �� �� � � � � ��� which can be

thought of as an idealised discretisation of the problem �since these are the wavenumbers that

can be resolved in computations on a regular �� � �� grid of points�� The nondimensionalised

wavenumber then lies in the range e� � #���� ����� ���� ���	$� which clearly places the numerical

examples in the small wavenumber regime�

Examining the asymptotic expressions for the decay rates as e� � �� we 	nd that for the

parameters used in the previous paragraph� the 	bre modes satisfy�

����� ��� 
 Re��
n��n�
� � 
 ����� ���

����� �� 
 Re��t��t�� � 
 ����� ��	

��� �� ����� �� 
 Re���� 
 ����� ���

���� ��	 
 jIm��n��n�� �j 
 ���� ��

���� ��� 
 jIm��t��t�� �j 
 ���� ��

��� �� ���� ��	 
 jIm����j 
 ���� ��

The modes for Stokes equations without an immersed 	bre are simply �s � �����
� which lie in

the range

����� ��� 
 �s 
 ����

The decay rates for the 	bre modes vary over a range that is an order of magnitude larger� and

hence the immersed 	bre problem is considerably more sti� than Stokes 
ow without a 	bre�

Furthermore� it is the tangential modes which make the problem more sti�� since the normal

growth rates are approximately the same size as the Stokes modes�
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To help account for the severe limitation on the Reynolds number that can be handled by

immersed boundary computations� we consider the decay rates arising from parameters that cor�

respond to a more realistic situation� By choosing � � ���� g�cm � s� which is more representative

of the viscosity of blood in the human heart� we 	nd

����� �� 
 Re���� 
 ��� and ���� ��	 
 jIm����j 
 ���� ���

and for Stokes modes

����� ��	 
 Re��s� 
 �����

It is evident that the 	bre modes are now more than three orders of magnitude larger than

Stokes� modes� which clearly identi	es one source of the problems encountered with the Immersed

Boundary Method at high Reynolds numbers� Furthermore� from ������ we can see that the leading

order terms in the decay rate expansions are

Re��n��n�� � � O
	
����n � 
�	�� � ����



�

Re��t��t�� � � O
	
�
��	
t � 
���	 � ����	



�

The normal modes depend less strongly on �n and decrease in magnitude as the viscosity is reduced 

hence� they can be characterised as perturbed Stokes modes� The tangential modes� on the other

hand� are the major source of sti�ness in the problem as they depend more strongly on the 	bre

forcing parameter and also grow with decreasing viscosity� Hence� the problems encountered with

immersed boundary computations at high Reynolds numbers are due neither to the sti�ness of

Stokes modes nor the onset of turbulence� Rather it is the tangential modes of oscillation in the

	bre that introduce sti�ness through the combination of a large 	bre force and small viscosity�

In terms of numerical computations� the presence of sti� modes suggests the use of an implicit

time�stepping scheme� The analytical justi	cation given here backs up the conclusion of Tu "

Peskin in #TP��$ that by applying a fully implicit scheme� a considerable improvement in numerical

stability can be realised� They also observe that �in its present form
 the fully implicit scheme is
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probably too expensive for practical application� #TP��� p� ����$� and suggest that a more e�cient

implementation be developed�

To further test the analytical results we have implemented the Immersed Boundary Method

algorithm as stated in Section ���� and compared decay rates of the computed solution to the

predicted values� Since no exact solutions to the immersed 	bre problem are known� our analytical

expressions for the decay rate of the lowest wavenumber mode present the 	rst opportunity for

comparison to be made to an analytical solution�

We have set up a test problem pictured in Figure ����� which is specially tailored to verify

our analytical results and which has incidentally not appeared in the literature to date� The 
uid

domain is a unit square with periodic boundary conditions in the x and y directions� The initial

	bre position is a sinusoidal curve with equation

X �s� �� �

�
s�

�

�
' A sin ���s�

�
�

which is also required to satisfy periodic boundary conditions at x � � and �� The constant A is

set to ���� in the examples computed here� The force density is taken to be the linear function

f � � ��X ��s� from ������ where � �� �n � �t� This form of the initial 	bre position excites the

normal mode of oscillation� which we will see is the dominant solution mode for this problem�

To compare the analytical and computed results� we examine the solution mode with the

smallest decay rate �for � � ���� which corresponds to the mode of oscillation that will dominate

the solution after a short time� The quantity which serves as the simplest basis for computing the

decay rate is the maximum height of the immersed 	bre� Figure ���� provides a sample plot of

the computed maximum height of the immersed 	bre as a function of time� which oscillates very

regularly and has an amplitude that decays with time� There are two quantities that can easily

be obtained from this information in order to draw comparisons with the analytical results�

� the decay rate� Re���� for the � � �� mode which can be determined by measuring the rate

at which the maximum 	bre height decays to zero �from the diagram� �
t��t�

�n#H��H�$�  and
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Figure ���� The test problem for the linear stability results�
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Figure ����� Plot of computed maximum �bre height versus time�
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� the frequency Im���� which can be calculated from the period of the 	bre oscillations �which

is equal to ��Im��� on the diagram��

The results are summarised in Table ��� for a the spatial resolution N � �� and Nb � ��� �so

that hb �� �
�h� and values of the 	bre stress parameter � � f�� ��� ���� ����� ������ ������g�d The

Smallest Decay Rate Re��� Frequency Im���

� Analytical Computed Analytical Computed

� ��� ��� � �

�� �� �� �� ��

��� �� �� �� ��

����� �� �� ��� ���

������ �� �� ���� ����

������� ��� ��� ���� ����

Table ���� Analytical and computed values of 	 for the solution mode with the smallest

wavenumber� � � � �N � 	�� Nb � �����

�analytical� values are found by taking the root of the dispersion relation whose decay rate Re��� is

smallest in magnitude the frequency of this dominant mode is then given by Im���� The precision

of the �computed� results is limited to only two signi	cant digits because of the size of the time

step� The computed frequency shows extremely good agreement with the analytical results� and

the decay rate likewise matches quite well�

The correspondence between analytical and computed results seems reasonably close� with

the relative di�erence being within ��+ for all values of �� To measure the e�ect of the spatial

discretisation on the solution� we have computed the 
at 	bre problem on successively 	ner grids�

choosing h as small as �
�� � Table ��� lists a series of computations for � � ���� ���� at which the

dIt might seem odd to choose the second stress value to be �� instead of �� in this sequence of �� The
reason for this choice is that there are bifurcations of the roots of the dispersion relation near the value ��
�actually at � � ��� �� and ��� To avoid problems with the numerical root �nding routine� we will avoid
the bifurcation points and choose � � �� instead�
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largest discrepancy between predicted and computed decay rates occurred in Table ���� The error�

N Re��� Im��� Error Rate

�� �� ���� �� �

�� ��� ���� �� ���

�� ��� ���� �� ���

��� ��� ���� � ���

��� ��� ���� � ���

Table ���� Convergence of 	 to the analytical value �	 � ������������ as the computational

grid is re�ned� The max norm errors and convergence rates are based on the comparison

between Re�	� and the predicted decay rate of ���� �k � ���� ����� � � ���� ����� First

order convergence is indicated by a convergence rate of ����

eN � is de	ned to be the magnitude of the di�erence between the decay rate predicted from the

jump dispersion relation �which can be thought of as the �exact� result� and the computed decay

rate� The di�erence between the �jump� and �computed� results decreases with N � and while the

convergence rate� log� �eN �e�N �� does not settle down to any clearlyde	ned value� it does appear

to be reasonably close to the value ��� consistent with 	rst order spatial accuracy�e The decay

rates thus provide a measure of the convergence rate of the numerical scheme to the solution of

the original delta function �or jump� problem�

Remark ���� By cutting o	 the �uid domain and imposing periodic boundary conditions at y � �

and �
 we have introduced some error between the computed and analytical results� We can identify

the signi�cance of this error by increasing the extent of the �uid domain in the y�direction� By

computing on domains of size � � �
 � � � and � � �
 we found that the results were practically

identical
 with the values of � varying only by a few percent� This gives credence to our earlier

assumption on page �� that it is appropriate to concentrate on the region near the �bre and that

eComputational evidence in the literature �in �LL�
�� for example� suggests that the Immersed Boundary
Method is �rst order accurate in space�
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our use of periodic boundary conditions has minimal e	ect on the solution
 even for the dominant

or lowest wavenumber� modes�

Let us return once more to the distinction made earlier between the normal and tangential

motions of the 	bre� The linear analysis clearly shows a decoupling between the normal and

tangential modes of oscillation� Though we can�t expect this to hold exactly in the fully non�linear

problem� we can still expect a reasonable agreement with the theory when the displacement and

velocity of the 	bre are small� In fact� computations based on our �
at 	bre� test problem show this

decoupling quite clearly� Figure ���� contains velocity vector plots which demonstrate that both

the normal and tangential motions are present at various points in the cycle of oscillations of the

	bre� These pictures should be compared to the analytical solution plots from Figures ��� and ����

The normal mode of oscillation shown in Figure �����a� dominates the 
ow for most times� except

near instants when the maximum amplitude is reached �in Figure �����b�� and the tangential mode

expresses itself� We have also provided a plot of the transitional phase in Figure ����� where the


ow is a combination of the two modes�

The one thing we have not mentioned is the smoothing e�ects arising from replacing the delta

functions �or jumps� in the exact problem with approximate delta function forces� This is the

subject of the following section�

��� Linear Stability of the Smoothed Problem

The results of the preceding section are based on the jump formulation of the immersed 	bre

problem� and so neglect the in
uence of smoothing from approximating the delta function� From

the point of view of formal spatial accuracy� this is not an issue as we can simply let the resolution

become arbitrarily 	ne by letting N � � and the solution will converge� However� this is not

practical in computations� and when we select a spatial mesh of dimensions N �N � the sti�ness

characteristics of the numerical method should be quite di�erent from the original jump problem�

In this section we extend our previous results to an approximation of the delta function
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�a� Normal mode

�b� Tangential mode

Figure ����� The normal �a� and tangential �b� modes of oscillation at two instants of time�
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Figure ����� The transitional phase between the normal and tangential modes of oscillation�
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formulation of the problem� where the force is smoothed over a 	nite interval� Since the choice of

dh is so important to the Immersed Boundary Method� we will be able to make even more accurate

predictions regarding the sti�ness and decay characteristics of immersed 	bres� We expect that

the behaviour of the solution to the discrete problem should be much closer to what is predicted

by this smoothed version of the problem�

We use an approach very similar to that in Section ��� with the major modi	cation being to

introduce a strip � called the smoothing region � of width � on either side of the 	bre� where �

represents the radius of support of the approximate delta function� The region of interest is now

divided into three subregions� ��
� and ��

�� as pictured in Figure �����

0
+

Ω-
0

y = ε

y = - ε

Ω

0

smoothing region

ΩεΓ
y = 0

Figure ����� The �bre at equilibrium along y � �� with a smoothing region� ���� of width ���

����� Derivation of the dispersion relation

The form of the linearised force density function f is identical to that for the jump problem given

in ������ Furthermore� on the subdomains ��
� and ��

� the 	bre force is zero� and hence the 
uid

obeys the same linearised equations as in the previous section� Consequently� we can write the
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solution on these regions immediately as

bp��y� � A�e�	y � ������

bu��y� � B�e�
y � *��


�
A�e�	y � ������

bv��y� � C�e�
y � �


�
A�e�	y � ������

which are identical to ������������� However� rather than linking these two solutions with jump

conditions at the 	bre �y � ��� we must 	rst 	nd the solution on ��
� and then perform matching

at the boundaries y � �� of the smoothing region�

On ��
�� the linearised 
uid and 	bre obey Stokes� equations with a non�zero forcing function



�u

�t
� �(u �rp '

Z
�
f�s� t� � d��x�X �s� t�� ds� ������

r � u � �� ������

and the 	bre evolution equation

�X

�t
�

Z
��
	

u�x� t� � d��x�X �s� t�� dx� ������

The exact delta function �x� in ����a� and ����c� has been replaced by the smoothed version

d��x� � d��x� � d��y�� which for the time being we choose to be the cosine approximation

dc��x� �

�������
�

��

	
� ' cos

�x

�



� if jxj 
 ��

�� if jxj 	 ��

������

We now proceed to linearise the additional integral terms in the equations of motion� beginning

with the forcing term on the right hand side of ������� After substituting the expressions ����� and

����� for the 	bre position and force density� the 
uid force may be written as

F �x� y� t� �
Z
�

�
��t�

��

�s�
� ��n�

��

�s�

�
d� �x� �s � ��s� t�� d� �y � ��s� t�� ds�

� �
Z �x�����

�x�����

�
�t
���

�s�
� �n

���

�s�

�
d��x� �s� d��y� ds�



Chapter �� Linear Stability Analysis ��

since the � and � terms inside the approximate delta functions contribute only to higher order

terms� We then substitute the separable form for the 	bre position from ������ to get

F �x� y� t� � �
Z �x�����

�x�����
e�t���	�s

	
�t�

�b�� �n��b�
 d��x� �s� d��y� ds�

� ���e�t d��y�
	
�tb�� �nb�
 Z �

��
� e��	�x�r�d��r� dr�

� ����e�t���	x d��y�
	
�tb�� �nb�
 Z �

��
e���	rd��r� dr� ������

where we have performed the change of variables r � x � �s� The right hand side of the 	bre

evolution equation is linearised in a similar manner

�X

�t
�
Z
��
	

�bu�y�� bv�y�� e�t���	x d��x� �s� d��y� dy dx

� e�t
Z �s��

�s��

Z �

��
�bu�y�� bv�y�� e��	x d��x� �s� d��y� dy dx

� e�t
Z �s��

�s��
e��	x d��x� �s� dx

Z �

��
�bu�y�� bv�y�� d��y� dy

� e�t���	�s
Z �

��
e��	r d��r� dr

Z �

��
�bu�y�� bv�y�� d��y� dy� ������

Notice the presence in both ������ and ������ of the Fourier transform of the approximate delta

function which we de	ne as

bD�
	 ��

Z �

��
e���	rd��r� dr� ������

For the cosine delta function� this transform evaluates to

bD�
	 �

�� sin ����

�� ��� � �����
�

The ��� forms of the transform are equivalent because of the symmetry properties of d��r�� Using
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this de	nition� we can write the system of integrodi�erential equations on the strip ��
� as follows�


�bu� � �

�
d�

dy�
� ��

� bu� � *��bp� � �t��
� bD�

	
b� d��y�� ������


�bv� � �

�
d�

dy�
� ��

� bv� � dbp�
dy

� �n��
� bD�

	b� d��y�� ������

*��bu� '
dbv�
dy

� �� ������

�b� � bD�
	

Z �

��
bu��y� d��y� dy� ������

�b� � bD�
	

Z �

��
bv��y� d��y� dy� ������

At 	rst glance� it would appear that this coupled system of equations is di�cult to solve

analytically� since the 	bre positions are integrals of the velocity components� while bu� and bv� are

in turn found by solving a di�erential equation with b� and b� on the right hand side� Fortunately�b� and b� are constants and therefore ������������ may be solved for the velocity and pressure 	rst�

without knowing the 	bre positions a priori� The resulting bu� and bv� can then be used in ������

and ������ to 	nd expressions for b� and b�� which are substituted back into the velocity solutions�

This procedure involves extensive algebraic manipulations� and is tractable only through the use

of Maple�f The 	nal expressions for bu�� bv�� bp�� b� and b� are so large that they are not presented

here�

At this point� we have expressions for the solutions on three regions� each involving several

unknown constants of integration� On ��
� we have ������������� which involve the six coe�cients

A�� B� and C�� The solution on the strip ��
� introduces an additional six constants of integration�

two from the pressure Poisson equation� and another four from the solution of the velocity equa�

tions� Consequently� we must come up with a total of �� equations in order to uniquely determine

the values of the �� constants� We proceed as we did for the jump formulation of the problem and

apply the incompressibility condition along with matching conditions at the interfaces y � ���

fMaple requires approximately two hours of computing time on a HP Apollo �����
�� ��� MHz
PA�RISC 
���� with �� Megabytes of RAM to solve the integro�di�erential equations and compute the
determinant� using the cosine approximation to the delta function�
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� enforcing the incompressibility condition leads to one equation on each of ��
� � and two on

��
� �one each for the real and imaginary parts of the equation�� for a total of four equations 

� another four conditions arise from the requirement that the pressure� velocity and normal

derivative� dbu�dy� be continuous at the interface y � � 

� the 	nal four matching conditions come from enforcing continuity at y � ���

The resulting system of equations is homogeneous� and so there is a non�trivial solution only

if the determinant is zero� The dispersion relation is too large to include here� but we can write it

symbolically as

S�
n��� � S�

t ��� � � ������

where

� S�
t��� and S�

n��� are functions of the parameters �� � and 
 in addition to �� The parameter

�n appears only in S�
n��� and �t only in S�

t ����

� The structure of the dispersion relation is very similar to that from the jump formulation

������ in that there is a decoupling between the normal and tangential 	bre modes�

� On the other hand� the dispersion relation is no longer a polynomial �since it now involves

trigonometric and exponential functions of the parameters� and we have been unable to

generate an analytical expression for the solutions �� Consequently� our only recourse is to

apply a numerical root	nding technique such as Newton�s method �modi	ed for complex

functions�� This is facilitated by Maple�s C�� and fortran�� functions for generating code

from the analytical expression for the determinant�

� We have also found that the presence of the exponential terms in ������ make the equation

very illconditioned� and requires the use of quadruple precision arithmetic in the Newton

solver� Even then� very delicate calculations are necessary to 	nd some� let alone all of the

roots of the dispersion relation� As a result� we have been unable to reproduce contour plots
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of the exponential time constants �for ranges of the parameter values� as we did for the jump

problem�

����� Accuracy and the choice of approximate delta function

Before discussing the stability of the smoothed delta function problem in terms of solutions to the

dispersion relation ������� we would 	rst like to verify that this expression is compatible with our

results from the jump formulation� A simple check for consistency is to see that the results for

the smoothed problem match with those from the jump problem in the limit as � approaches zero�

This corresponds to the physically reasonable assumption that as the smoothing radius shrinks to

zero� the matching conditions across the smoothed region ��
� should reduce to jump conditions�

To perform this comparison� we expand bD�
	 and the exponential terms appearing in ������ as

Taylor series in �� Omitting the details� we 	nd that the factors S�
n��� and S�

t ��� are series in �

whose two leading order coe�cients can be written in terms of Sn��� and St��� �the factors of the

jump dispersion relation��

S�
n��� � Sn��� ' � Sn��� 'O����� �����a�

S�
t ��� � St��� ' � St���� ��

�

�t�

�

���

�
'O����� �����b�

where � � �
 � �


� � It is clear that any root � that satis	es either of the jump dispersion relations

Sn��� � � or St��� � � must also satisfy the corresponding smoothed version of the formula

above to �rst order in �� Notice also that the normal modes match to second order in �� while the

tangential factor �which incidentally corresponds to the sti�est modes in typical computations�

only matches to 	rst order� We can thus conclude for the 	bre modes� that the use of a smoothed

approximation to the delta function leads to a solution which is consistent with the jumps in

pressure and normal derivative of velocity in the exact delta function formulation of the problem�

At this point it is worthwhile mentioning how these results apply to a discrete version of

the immersed 	bre problem� One can think of the smoothing radius � in terms of an idealised

discretisation which holds when the grid spacing h � �� The accuracy with which the dispersion
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relation for the smoothed problem approximates the modes from the jump problem is embodied

in the asymptotic formulas �����a� and �����b�� We use the term �idealised� since in practice � is

typically never chosen larger than �h�

There is nothing in the derivation above that restricts us to the use of any particular choice

of d� �except� perhaps� limitations on the size of expressions that Maple can handle�� Thinking

back to the discussion in Section ����� of moment conditions� it may prove enlightening from a

theoretical standpoint to compare the asymptotic results in � for various choices of delta function

approximation� The results will of course not be directly applicable to the discrete problem�

since they hold only in the limiting case h � � however� it will still prove useful to draw some

comparisons to the motivation of delta function choice using discrete compatibility conditions�

We have derived a series of dispersion relations for various polynomial �and piecewise polyno�

mial� approximations d��r� that satisfy one or more of the following continuous analogues of the

discrete moment conditions�

Zeroth moment�

Z �

��

d��r� dr � ��

First moment�

Z �

��
r d��r� dr � ��

Second moment�

Z �

��

r� d��r� dr � ��

We consider the following approximations� which are summarised in Table ��� along with the

continuous moment conditions that they satisfy�

� a piecewise constant function� d�� � which is the simplest that satis	es the zeroth order moment

condition�

� the cosine approximation� dc�� currently the most commonly used function in immersed bound�

ary computations� which satis	es the zeroth and 	rst order continuous moment conditions

�as well as the discrete compatibility conditions described in Section �������

� a piecewise linear approximation� d�� � which was the original delta function used by Pe�
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skin #Pes��$�

� a quadratic polynomial� d�� � which satis	es the zeroth and 	rst order moment conditions�

This approximation is motivated by the work of Beyer " LeVeque #BL��$� who derived a

piecewise quadratic delta function approximation that increased the spatial accuracy of a

onedimensional version of the scheme to second order�g

� 	nally� a sixth degree polynomial� d� � which is the simplest smooth function we have found

that satis	es in addition the second order moment condition given above� The inclusion of

the higher order moment was motivated in Section ������ Even though we can show that

the delta function based on �new�r� from equation ������ satis	es the 	rst three continuous

moment conditions as well as their discrete analogues� we have chosen to use this simpler

polynomial function� here in the continuous setting� so that there is some hope of deriving

the dispersion relation�

The approximations d�� � d
�
� and d� have not appeared in the literature in reference to the Immersed

Boundary Method� This is not surprising� since these delta functions do not satisfy the discrete

moment conditions which computational evidence suggest are required in the method� Neverthe�

less� they do satisfy the corresponding continuous moment conditions and have a simple enough

functional form that the dispersion relations can realistically be derived� Hence� it will prove useful

for us to consider all of the above functions so that we can compare the formal accuracy of the

various approximations�

For each of the approximations listed in Table ��� �except for d��� the dispersion relation can be

derived and written in the same form ������������ we had for the cosine approximation� The sixth

degree polynomial leads to a determinant that is too large for Maple to compute �see Remark ���

below�� The last column contains the �order constant� � from the asymptotic expansions of the

gTo date� this one�dimensional convergence result has not been extended to higher dimensions� Further�
more� all the computational evidence that has appeared in the literature to date suggests that the delta
function interpolation limits the Immersed Boundary Method to �rst order spatial accuracy in two or three
dimensions�
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Delta function approximation Continuous O��� constant �

moments

d�� �piecewise constant� � ��
 � ������

d�� �quadratic� �� � �
�� � �����

d�� �piecewise linear� �� � �
� � �����

dc� �cosine� �� � �
 � �


� � �����

d� �sixth degree

polynomial�
�� �� � see Remark ���

Table ���� Comparison of the constants � in the O��� term of the dispersion relation for

various approximate delta functions �in order of decreasing ���



Chapter �� Linear Stability Analysis ��

dispersion relation for each of the approximate delta functions� � may be considered as a measure

of how accurately the scheme for a given delta function will approximate the original problem�

The results in the table seem to indicate that satisfying the higher moment conditions leads to an

improvement in the formal accuracy of the scheme� Furthermore� the cosine approximation leads

to the best asymptotic results for all of the approximations that we were able to compute results

for�

Remark ���� Our inability to push through the dispersion relation calculation for d� stems from

a limitation in Maple on the number of terms in expressions� According to the technical sta	

at Waterloo Maple Inc�
 versions of the program for machines that have ��� or ���bit addressing

which are the only machines that we can run Maple on at the moment� have a limit of ��
���

terms� However
 on ���bit address machines
 the limit goes up to �� ��� terms� We are currently

attempting to obtain an ���bit binary version of Maple
 which we expect will allow us to compute

the dispersion relation for the sixth order polynomial in order to show that � � ��

Unfortunately� it is the delta function d� that satis	es the second moment condition for which

we have been unable to derive a dispersion relation� We expect that this approximation will have

� � �� which corresponds to a smoothing that is formally second order accurate� In the absence

of any further analytical evidence to support this claim� we perform a computational investigation

of the delta function dnewh �introduced in Section ������ that satis	es the discrete second moment

condition� We follow the approach of LeVeque " Li #LL��$ who considered an ellipticalshaped

interface� such as that pictured in Figure ��� with semiaxes ��� cm and ��� cm� which is immersed

in a � cm� � cm periodic box� We compute the solution on a sequence of successively 	ner grids

with fN�Nbg � f��� ��g� f��� ���g� f���� ���g� f���� ���g� f���� ����g� and f����� ����g� using

parameters � � 
 � �� � � �� ��� and take �� time steps of size k � �������� using the Immersed

Boundary Method described in Section ���� We modify LeVeque " Li�s error measure slightly� and

compute convergence rates based on an L�norm di�erence� eNb � between interface positions on
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successive grids

eNb �

vuut �

Nb

Nb��X
���

�	
X

Nb

� �X
Nb��

��


�
'
	
Y
Nb

� � Y
Nb��

��


��
�

where �X
Nb

� � Y
Nb

� � is the interface position at the end of the computation� using Nb boundary

points� The convergence rate can then be estimated using the formula

Convergence rate � log�

�
eNb
e
�Nb

�
�

The errors and computed rates for the two delta functions are listed in Table ���� from which it

is clear that our �new� delta function performs better than the cosine approximation� It is not

N�Nb dch �cosine� dnewh �second moment�

e
Nb

Conv� rate e
Nb

Conv� rate

����� � � � �

������ ����� ���� � ����� ���� �

������� ����� ���� ���� ����� ���� ����

������� ����� ���� ���� ����� ���� ����

�������� ����� ���� ���� ����� ���� ����

��������� ����� ���� ���� ����� ���� ����

Table ���� Comparison of convergence rates for the cosine and �new� delta functions�

clear that the new approximation leads to second order spatial convergence� and in the absence

of further analytical backing we can only say that there is evidence to suggest that this might be

true�

We can expect the calculation of dnewh to be considerably more expensive than dcosh � due to

the complexity of the expression in ������ and more signi	cantly� the wider stencil of points� To

see whether the extra cost is worthwhile� we have listed in Table ��� the CPU time required for

the two delta functions used in the previous calculation� The use of the dnewh clearly increases the

cost of the interpolation routines by up to ���+� However� when compared to the total cost of
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N�Nb CPU time required +

dch dnewh increase

����� ���� ������ ���� ������ ��� ����

������ ���� ������ ���� ������ ��� ����

������� ���� ������ ���� ������ ��� ����

������� ���� ������ ���� ������ ��� ���

�������� ���� ������� ���� ������� �� ���

��������� ���� ������ ���� ������ �� ���

Table ��	� Comparison of CPU times required by the delta function interpolation routines

using the two approximations� with the total CPU time for the entire calculation given

in parentheses� Timings were performed on an SGI Origin ���� ��� ��� MHz R�����

processors� ��� Mb RAM��i

the immersed boundary computation �the values given in parentheses�� this increase is much less

signi	cant� For grids of size ������ which are typically used in computations� the total CPU time

increases by only ��+� with the percentage decreasing as the grid is re	ned� We have made very

little e�ort to optimise the calculation of dnewh � and so it is our opinion that with some additional

work� the cost can be reduced even further� Consequently� we believe that this new delta function

may be a useful improvement to immersed boundary computations� Clearly more study is required�

and the utility of the new interpolation scheme will be proven in threedimensional calculations�

����� E�ects of smoothing on sti�ness of solution modes

We now investigate two aspects of the smoothing process� the consistency of the smoothed problem

with the original delta function or jump formulation and more importantly� how approximations

to the delta function a�ect the sti�ness of the problem�

iOne is reminded at this point of the immortal words of Bill Gates ������ ��	
 K ought to be enough for
anybody��
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We begin by examining the the decay rate and frequency of oscillation for the lowest wavenum�

ber mode� which is the dominant solution mode� We have solved the dispersion relation for various

� values and summarised the results in Table ���� with the �jump� results from Table ��� repeated

for easy comparison� The e�ect of smoothing on the analytical solution modes is negligible for

Smallest decay rate Re��� Frequency Im���

� Analytical Analytical Computed Analytical Analytical Computed

�jump� �smooth� �jump� �smooth�

� ��� ��� ��� � � �

�� �� �� �� �� �� ��

��� �� �� �� �� �� ��

����� �� �� �� ��� ��� ���

������ �� �� �� ���� ���� ����

������� ��� ��� ��� ���� ���� ����

Table ��
� A comparison of the decay rates and frequencies for the lowest wavenumber modes

�� � �� for the jump and smoothed delta function formulations� and the computed results

�N � 	�� � � �
����

small �� However it is clear that smoothing has a signi	cant e�ect on the decay rates for values of

� in the physical range of �������������� The frequency of the dominant solution mode� on the

other hand� remains comparatively una�ected over the entire range of 	bre stress coe�cient�

The �computed� results from Table ��� show reasonable agreement with the analytical results

for both the jump and smoothed problems when � 
 ��� ���� However� there is a considerable

di�erence when � is taken any larger� If we refer back to the convergence results of Table ���� it

is clear that the computed decay rates do di�er from those of the original jump problem when the

grid is not 	ne enough�

If we think of the smoothed problem as an idealised discretisation of the delta function formu�



Chapter �� Linear Stability Analysis ��

lation of the immersed 	bre problem� then we should observe convergence of the smoothed solution

to the jump solution as the smoothing radius goes to zero� As we saw earlier in Table ���� the

computed decay rate converged to the analytical value as the computational grid was re	ned� We

would expect the same behaviour from our smoothed deltafunction problem� that is� the domi�

nant decay rate for the smoothed problem should converge to that of the original jump problem

as the smoothing radius goes to zero� This is consistent with our asymptotic matching of the

dispersion relations from the jump and smoothed problems in Section ������ Table ��� lists the

largest decay rate for various values of �� from which is it evident that the results do correspond

as � is reduced �as before� the correspondence worsens as the 	bre force parameter � increases��

This table provides us with a �consistency check� which veri	es that the dominant mode in our

Smallest Decay Rate

� Jumps � � �
� � � �

� � � 	
� � � �

� � � �
� � � 

� � � �
�

� ��� ��� ��� ��� ��� ��� ��� ���

�� �� �� �� �� �� �� �� ��

��� �� �� �� �� �� �� �� ��

����� �� �� �� �� �� �� �� ��

������ �� �� �� �� �� �� �� ��

������� ��� ��� ��� �� �� �� �� ��

Table ���� A comparison of the analytical decay rates for the lowest wavenumber mode �� �

�� for varying smoothing radius �N � 	���

idealised �discretisation matches the delta function solution�

Nonetheless� our main interest is not the accuracy of the delta function approximation but

rather how the smoothing of the delta function a�ects the sti�ness of the problem� Up to this

point� we have considered only the in
uence of smoothing on the lowest wavenumber solution

modes� which appear as the dominant solution features �after the higher frequency components

have been damped out�� We will now consider the impact of smoothing on the small scale features
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of the solution by looking at the entire range of discrete wavenumbers � � ���n� for n � �� �� � � � � N �

Plots of the decay rate Re��� and frequency Im��� for wavenumbers �� 
 � 
 �� � �� are

given in Figure ���� for the following values of the parameters� �n � �t � ����� � � 
 � ���

and � � �
� � The illconditioned nature of the smoothed dispersion relation limits the range of
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Figure ����� A comparison ofRe�	� and Im�	� for the jump and smoothed dispersion relations

with � � �
�� � Here we take 
 � � � ��� and �n � �t � ����� but restrict ourselves to

� � ���

wavenumbers for which roots can be computed� However� by reducing the viscosity to � � �����

we were able to compute solutions over nearly the entire range of � � #��� ����$� which we present

in Figure ����� The jump problem modes are cut o� so that the detail of the smooth modes can

be seen however� if the vertical axis were extended� these modes would increase monotonically

over the range of �� with ����� 
 Re��� 
 �� and ���� 
 jIm���j 
 ���� ���� It is clear from

the plots� that the jump modes for � 	 �� are not captured well at all in the smoothed problem�

However� the good news for the method is that the solution modes are considerably less sti�� This

can be interpreted as a �regularising e�ect� on the higher wave number modes� However� there

is still a wide range of sizes in the exponential time constants� and hence a considerable degree of

sti�ness� It is important to note that it is the imaginary part of � that is the dominant source of

sti�ness � this point will come up again in Section ��� in the context of choosing an appropriate
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Figure ���	� A comparison ofRe�	� and Im�	� for the jump and smoothed dispersion relations

with � � ��� ���� and � � �
��
� We have had choose 
 � ����� � � � and �n � �t � ����

to obtain roots for the whole range of wavenumbers�

explicit timestepping scheme for the Immersed Boundary Method�

The main conclusion we can draw from this discussion is that the smoothed problem� while

still su�ering from a signi	cant degree of sti�ness� is much less sti� than what is suggested by the

dispersion relation from the jump problem� We will see in the next chapter� by comparing time

step restrictions� that the smoothed analysis is much better at predicting the behaviour of the

computed solution�
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Analysis of Time Discrete Schemes

I have tried to avoid long numerical computations�

thereby following Riemann�s postulate that proofs

should be given through ideas and not voluminous

computations�

� David Hilbert�

In this chapter� the analytical solution technique we have just described is extended to a

semidiscrete formulation of the immersed 	bre problem� We will discretise in time only and

leave the 
uid force and 	bre velocity written in terms of smoothed delta functions� as we did

in Section ���� By restricting the wavenumber � to a range of integers #�� N $ and selecting an

appropriate smoothing radius �� we will be able to make further conclusions about idealised spatial

discretisations of the problem� Our purpose is to determine the convergence properties of iterative

schemes that attempt to handle the force implicitly�

We will consider two timestepping schemes that lead to a nonlinear 	xed point iteration

on the 	bre position within each time step� One scheme is a CrankNicholson type splitting in

time �with di�usion coupled implicitly with the force� and explicit convection�� and the other is a

method proposed by Mayo " Peskin #MP��$� which uses an ADI step for convection and di�usion

and the force is coupled only with the interface position� We will see that for both of these

schemes� the pressure and velocity can be eliminated from the semidiscrete equations and the

method rewritten as an iteration on the 	bre position alone� The behaviour of the two methods

is discussed in terms of the stability and convergence of the iteration� which is then veri	ed in

computations�

��
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However� before investigating implicit discretisations� we will begin with a more thorough ex�

amination of the linear modal results of the previous chapter and their application to timestepping

schemes where the force is handled explicitly� We will often refer to these schemes as �explicit��

even though computations will sometimes include the ADI step in the usual Immersed Boundary

Method algorithm� These results are of particular interest since many immersed boundary compu�

tations involve a nonlinear force for which no e�ective implicit solvers are available at the current

time�

��� Explicit Schemes

In Section ����� we found that for a typical choice of parameters� the linearised 	bre modes have

magnitudes that di�er over a very wide range� This disparity is especially pronounced when the

	bre force is large� and can be further compounded by small viscosity in high Reynolds number


ows� The analytical results of Section ����� showed that smoothing the force with an approximate

delta function reduces the sti�ness considerably� and yet numerical evidence testi	es that the

method still su�ers from severe time step restrictions� We will now investigate the sti� nature

of solution modes and how it relates to the behaviour of various explicit timestepping schemes�

Initially� we consider a Forward Euler discretisation of the problem� which di�ers from the FE�ADI

scheme �from Section ���� in that there is no ADI step and convection and di�usion are handled

explicitly�

It is essential in the following discussion that we distinguish clearly between the solution modes

arising from the 	bre� and those from Stokes 
ow without an immersed boundary� since the time

step in a discretisation of the immersed 	bre problem is limited by both� One thing to keep in

mind is that Stokes modes �which satisfy � � �����
� lie entirely on the real axis� while the 	bre

modes have an imaginary part that is typically large in comparison to the real part �as we saw in

Section ������� To understand whether di�usive e�ects or the 	bre forces are the limiting factor in

computations� we begin by plotting the two sets of modes together in the �kplane along with the

region of absolute stability for the Forward Euler scheme� Figure ��� depicts the stability region�
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which is the interior of the circle j� ' �kj � �� along with the two sets of modes �smoothed 	bre

modes are marked ��� and Stokes modes ����� We have used the same set of parameters from the

example pictured in Figure ����� namely� � � �� ���� � � 
 � � and smoothing radius � � �
� � It is
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Figure ���� Region of absolute stability for the Forward Euler scheme� along with the smoothed

�bre modes �plotted as 	� and Stokes �with 
�� The plot on the right is a blow�up of the

region containing the �bre modes� The time step is taken to be k � 	��� ����� which is

the largest a�orded by the method �� � �� �����

clear that in this situation the Stokes modes determine the time step restriction� The maximum

allowable k is determined by the circled point on the far left� which gives rise to the stability

condition for an explicit Forward Euler discretisation of di�usion� using centered di�erences in

space�

k 
 
h�

��
� ���� ����� �����

The FE�ADI scheme� on the other hand� avoids the limitation that arises from Stokes modes
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in the straight Forward Euler scheme by treating di�usion implicitly� but we would still expect this

method to be limited by its explicit handling of the 	bre force� The right hand plot in Figure ���

shows that the 	bre modes are already very close to the stability limit� and so we can take the

time step only ��� times larger than that allowed for explicit di�usion� kmax � ���� ����� This is

at odds with the actual maximum time step kmax � �� ���� that we observe in computations� It

thus appears that the ADI step confers some additional advantage with regard to the sti�ness of

	bre modes� Recall that the 	bre modes embody the interaction of the 	bre force with a viscous


uid� Thus� handling even just the viscous terms implicitly can help deal with the sti�ness of the

	bre modes�

The forcing parameter � � �� ��� is actually somewhat small from a physical standpoint� but

we have been unable to solve the smooth dispersion relation �over the entire range of �� for values

of � any larger because of the ill�conditioned nature of the equations�a However� we do know

from the previous chapter that as � increases� the smoothed 	bre modes increase in magnitude 

consequently� we expect that if � is taken large enough� then the sti�ness from the 	bre modes will

become the limiting factor in the time step� Not only does the magnitude of � increase as the force

is strengthened� but so does the ratio jIm����Re���j� we can see this e�ect in Figure ��� which

depicts this ratio for the lowest wavenumber mode as � varies� The same behaviour is observed

for other values of ��b and so we see that the as the force increases� the 	bre modes tend to cluster

near the imaginary axis further out from the origin� In terms of the stability of the Forward Euler

scheme� this is the worst case scenario� k must be taken extremely small to deform the circular

region enough to encompass these eigenvalues� This leads us to believe that the sti�ness of the

	bre modes will eventually begin to dominate the Forward Euler scheme as � is increased� We will

investigate the e�ects of varying the force parameter shortly�

aFor the same reason� we cannot solve the dispersion relation with a smaller viscosity� which would also have
reduced the e�ect of the Stokes modes�

bThe � � � mode is not the one that limits the time step in calculations� but reliable solutions for 	 could
not be computed for large � when � � �� Nonetheless� this mode is representative of how the ratio varies
with ��
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Figure ���� Plot of the ratio Im�	��Re�	� versus � for the dominant wavenumber mode

�� � ��� There is a clear tendency for the modes to approach the imaginary axis �that

is� Im�	� � Re�	�� as the force parameter increases �
 � �����

An obvious question to ask at this point is� Is there another explicit time�stepping scheme

that does a better job of covering the imaginary �k�axis� There are actually many possibilities�

but the simplest and most obvious choice is the RungeKutta �RK� family of schemes� for which

the Forward Euler method is the 	rst order member �and so we denote this scheme by �RK����

We also consider three other schemes� a second order RungeKutta method� RK�� also known as

the midpoint scheme the third order RK� scheme� which is a method attributed to Heun and the

standard fourth order formula RK� �all of which are described in #But��$�� The stability region

for each of the four methods is plotted in Figure ���� from which it is clear that better coverage

is obtained at points near the imaginary axis as the order of the scheme is increased to �� If we

ignore Stokes modes for the moment� then for the particular choice of parameters in the example

considered earlier� we may take k � �������� for the fourth order scheme� which is approximately

�� times larger than the time step allowed by Forward Euler� This is a considerable improvement�

which we would expect gets even better as the force parameter � is increased �again� we can only

compare with the analytical results at this smaller value of �� for which the dispersion relation
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Figure ���� Region of absolute stability for the Runge�Kutta schemes of order �� �� �� and

�� A selection of representative eigenvalues for the example problem are plotted on the

same axes �using 	�� with the value of k � 	��� ���� chosen to be the best a�orded by

the fourth order scheme �� � �� �����
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can be solved�� The results for all four explicit methods are summarised in Table ���� The Stokes

Scheme Time step restrictions

Stokes prediction Smooth prediction Computed

�di�usion� �	bre modes�

RK� ���� ���� ���� ���� �� ����

RK� ���� ���� ���� ���� �� ����

RK� ���� ���� ���� ���� �� ����

RK� ���� ���� ���� ���� �� ����

FE�ADI � � �� ����

Table ���� Comparison of the predicted and computed time step restrictions for four fully

explicit schemes� based on forcing alone �� � �� ���� 
 � ���

prediction is slightly di�erent for RK� and RK� because of a modi	cation in the constant � lying

in the denominator of the stability condition ����� for each of these methods� The maximum

time step observed in computations matches almost exactly with the Stokes prediction for each of

the RK schemes� Therefore� in this parameter regime� it is di�usion and not the 	bre force that

governs the time step� which is what we observed earlier for the Forward Euler �RK� � scheme�

While the analytical dispersion relation can only be solved for small �� we may still use

computations to compare the e�ect of increasing the force parameter� In Figure ���� the maximum

allowable time step kmax is plotted against � for each scheme� The 
at nature of the RK curves at

lower � values corresponds to the parameter regime where Stokes modes dominate and the stability

restriction ����� holds� Here� there is nothing to be gained by using RK� because the negative real

parts of the eigenvalues �arising from di�usion� are the limiting factor in explicit computations�

As the force is increased� the comparatively large imaginary parts of the 	bre modes begin to

dominate the computations and the advantage of the higher order RK methods over the Forward

Euler scheme becomes evident� At � � ���� ���� the time step allowed for RK� is approximately
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Figure ���� Comparison of computed time step restrictions for the Runge�Kutta schemes and

the ADI implementation of the Immersed Boundary Method �
 � �����

�� times that for RK�� We have also plotted kmax for the Forward Euler�ADI implementation of

the Immersed Boundary Method� The RK� method allows a time step only slightly larger� which

is not enough to justify the added expense of the three extra stages�

Since implicit discretisation of di�usion seems to bene	t the FE�ADI scheme so much� it

seems worthwhile to investigate the use of semiimplicit RungeKutta methods� such as those

described by Ascher� Ruuth " Spiteri #ARS��$� These methods combine implicit handling of

di�usion along with all of the advantages of explicit RungeKutta stability regions� and we are

currently investigating their application to immersed boundary computations�

Owing to the results of Section ����� where the dominance of 	bre modes over Stokes modes

asserts itself at higher Reynolds numbers� we performed the same set of computations with � �

����� which are plotted in Figure ���� As we might expect from our previous discussion� the

advantage of the higher order RungeKutta methods becomes more pronounced as the Reynolds
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Figure ���� Comparison of computed time step restrictions for the Runge�Kutta schemes and

the ADI implementation of the Immersed Boundary Method �
 � ������

number increases and the 	bre modes dominate� The fourth order RK� scheme allows a time step

�� times larger than Forward Euler when � 	 ��� ���� A further comparison with the FE�ADI

scheme demonstrates that the time step may be taken three times larger with the fully explicit

RK� method� in this situation� the fourth order scheme is now much more competitive� The cost

of the various schemes is compared in Table ��� in terms of the CPU time required for a time step

just within the stability boundary�

While the time step requirements shown in Figures ��� and ��� for the fully explicit RK�

and RK� schemes are consistent with the behaviour of the 	bre modes with increasing force �see

Figure ����� the FE�ADI scheme �which treats the 	bre force in an explicit fashion� performs

much better than we would expect� It is clear that the implicit treatment of viscous terms in the

ADI approach o�ers some advantage� but further analysis is required to determine exactly how

the scheme avoids the time step limitations present in fully explicit methods�
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Scheme CPU Time Required �sec�

� � ���� ���� � � ��� � � ���� ���� � � ����

RK� ������ �������

RK� ������ ������

RK� ������ �����

RK� ������ �����

FE�ADI ����� �����

Table ���� Comparison of the CPU times required for the various RK schemes when the time

step is chosen just within the stability region� Timings were performed on an SGI Origin

���� �� � ��� MHz R����� processors� ��� Mb RAM��

In conclusion� explicit RungeKutta methods provide no advantage over the FE�ADI method

at low Reynolds numbers� since the Stokes modes and 	bre modes are the same order of magnitude�

However� semiimplicit RungeKutta schemes may o�er a signi	cant bene	t� by allowing us to

combine implicit discretisation of di�usion with the better treatment of sti� 	bre modes a�orded by

higher order RungeKutta schemes� As Re is increased and the 	bre modes begin to dominate the

problem� the fourth order RungeKutta method is far superior to the RK� scheme� Furthermore�

it is on an equal footing with the implicit FE�ADI scheme in terms of computational cost�

��� Implicit and Semi	Implicit Schemes

Before presenting the two semiimplicit schemes that we will investigate in the remainder of this

chapter� we will 	rst write a fully implicit version of the Immersed Boundary Method given in

Section ���� Since the ensuing analysis deals only with solutions that are discrete in time and

continuous in space� we will drop the subscripts ���i�j referring to the spatial discretisation and

think of the solutions as depending on x� Furthermore� the analysis is linear and so we will also

leave out the convection terms from the momentum equations and consider the solution of Stokes

equations instead�
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A fully implicit Backward Euler discretisation of the problem can be written as the following

system of equations to be solved simultaneously for �Fn� �Un and �Xn within each time step�

�Fn�x� �

Z
�
�
d� �Xn�s�

ds�
� h�x� �Xn�s�� ds ����a�

�Un�x� � �Un���x� '
k



P
n
�(�Un�x� ' �Fn�x�

o
����b�

�Xn�s� � �Xn�� ' k

Z
�

�Un�x� � h�x� �Xn�s�� dx ����c�

where P is the projection operator de	ned in Section ���� In the fully discrete method� the

integrals are replaced by sums as was done in �����b� and �����h�� An implementation of the

fully implicit scheme using a Newton iteration based on a Green�s function solution for Stokes


ow was proposed by Tu " Peskin #TP��$� but was shown to be far too expensive to be of any

practical use� Nonetheless� some form of semiimplicit discretisation is needed to couple the 	bre

force calculation with the 
uid equations to overcome the sti�ness recognised in the mathematical

problem and in computations�

There have been many e�orts to design a version of the scheme that handles the force implic�

itly� which can be distinguished from each other by identifying which terms in ����� are coupled

implicitly with the force� The 	rst attempt was the approximate implicit method #Pes��$� which

operates in two steps� like a predictorcorrector scheme�

� First� a prediction of the 	bre position is computed by neglecting the coupling between 
uid

and 	bre �by dropping the projection step and di�usion terms in ����b�� and applying the

following 	xed point iteration for �X��

�X� � �Xn�� ' k �Un�� '
k�




Z
�

Z
�
�
d� �X�

ds�
h�x� �X�r� t�� h�y � �X�s� t�� drdy� �����

The resulting 	bre con	guration �X� is used to compute the force�

� The 
uid velocity and 	bre position are then computed using the standard ADI step �for

convection and di�usion� followed by a projection step for the pressure�

In this version of the method� only the force and interface position have been coupled together

using a 	xed point iteration� and so it is not truly implicit� Though this approach has been taken
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in many simulations #PM��� FF��$� it has been shown #MP��$ to su�er from a degree of sti�ness

comparable to the fully explicit method�

We now present two semiimplicit schemes which lead to iterations that couple the 
uid and

	bre together� The major distinction between the methods �and the approximate implicit scheme�

for that matter� is the choice of terms in ����� to treat explicitly� We begin with a simple 	xed

point iteration which uses a CrankNicholsontype discretisation in time and a Stokes solver rather

than the splitstep projection scheme� This approach has not appeared in the literature and is

considered here for comparison purposes because of its simple structure�

Remark ���� A fully coupled Stokes solver is identical to the split�step projection scheme in the

discrete setting when the computational domain has periodic boundary conditions�

This 	rst scheme is formulated as an iteration embedded within each time step� with the

solution at the mth iteration written with a second superscript �����m� Assuming that the values

of the pressure� velocity and 	bre position are known at time level n � �� the solution at time tn

is computed using the following algorithm�

Crank�Nicholson �CN� Scheme

Step CN�� Set the iteration counter m � � and the initial guesses

�Un�� � �Un��� Pn�� � Pn�� and �Xn�� � �Xn���

where r � �Un�� � ��

Step CN�� Compute the 	bre force using

�Fn�m �

Z
�
�
d�

ds�
�Xn�m�� � h�x� �Xn��� ds
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Step CN�� Solve for the pressure and velocity simultaneously using Stokes equations with �Fm�n

in the right hand side�

�Un�m � �Un�� '
k

�


n
�(

	
�Un�m ' �Un��



� r �Pn�m ' Pn��

�
'
	
�Fn�m ' �Fn��


o
r �Un�m � �

Step CN�� Update the 	bre position for the next iteration

�Xn�m � �Xn�� '
k

�

Z
�

	
�Un�m ' �Un��



� h�x� �Xn��� dx

Step CN�� If the iteration has converged �that is� if k �Xn�m � �Xn�m��k � TOL� then increment

n and go to the next time step �Step ���

Step CN�� Otherwise� increment m and iterate again starting from Step ��

The next algorithm� proposed in #MP��$� proceeds through the same main steps as the CN

scheme� but is closer in spirit to the Immersed Boundary Method ������� The major di�erences

from the CN method are�

� we revert to Backward Euler time discretisation 

� the di�usion terms are handled implicitly with an ADI step as in ������� However� there is

one major point of departure from the original scheme in that the force is taken out of the

step �����c� 

� a preconditioner is used to accelerate convergence�

Before stating the algorithm� we introduce some additional notation to simplify the presen�

tation of the iterative scheme� Let the delta function interpolation be written in terms of the

operators Sn and Sn� where

Sn�V �x� �

Z
�

�V �x� � h
	
x� �Xn�s�



dx �����
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which interpolates 
uid quantities �V onto 	bre points and

Sn �W �s� �

Z
�

�W �s� � h
	
x� �Xn�s�



ds �����

interpolates 	bre quantities �W onto 
uid points�

Mayo�Peskin �MP� Scheme

Step MP�� Compute the intermediate velocity �Un�� using the ADI procedure described in �����c�

�����e�� except that the 	bre force in the right hand side of �����c� is zero� Here� �Un�� has

been relabeled �Un�� to avoid confusion with the iteration subscript m�

Step MP�� Set the iteration counter m � � and the initial guesses

�Un�� � �Un�� or �Un�� and �Xn�� � �Xn���

where r � �Un�� � ��

Step MP�� Compute the force using

�Fn�m �

Z
�
�
d�

ds�
�Xn�m�� � h�x� �Xn��� ds

� S� d�

ds�
�Xn�m��

where we drop the superscript ���n�� on S�

Step MP�� Perform the projection step

�Un�m � P
 
�Un�� '

k



�Fn�m

!

Step MP�� Update the 	bre position for the next iteration� This step requires some additional

explanation� since it is here that the preconditioner is introduced� If we substitute the
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expressions from Steps � and � into the backward Euler formula for �Xn�m��� we obtain

�Xn�m � �Xn�� ' kS
�
P �Un�� '

k



PS� d�

ds�
�Xn�m��

�
�
	
�Xn�� ' kSP �Un��



� �z �

�Zn��

'SPS �k�




d�

ds�� �z �
A

�Xn�m��

which can be written more compactly as

�Xn�m � �Zn�� ' SPSA �Xn�m���

As it stands� this iteration also converges very slowly� The convergence can be speeded

considerably by writing an modi	ed iteration which has the same solution�

�I � ,A�� �z �
tridiagonal

� �Xn�m � �Xn�m��� � �Zn�� � �I � SPSA�� �z �
dense

�Xn�m��

In the fully discrete setting� , � SS is a diagonal matrix� and so the preconditioning matrix

�I � ,A� is a block tridiagonal matrix� and consequently very easy to invert�

Step MP�� If the iteration has converged �that is� if k �Xn�m � �Xn�m��k � TOL� then increment

n and go to the next time step �Step ���

Step MP	� Otherwise� increment m and iterate again starting from Step ��

��� Linear Analysis of the Two Iterative Schemes

The main objective in this section is to determine the conditions under which the two iterative

schemes described in the previous section converge� We are still in the semidiscrete setting �that

is� continuous in space� and so we may use a similar approach to that employed for the continuous



Chapter �� Analysis of Time Discrete Schemes 	


problem in Section ���� We will look for solutions of the linearised problem that take the form�����������������������

U

V

P

X

Y

�����������������������

n�m

� e��	x

�����������������������

bU�y�bV �y�bP �y�bXbY

�����������������������

n�m

� �����

on each of the subdomains ��
� and ��

�� The delta function is replaced by the cosine approximation�

and the equations of motion can be solved as before�

For both schemes described above� the iteration can be reduced to one on �-n�m � � *Xn�m� *Y n�m�

only� and written as

B�-n�m � C�-n�m�� ' �Rn���

where B and C are �� � matrices and �Rn�� is a �vector with entries evaluated at the previous

time step� We are only interested in the convergence of the iteration� and so we consider the

di�erence between successive iterates

�En�m �� �-n�m � �-n�m��

which satis	es the equation

�En�m � M �En�m���

where M � B��C is the iteration matrix� In the analysis to follow� the linearisation process

decouples the normal and tangential motions of the 	bre and so one eigenvalue of M depends on

�t only� and the second on �n only� The convergence properties of each scheme are manifested in

the eigenvalues of M� which are easy to compute� The magnitude of the largest eigenvalue of M�

which we denote by �max� is a measure of the rate of convergence of the iteration� In particular�

if �max � �� then the scheme converges otherwise it diverges�

Another consequence of the linearisation process and reformulation of the solution as an iter�

ation on the 	bre position only is that the e�ects of the ADI step are neglected� The CN scheme
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does not use ADI at all� and in the MayoPeskin scheme� the splitstep nature of the method

leaves the ADI step for di�usion outside of the iteration�

����� Crank	Nicholson convergence rates

The solution procedure parallels that for the smoothed delta function problem in Section ���� The

solutions on the regions ��
� are given by

bp��y� � A�e�	y �

bu��y� � B�e�
y � *��k

�

A�e�	y �

bv��y� � C�e�
y � �k

�

A�e�	y �

where we have de	ned

�� ���� '
�


�k
�

and dropped the superscripts ���n�m for ease of notation� These expressions are identical to ������

������� except that the continuous time parameter � is replaced by �
k �

The solution on the smoothing region ��
� is derived in a similar manner� and the equations

are unwieldy so we leave out the details� However� it is important to realise that there is one

very signi	cant di�erence in the dependence of the solution on the 	bre unknowns bX and bY
from the continuous problem� Rather than the 
uid force being de	ned implicitly in terms of

the 	bre position� we have in Step � of the algorithm that the force is computed based on the

�bre position from the previous iteration� Consequently� the semidiscrete analogues of the 	bre

evolution equations ������ and ������� are explicit formulas for �-n�m in terms of �-n�m���

The system of integropartial di�erential equations is solved using Maple� after which we can

apply the same matching conditions at the interfaces y � �� to obtain a system of linear equations

relating the unknown solution coe�cients �the constants of integration on ��
�� along with A�� B�

C��� Here� our approach diverges somewhat from that of the continuous problem� in that we need

to solve this system of equations to obtain the iteration matrix� Fortunately� the simpli	cation
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mentioned above �namely� that in the discrete case the 	bre positions are no longer coupled to the


uid unknowns� makes it possible to solve explicitly for the coe�cients� The system of equations

now has a nonzero right hand side �corresponding to the entries from the previous iteration that

appear in the expressions for the 	bre positions�� The coe�cient matrix this time has determinant

�k��

�
��
�
�� � ��

�
which is never zero� provided � �� �� thus guaranteeing that the system is always solvable�

After a lengthy Maple computation� we can derive the iteration matrix for the 	bre position�

which has the very special form

M �

���t �

� �n

�� � �����

where �t depends on �t only� and �n depends on �n only �the explicit forms are long and complicated

expressions involving the problem parameters� and so they are not given here�� We can make two

important observations regarding the convergence of the scheme�

� there is a decoupling between the tangential and normal 	bre motions� and the convergence

for each of the two modes of oscillation is governed by a rate 

� the convergence rates of the scheme� �n and �t� depend linearly on the 	bre stress parameters

�n and �t�

A contour plot of the convergence rate �max � max �j�tj� j�nj� is given in Figure ���� with

parameter values � � ��� ��� and N � ��� � � �
� and over a range of k and � � #��� ����$�

From these results� it is clear that the CN scheme is only conditionally convergent� Furthermore�

the contours decay quite rapidly to zero from the boundary of the shaded region � this indicates

that if the time step is chosen so that the iterations are convergent� then they should converge

quite rapidly �in practice� within a couple of iterations�� These predictions will be compared with

computations in Section ����
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Figure ��	� Convergence rate contours for the CN scheme with the region of divergence

�max � � shaded� Here� all plotted points derive from the tangential mode� which always

has the largest convergence rate �� � ��� ���� N � 	���
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����� Mayo	Peskin convergence rates

The iteration matrix for the second scheme is not diagonal �it is a full � � � matrix� but the

structure is quite similar to that of the 	rst scheme� This time� the expressions for the eigenvalues

of the matrix are much simpler� and so we given them below�

�t �
���tk

� sin�����
���� ' ��e��	� ' ��	���	 ' ����� ' �����

�
�� ����� ' ����

������� ' ������� � ��	�� ' ����tk� sin�����
� ����a�

�n �
��nk

� sin�����
����e��	� ' �	�	 ' ���� ' ��

�
�� ����� ' ����

������� ' ������� � ��	�� ' ����nk� sin�����
� ����b�

A contour plot of the convergence rate �max � max �j�tj� j�nj� is given in Figure ���� with parameter

values � � 
 � �� � � ��� ��� and N � �� and over a range of k and � � #��� ����$� Based on the
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Figure ��
� Convergence rate contours for the MP scheme� The vertical dotted line separates

the parameter space into regions where the convergence rate for the normal mode �left� or

the tangential mode �right� dominate �� � ��� ���� N � 	���

convergence rates for the linearised problem� we can make the following observations�

� The iteration is unconditionally convergent� This is to be expected� since Mayo " Peskin

prove this result in #MP��$�
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� There is a critical value of � given by

�c � �������������� �N� � ��

at which �n � �t �we have found this expression by equating the two eigenvalues in ������

setting �n � �t and � � �
N � and solving for ��� For the example given in the contour plot�

we have �c � ������ � ��� which is indicated in Figure ��� as a dashed vertical line� For

� � �c� the normal convergence rate �n is the largest� while for � 	 �c the convergence of

the tangential modes ��t� dominates the calculation�

Remark ���� There are actually two versions of the MP iterative scheme
 one which bases the

delta function interpolation on the �bre position from the previous time step using Sn�� and Sn���
while the other uses �Xn�m for the interpolation that is
 Sn�m and Sn�m�� This second version of the

scheme also proposed in �MP���� is a more stable alternative to the �rst
 since the interpolation

is implicit in the �bre position as well� However
 it is also considerably more expensive than the

�rst
 since the preconditioner must be evaluated at every iteration rather than just once every time

step� As it turns out
 the preconditioner is an extremely expensive part of the calculation
 and can

even outstrip the cost of the �uid solver if it is recomputed many times in each time step�

The linear analysis is unable to distinguish between these two alternatives
 since any terms in

the interpolation that involve the interface position appear at a higher order and are thus dropped

in the linearisation process� However
 this is not a serious limitation
 since the computational

results in the following section are not a	ected appreciably whether we base the interpolation on

Sn�� or Sn�m�

��� Computational Results

To test the accuracy of the predicted convergence region for the 	rst method �CN �� we performed

several numerical experiments on the �
at 	bre� test problem depicted in Figure ����� The results

are summarised in Table ���� The requirement on k in computations is very sharp� which matches

with the steep contours in Figure ��� � that is� either the scheme diverges� or it converges within
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Maximum k

� Predicted Computed Computed

�CN � �FE�ADI �

��� ������ ������ �����

����� ������� ������ ������

������ �������� ������� ������

������� �������� ������� �������

Table ���� Predicted and computed stability boundaries for k using the CN scheme on the

��at �bre� problem �N � 	���

one or two iterations� The predicted and computed stability boundaries match quite closely in the

range � � ������ �corresponding to �physical� values��

The third column gives the maximum time step allowed for the Forward Euler�ADI scheme

for comparison� It is clear that there is no advantage to using the CN scheme over the original

algorithm� Since the force is not handled in a truly implicit fashion� but rather using a 	xed point

iteration� these results suggest that we must look for another approach which has a better implicit

treatment of the sti� forcing term� We will see next that the MP scheme does a good job in this

respect�

We can capture the individual solution modes that cause the onset of instability by calculating

with a time step only slightly inside the divergence boundary and observing the shape of the 	bre

as the iteration diverges� Figure ��� depicts the 	bre con	guration �for two values of �� at an

intermediate stage in a divergent iteration� where it is easy to see the instability that develops�

There is a clearly de	ned mode that is excited in each case� � � �� � �� for � � �� ���� and

� � �� � �� for � � ��� ���� These wavenumbers are exactly those that are predicted by the

analysis � namely� the tangential modes having the largest convergence rate� or in other words�

the � that has �max �	 � as we approach the convergence boundary� Referring to Figure ��� �for
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� � ��� ����� we see that the wavenumber that intersects the kmax boundary is in fact very close

to ���

� � �� ��� �� � � �� � ��

� � ��� ��� �� � � �� � ��

Figure ���� Snapshots of the instabilities arising in divergent iterations for the CN scheme�

The wavenumber of the excited unstable mode matches exactly with the mode having the

largest convergence rate for simulations with � � �� ��� and ��� ����

We believe that these unstable tangential modes have also been observed in immersed boundary

computations involving twodimensional heart simulations performed by McCracken " Peskin

using a vortex method #MP��$� At high Reynolds numbers �Re � ����� they observed instabilities

in their computations which appear as �wiggles� in the 	bres comprising valve lea
ets and the

heart wall� accompanied by small vortices in the adjacent 
uid� These features appear to be

very similar to the medium wavenumber tangential modes excited in our model computations

when the time step is taken very close to the convergence limit� McCracken " Peskin explain

the instability as follows #MP��� p� ���$� � � � � because of the very large forces generated at the

boundary during ventricular systole
 we are unable to complete the runs that we have made at higher

Reynolds numbers�� We can provide a more satisfactory explanation using our understanding of

the behaviour of the solution modes� It is the combination of a large forcing parameter and small

viscosity that limits the time step in their high Reynolds number computations�
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We also performed several computations to verify the convergence rates for the MP scheme

from Figure ���� and the results are summarised in Table ���� The convergence rate was computed

� � �� ��� � � ��� ��� � � ���� ���

k Pred� Comp� Pred� Comp� Pred� Comp�

������ ���� ���� ���� ���� ���� ����

������ ���� ���� ���� ���� ���� ����

������ ���� ���� ���� ���� ���� �

����� ���� ���� ���� ���� ���� �

������ ���� ���� ���� � ���� �

����� ���� ���� ���� � ���� �

Table ���� Predicted and computed convergence rates for the MP scheme applied to the ��at

�bre� problem �N � 	��� The � � entries correspond to instances where the scheme went

unstable�

from the numerical results using the formula

Rate �
Resm��

Resm
�

where Resm is the residual at iteration level m computed as follows�

Resm �

"
�

Nb

Nb��X
���

### �Xm
� � �Xm��

�

###�
�

$���

and where k � k� is the standard L�norm on vectors� The predicted convergence rates were

found by reading o� �max for the � � �� mode from the contour plot in Figure ���� for which

we always have �max � �n �that is� the normal mode dominates the calculation at the lowest

wavenumber�� even though �t is always the largest convergence rate when the full range of � is

considered� While intermediate wavenumber modes have the largest � in a given computation� and

hence will dominate the convergence rate after a large number of iterations� they are also modes

whose amplitude decays much more rapidly in time� Within every time step� however� only ten
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or so iterations were typically required to satisfy the residual tolerance� and so we expect that the

lowest wavenumber modes will dominate the actual convergence rate observed in computations�

This is veri	ed by the results of Table ��� which compare the � � �� prediction to the computed

convergence rates�

The blank entries in the table correspond to instances where the iteration failed to converge�

which seems to go against our analytical predictions of unconditional convergence� However� we

believe that this arises from a time instability which a�ects the numerical scheme when the time

step is taken too large� perhaps due to the 	bre crossing multiple mesh lines� In fact� Mayo "

Peskin identify #MP��� p� ���$ that even though the iteration scheme is convergent and is more

stable in time than the fully explicit method� it is not always stable�

We now consider another test problem� which is more typical of that seen in the literature

to date� By considering this second example� we hope to be able to test the applicability of our

analysis to problems that are more strongly nonlinear� In #TP��$� #MP��$ and #LL��$ for example�

an elliptical 	bre such as that pictured in Figure ��� is used to test various aspects of their numerical

methods� We take the semiaxes of the ellipse to have length ��� cm and ��� cm� and use the same

linear force density function with sti�ness constant �� The ellipse will tend toward an equilibrium

state that is a circle with the same area as the original ellipse� because the 
uid is incompressible

� the radius of this 	nal circle is approximately equal to ������ cm�

The time step restrictions for the CN scheme are compared to the values predicted by our

analysis in Table ���� We can justify applying the results for a sinusoidallyperturbed 
at 	bre

to the ellipse using the same physical parameters as follows� The modes which govern the con�

vergence behaviour of the scheme lie at medium wavenumbers� We expect that all but the lowest

wavenumber modes will be essentially unchanged whether they are located on a 
at 	bre or on a

curved ellipse�

There is� in fact� very little di�erence between the time restrictions for the elliptical interface

and those for the �
at 	bre� example given in Table ���� particularly for the more representative
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Initial

1 cm

1 cm

0.2 cm
0.4 cm

Resting

Figure ���� The �ellipse� test problem the initial �bre position is an ellipse with semi�axes

��� cm and ��� cm� The equilibrium state is a circle with radius approximately ������ cm�

Maximum k

� Predicted Computed �CN �

��� ������ ������

����� ������� �������

������ �������� ��������

������� �������� ��������

Table ���� Predicted and computed stability boundaries for k using the CN scheme on the

�ellipse� problem �N � 	���
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forcing parameters in the range �������������� Consequently� we are encouraged that our ana�

lytical predictions can be applied to a wider range of nonlinear problems� rather than simply the

specialised 
at 	bre test problem tailored to the linear analysis�

Before completing our discussion of time discretisations� we will draw a comparison between

the explicit schemes studied in Section ��� and the two semiimplicit iterative approaches just

considered� For the ellipse test problem� we applied the RK�� RK�� and FE�ADI schemes that

are explicit in the force� and the CN and MP methods that couple the force to the 
uid within

a 	xed point iteration� Table ��� lists the maximum time steps and CPU times required for each

method for two sets of computations with � � ��� and ���� � � 
 � �� N � �� and Nb � ����

Notice that the CN scheme o�ers no advantage over the fully explicit RK�� particularly in terms of

Scheme � � ��� ���� tend � ����� � � ���� ���� tend � �����

kmax Vol� loss CPU kmax Vol� loss CPU

RK� �������� ����� ������ ������� ����� ������

RK� �������� ����� ����� �������� ����� �����

FE�ADI �������� ����� ����� �������� ����� �����

CN �������� ����� ����� �������� ����� �����

MP �������� ����� ����� �������� ����� �����

�������� ����� ����� �������� ����� �����

Table ��	� Comparison of computational cost for several explicit and semi�implicit schemes�

The time step kmax was chosen to be the largest allowed by the method for stability� except

for the MP scheme �which always converged�� for which we chose two representative time

steps to compare the volume leakage� The �Vol� loss� is computed relative to the equilib�

rium value of ����� cm�� CPU timings were taken on an SGI Origin ���� ��� ��� MHz

R����� processors� ��� Mb RAM��

CPU time� which is not surprising from our previous comparisons of the CN and explicit stability

restrictions� Furthermore� the RK� method is almost �� times more e�cient than the Forward
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Euler �RK� � scheme�

Before discussing the relation of the MayoPeskin scheme to the others� we must introduce the

very important issue of volume loss� immersed boundary computations are known to experience

loss of volume which becomes signi	cant during more extreme 
ow conditions �large 	bre force�

pressure or velocity� such as those we are considering here� In our �D ellipse example� this manifests

itself as a steady loss of area enclosed within the immersed 	bre� The volume loss problem was

identi	ed by Peskin " Printz in #PP��$c and shown to arise not from 
uid passing physically

through the immersed boundary �since the 	bre points move along streamlines�� but rather to

the fact that the interpolated velocity 	eld through which the immersed boundary moves is not

discretely divergencefree� LeVeque " Li showed in #LL��$ that the volume loss in the Immersed

Boundary Method for a problem nearly identical to our ellipse example grows linearly in time�

Peskin " Printz proposed a modi	ed divergence stencil which reduces the volume loss signi	cantly

at the expense of an increase in the cost of delta function interpolation�

We have not implemented this modi	ed stencil in our code� since the main point we wish to

make is that the e�ect of volume loss is signi	cant for the semiimplicit schemes �in particular� the

MP scheme� when the time step is taken relatively large� While the iterative method does allow

a much larger time step to be taken than for explicit schemes� there is a corresponding increase in

the rate of volume loss� This is clearly indicated in the �Vol� loss� column from Table ���� which

gives the change in area enclosed by the 	bre between the beginning and end of the run� relative to

the initial area of ����� cm�� Two di�erent time steps are used for the MP scheme� which shows

that while a larger time step may be taken to reduce the computational cost� it also leads to a

much greater loss of volume�

cThe �ow conditions under which the volume loss occurs again lie in a more extreme range of parameters�
about which they remark �PP��� p� ��� � � � � �the volume loss eect� was small enough to be tolerable in
the applications described above� In the cardiac research� however� this was only because the computational
experiments were primarily concerned with diastole� during which the heart walls are relaxed and the pressure
in the cardiac chambers is low� In more recent work concerning ventricular systole� we have found that the
volume loss is too large to ignore��
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The explicit methods �RK�� RK� and FE�ADI � have a signi	cantly lower rate of volume

loss� Moreover� the RK� method is actually quite competitive with the FE�ADI and MP in

terms of computational cost while at the same time experiencing smaller volume errors� We can

conclude from these results that while the MP iteration may be unconditionally convergent and

allow signi	cantly larger time steps to be taken� the time step is still limited by the spatial error

in the incompressibility condition� Clearly� there is a need for more work to be done on developing

new timestepping strategies to treat the force implicitly in some type of iteration� while at the

same time controlling the volume error�
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Application� Pulp Fibres

A theory has only the alternative of being right or

wrong� A model has a third possibility� it may be

right� but irrelevant�

� Manfred Eigen�

We will now depart somewhat from the mathematical and numerical analyses of the previous

two chapters and concentrate on a novel application of the Immersed Boundary Method to motion

of pulp 	bres� The main purpose in this chapter is to demonstrate the applicability of the method

through comparison with experiments� theory and other computations� Our eventual goal is to

use the pulp 	bre problem as a benchmark for testing modi	cations to the numerical scheme that

are suggested by our previous analytical work�

We begin with a brief introduction to the experimental� analytical and computational research

that has been done on pulp 	bres to date� In no way is this intended to be an exhaustive review of

the literature instead� we highlight the main properties of pulp 	bres and motivate the importance

of numerical simulations� Since the behaviour of 	bres depends on so many parameters� we derive

a nondimensional measure of 
exibility that can be used to classify 	bre motion� Following that�

we will illustrate why the immersed 	bre framework is so well suited to modeling the dynamics

of pulp suspensions� The modi	cations to the Immersed Boundary Method that are necessary in

order to incorporate the geometry and physics particular to this problem are also outlined�

Finally� a series of simulations is performed to validate the immersed boundary model� While

the �D simulations are unable to capture some of the �D aspects of 	bre motion� we will show

���
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that qualitative features of planar motions are correctly reproduced� Comparisons made on the

basis of our dimensionless 
exibility parameter will allow us to compare 	bre motions over a large

range of physical parameters�


�� Physical Background� Pulp Fibres in Shear Flow

A basic understanding of the behaviour of pulp 	bres in suspension is extremely important to the

pulp and paper industry in many stages of the papermaking process� Of particular interest is the

study of 	bres of varying length and 
exibility� suspended in a shear 
ow� Take for example the

	ltering process� where there is a need to separate 	bres based on physical properties� Moderately


exible 	bres are more desirable than rigid 	bres because they have a higher relative bonding area

and thus form paper with higher tensile stress #DK��$ and better printability hence� the ability to

control the separation process based on 
exibility is a prime factor in forming high quality paper�

It is also important from the standpoint of quality to obtain pulp consisting of fairly uniform

length 	bres� Consequently� a knowledge of the hydrodynamic behaviour of 	bres with di�erent

length is equally essential�

Pulp consists of roughly cylindrical 	bres of length ������ cm and aspect ratios ranging from

�� up to ���� A considerable amount of theoretical work has been done on modeling 	bres� since

	bre suspensions appear in many applications other than paper formation� Much of the theory

centres around the motion of rigid cylindrical rods immersed in low Reynolds number or Stokes


ows� Attempts have been made to add a small degree of 
exibility� but these results are usually

fairly limited in their application� Accordingly� much of the work on 
exible 	bres has been

experimental� though more recently numerical simulations have begun to be used�

In the following two sections� we will describe all three approaches � analytical� experimental�

and computational� The paper of Wherrett et al� #WGSO��$ provides an excellent review of the

literature on the subject� and we have drawn much of the material in the following sections from

that paper and the references therein�
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���� Theory and experiments

As early as ����� Je�ery studied the motion of a rigid� neutrallybuoyant� elliptical particle in a

homogeneous Stokes 
ow #Jef��$� He proved that the centre of the particle follows streamlines�

and that when subjected to a Couette 
ow� it rotates about its centre according to

��t� � tan��
�
re tan

�
Gret

r�e ' �

��
� �����

where � is the angle the major axis of the ellipse makes with the vertical� G is the shear rate� and

re is the ratio of the lengths of the major and minor axes of the ellipsoid �refer to Figure ����� Two

u = Gy x

ϕ

y

z

�a� Je�ery!s ellipsoidal particle im�

mersed in a linear shear �ow�

0

0 100 200 300 400

 

���

����

�
�t
�

G � t

�b� A plot of the angular displacement of the rotating

ellipsoid in the x�y plane versus non�dimensionalised

time �for re � 	���

Figure ���� An ellipsoidal particle in a shear �ow� moving according to Je�ery!s equation�

things can be deduced from this formula� 	rst� the particle has a nonuniform angular velocity

which is largest at � � �� and slows to a minimum near � � ��� and second� the period of motion

is a constant� given by

T �
��

G

�
re '

�

re

�
� �����
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which is approximately T � ��re�G for long� thin ellipsoids �when re � ���

Anczurowski " Mason #AM��$ showed that Je�ery�s equation ����� could be used to describe

the motion of rigid� cylindrical 	bres by replacing re with an equivalent ellipsoidal axis ratio r�e � that

is chosen by matching periods from experiments� While Je�ery�s equation is a good approximation

for rigid 	bres� experiments establish that it cannot be applied to 	bres that experience signi	cant

bending #Mas��$� As a consequence� much of the work on 
exible 	bres has focused on experimental

observations of the periods and types of motion�

Forgacs et al� observed #FRM��$ in experiments involving very dilute suspensions �with con�

centrations �� ����+� that 	bres are essentially isolated� When subjected to laminar shear� 	bres

tend to orient themselves in the direction of the shear 
ow� and when in motion they either rotate

in very wellde	ned orbits� or bend� Experiments by Mason and coworkers #Mas��� AFM��$ iden�

ti	ed a wide range of 	bre behaviours� which they separated into distinct orbit classes based on

the 
exibility of the 	bre� We have summarised the orbits in Table ��� which are twodimensional

in nature� since these are the ones that relate to our �D 	bre model�a

Rigid 	bres �class I� rotate as solid cylinders� with an angular velocity that reaches a maximum

when the 	bre is aligned at right angles to the direction of the 
ow� Flexible 	bres have several

possible modes of rotation� the simplest of which is called a springy rotation �class II�� where

there 	bre still revolves but deforms into the shape of an arc during the spin� In the loop or S�

turn �IIIa� and snake turn �IIIb�� the 	bre is deformed into a more intricate curved intermediate

shape� after which it straightens out once again�b The 	nal class IV orbit indicates a 	bre that

performs a snakelike turn but never straightens out� continuing to loop over itself this is called a

complex rotation� Forgacs et al� #FRM��$ used measurements of 	bre 
exibility to show that the

various orbit classes occurred for di�erent 	bre sti�ness values� with the sti�ness decreasing as we

aThere are several other types of orbit involving non�planar motions �such as spinning in the axial direction�
that we haven!t included here�

bThe S�turn �class IIIa� is rarely observed in experiments except for very carefully chosen initial con�gura�
tions and a �bre with a high degree of symmetry �AFM����
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Orbit Class

I Rigid rotation
��

d
ecreasin
g
sti�
n
ess

in
creasin
g
len
gth
"
sh
ear
rate

��

II Springy rotation

IIIa Loop or S turn

IIIb Snake turn

IV

Complex rota�

tion

Table ���� Typical orbit classes for rigid and �exible �bres immersed in a two�dimensional

shear �ow� Adapted from �FRM��� p� �����
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move down in the table� Di�erences also arise in orbital motion of 	bres having the same physical

properties when the shear rate and the length of the 	bres is varied #FM��b$�

Flexibility is thus a function of shear rate� bending sti�ness and length� The e�ect of varying


exibility on orbits is easily compared �for moderately 
exible 	bres� by plotting the endpoints of

a 	bre on a polar plot� as illustrated in Figure ���� This plot is taken from experiments where the

shear rate was varied� though the same behaviour has been observed in computations as bending

sti�ness is reduced #YM��$� Fibres that rotate as rigid cylinders generate a circular locus of points�

while 
exible 	bres have orbits that are deformed�

G>G

critG<G

crit

o

x

y

45

Figure ���� Polar plot of the endpoints of a �bre taken from experiments with varying shear

rates� The outer circle corresponds to a rigid rod" the dotted line to a rod undergoing

�springy� rotation" and the inner dotted curve to an even more �exible �bre� The deviation

from the rigid rotation does not agree exactly with the predicted critical angle of ����

Adapted from �FM��a��

A theoretical justi	cation for this behaviour is provided by Forgacs " Mason #FM��a$� who

used Burger�s theory for small disturbances in thin� slightly 
exible rods to study the buckling of
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	bres� They showed that there is a critical shear rate�

Gcrit �
E


��r�c

�
�n��rc�� �

�

�
�

where rc � L
D is the ratio of length L to diameter D of the cylinder� E is Young�s modulus for the

material� and � is the 
uid viscosity� From this� it is possible to derive an expression for the axial

force on the rod as a function of the orientation angle ��

F �
�G�L� sin� cos�



�
�n��rc�� �

�

� � �����

The compressive force on the 	bre is a maximum at � � ����� which is where the onset of

buckling can be expected to occur as G� Gcrit � Figure ��� shows that the predicted angle may be

a reasonable approximation for shear rates near the critical value� but worsens as G is increased�


���� Computational approaches

The motion of 
exible 	bres in shear can be quite complicated� and the analytical results cannot

capture the full range of complexity of observed orbits� Furthermore� due to the small size of the

	bres and the di�cult and timeconsuming process of accumulating accurate 
ow measurements�

there are considerable restrictions placed on the information that can be culled from experiments�

Hence� numerical simulations present an ideal opportunity to gain a deeper understanding of


exible 	bre motion by studying the 	ne structure of the 
uid and 	bre behaviour�

There have been several recent e�orts to simulate 	bre motion numerically� Yamamoto "

Matsuoka #YM��$ model a 	bre as a chain of bonded spheres that are free to stretch� bend and

twist relative to each other� In this model� there is no hydrodynamic coupling between 
uid and

	bre� the 
uid undergoes a given linear shear� and the motion of the 	bre is determined by solving

a set of dynamic equations with a given applied 
uid force� Links between the spherical elements

are governed by three sti�ness constants �for stretching� bending and twisting motions� whose

values depend on the radii of the spheres and Young�s modulus for the material� This work has

since been extended to simulate large systems of particles #YM��$ and also incorporates forces of

attraction and repulsion between individual 	bres�
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Wherrett et al� #WGSO��$ implemented a slightly modi	ed version of the YamamotoMatsuoka

model� which uses cylindrical elements instead of spheres� The stretching and bending sti�nesses

are modi	ed to include the aspect ratio of the elements� and the simulations are twodimensional

so that torsional motions are ignored� They derive a dimensionless bending number� related to

the critical shearing force from ������ which is used to relate the changes in computed periods of

revolution to 	bre 
exibility�

The work of Ross " Klingenberg #RK��$ introduced another similar mechanical model� con�

sisting of linked prolate spheroids� They eliminate axial stretching by linking the elements with

ball and socket joints � real 	bres do not stretch appreciably� even in highly sheared 
ows� and

so this aspect of the model seems particularly advantageous�

In all of the work previously mentioned� the in
uence of the 	bres on the 
uid has been

neglected� Another approach has been to treat the 	bres as simple rigid rods and concentrate

instead on the hydrodynamic coupling� Fibres have been treated using a rheological model for

nondilute 	bre suspensions in #RA��$ and #RDK��$� These models are able to compute changes

in the velocity 	eld and relative viscosity of the 
uid due to the presence of many 	bres� However�

this approach captures only the averaged properties of the suspended particles� whereas the focus

of our work is simulating the motion of individual 	bres�

Our main purpose in reviewing the theoretical and experimental results above was to introduce

several bases for comparison with our immersed boundary simulations of pulp 	bres� Let us now

summarise the results that are particularly useful to us� Rigid pulp 	bres orbit as cylindrical rods

with period given by ������ where re is replaced with an r�e calibrated with experiments� Flexible

	bres do not obey Je�ery�s equation� and have a lower period than their rigid counterparts� Orbits

and periods of rotation vary depending on 
exibility� which is a function of the 	bre length and

bending sti�ness� and the 
uid shear rate� Because there are three independent parameters param�

eters involved in determining 	bre 
exibility� we next derive a single dimensionless measuring of

	bre 
exibility� which permits meaningful comparisons to be made between the various behaviours
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of 
exible 	bres�


�� A Non	dimensional Measure of Fibre Flexibility

Consider a 
exible� cylindrical 	bre immersed in a shear 
ow� which causes the 	bre to deform

because of a gradient in the shear force� Fs� applied by the 
uid along the 	bre� The strength of

the force gradient determines the 	bre de
ection� d �refer to Figure ����� The extent of bending

����������������������������������������������
����������������������������������������������
����������������������������������������������

����������������������������������������������
����������������������������������������������
����������������������������������������������

Fs
sFL

d

Figure ���� De�ection of �bre by a shearing force�

is also a�ected by the length of the 	bre� L� since the applied bending moment is proportional to

Fs � L� De
ection and 	bre length are therefore central to the 
exibility of the 	bre� and so we

consider the following dimensionless quantity to compare the behaviour of 
exible 	bres under

various conditions�

� �
de�ection of �bre

length of �bre
�

d

L
� �����

This choice of parameter seems reasonable since 	bres with the same 
exibility should also have

similar geometry �that is� the same de
ection to length ratio��

We now need to express the de
ection of the 	bre in terms of quantities that can be measured

in simulations� In the previous section� we saw that 
exibility is dependent on 	bre length and

sti�ness� and shear rate� which we may write as � � f�L�EI�G�� In order to determine the

functional dependence of � on these parameters� we appeal to basic structural mechanics #Hea��$

in which the de
ection of a rod of length L� clamped at one end and subjected to a force Fs at
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the free end� is given by

d � FsL
	

EI
�

where E is Young�s modulus for the material �units g�cm � s�� and I is the moment of area �units

cm�� in the plane of bending� The product EI �with units g cm	�s�� has appeared in the pulp

and paper literature #DK��$ as the quantity S� and is called the sti	ness of the material�c We can

now write

� � FsL
�

EI
 

since it is the shear force gradient �which we denote rFs� that gives rise to the bending moment

in the 	bre� we rewrite this expression as

� � rFs � L	

EI
� �����

The above formula now contains all the information that is required about the elastic properties

of the 	bre material we now need to determine the dependence on the hydrodynamic parameters

through rFs� To do so� we appeal to the derivation in Batchelor #Bat��$ of the drag force on a

solid sphere �or in	nite cylinder� immersed in 
uid� The geometry is clearly not the same� but

since we are only interested in the dependence of Fs on the parameters and not the constants

of proportionality� this will prove su�cient for our purposes� The drag force on a body with

crosssectional area D� is given by the equation

Fs � 
U�D�C
D
�

where CD is the drag coe�cient and U is the 
uid velocity� The drag coe�cient behaves very

di�erently depending on whether 
ow is at high or low Reynolds number� If Re �� � then C
D
�

Re��� while for large Reynolds number �Re �	 ���� CD is e�ectively constant �see Figure ����� If

we consider parameters that are typical of the papermaking process� we can compute a maximum

Reynolds number of approximately ���� which places pulp within this low Reynolds number regime�

cThe �bre force parameter � appearing in the Immersed Boundary Method has the same interpretation as
Young!s modulus�
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Figure ���� The dependence of the drag coe#cient on Reynolds number for low �Re �� �� and

large �Re �� �����

When the Reynolds number is small� the 
uid undergoes what is known as a creeping �ow

�see #Whi��$�� in which the drag coe�cient varies inversely with Re�

Fs � 
U�D�

�

UD

�

���
� �DU�

We are only interested in the force gradient� and so we divide this expression by L to obtain

rFs � �DG�

where G � U�L is the velocity shear rate �units s���� Finally� we substitute the expression for

rFs into ����� to get

� � �DGL	

EI
low Re� �D ����a�

The moment of area used above is a threedimensional quantity we can derive an expression for

� that is relevant to our twodimensional 	bre by using the �D equivalent of the moment of area�

I� �which absorbs the factor of D from the numerator�� giving

� � �GL	

EI�
low Re� �D ����b�



Chapter �� Application� Pulp Fibres ���

We can apply a similar argument for the high Reynolds number case� where a boundary layer

forms on the forward side of the body and the drag coe�cient subsequently drops o� to a constant

value� In this 
ow regime�

Fs � 
U�D� and rFs � 
D�LG��

which after substituting into ����� yields

� � 
G�D�L�

EI
high Re� �D ����c�

and

� � 
G�L�

EI�
high Re� �D ����d�

The quantity ����b� has appeared before as a dimensionless shear rate in #RK��$� and its

reciprocal as a bending number in #WGSO��$� The latter utilised the bending number to compare

qualitative behaviour of 	bres� and we will draw a similar comparison for the situation where

hydrodynamic interactions between 
uid and 	bre are included� The twodimensional versions of

� will be utilised in the pulp 	bre simulations later in this chapter to separate between the various

regimes of 	bre motion�


�� The Immersed Boundary Method Applied to Pulp Fibres

From the discussion of Section ������ there is an obvious gap in the computational work on pulp

	bres namely� in the simulation of the hydrodynamic interaction between individual pulp 	bres

with the surrounding 
uid� There is good agreement between theory and experiment for rigid

	bres� and so it is unlikely that hydrodynamic coupling has a signi	cant e�ect� However� the same

cannot be said of 
exible 	bres� and it is here that the Immersed Boundary Method can make a

signi	cant contribution�

The method seems particularly wellsuited to the simulation of 
exible pulp 	bres� The

typical assumptions made in analytical and numerical investigations of pulp 	bres are that the
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uid is Newtonian and incompressible� and that the 	bres are massless and neutrallybuoyant�

The 
ow conditions under which individual 	bres are considered typically correspond to very

low Reynolds number� Furthermore� aspect ratios are very large� so that 	bres are nearly one

dimensional structures� Taken together� these are precisely the assumptions we made in Chapter �

for immersed boundaries�

The Immersed Boundary Method has several advantages over the other approaches described

in Section ���� The action of the 	bre through the 
uid force term is actually quite simple in

comparison to some of the mechanical models of 
exible 	bres� In addition� the method handles

the coupling of 
uid and 	bre interactions very e�ciently using a fast solver�

While the remainder of this chapter will concentrate on twodimensional simulations of isolated

pulp 	bres� the Immersed Boundary Method also presents great potential for future applications

in many other aspects of 	bre motion� The extension of the 
uid solver to three dimensions is

straightforward� Many threedimensional immersed boundaries �such as heart valves� arteries�

etc�� require elaborate constructions of interwoven 	bres� In our application� we have the advan�

tage that in three dimensions� pulp 	bres can be described very naturally as isolated immersed

	bres� and no such complicated 	bre constructions are necessary� Extensive immersed boundary

computations of multiparticle systems have already been performed by Peskin " Fogelson� who

remarked that they could perform simulations of ���� or so particles� with the advantage of the

Immersed Boundary Method being that the computational work increases only linearly with the

number of particles #FP��b$� It should be possible to apply a similar technique to dilute suspensions

of pulp 	bres�

We now move on to a description of some of the details of implementing pulp 	bres in the

immersed boundary framework� There are essentially three main di�erences speci	c to the pulp

	bre model from what we have seen in previous chapters�

�� the simple linear force considered earlier is modi	ed to handle stretchingd and bending sti��

dWhile actual pulp �bres do not stretch appreciably� the Immersed Boundary Method does not easily gen�
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ness 

�� the nonlinearity subsequently introduced into the forcing function precludes the use of

existing implicit solvers �such as the MayoPeskin scheme�� and so limits us for the moment

to explicit time stepping and

�� the new geometry particular to a shear 
ow requires modi	cations to the 
uid solver�

We will model the 	bre force using a framework that has already been employed by Fauci and

others #FP��a� FF��� DFG��$ to simulate the motion of biological structures� such as cell walls�

that resist bending� The force density function that we have seen so far resists axial stretching

and compression� and now must be modi	ed to take into account bendingresistant forces� An

alternate way of specifying the force density at a particular 	bre point �f� is to write it as the

gradient of a potential function E �� � � � �X�� �X���� � � ��

�f� � � �E

� �X�

�

Contributions to the force arising from stretchingresistant links between successive 	bre points

can be considered as arising from the following potential�

Es �
�

�

Nb��X
���

�s

	
k �X��� � �X�k � ro


�
� �����

where �s is the stretching sti�ness� and ro is the resting length of the link joining each pair of

points �we have chosen ro equal to the 	bre mesh spacing� hb�� Each term in the sum represents a

springlike �link� between two neighbouring points on the 	bre� This can be seen by di�erentiating

the sum at �X�� which leads to two contributions to the force at point � of the form�

�s

	
k �X��� � �X�k � ro


 � �X��� � �X��

k �X��� � �X�k
�

Written in this manner� the force is clearly like that of a spring with resting length ro and sti�ness

�s� directed along the vector joining �X� and �X���� Figure ����a� pictures a link of this type and

the forces arising at each of the two points involved�

eralise to allow �bres to have a �xed distance between points� We have instead employed an approach that
has been used in modeling biological �laments �FP��a� where �xed length structures are allowed to stretch�
but the axial deformation is kept to a minimumby specifying a relatively large stretching sti�ness constant�
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r  - resting length

�a� Stretching link�

l+1
Xl-1

Xl

Xf

θ

�b� Bending link�

Figure ���� Two types of links are used to model �exible �bres stretching�compression�

resistant links between pairs of points" and bending�resistant links between triplets of

points�

The bendingresistant links� on the other hand� can be incorporated using a force that drives

the angle between successive triplets of points to a given equilibrium angle ��� An energy function

that accomplishes this is the following

Eb �
�

�

Nb��X
���

�b

h
*z �
	
�X� � �X���



�
	
�X��� � �X�



� r�o sin �o

i�
� �z �

�

� �����

where *z � ��� �� ��� and r�o sin �o is related to the equilibrium curvature of the 	bree� To model a

rigid rod� we select �o � � for each link� The cross product term labeled ��� in the equation above

may be rewritten as

k �X� � �X���k � k �X��� � �X�k sin � � r�o sin �o�

which is approximately r�o�� � �o� when the 	bre is close to equilibrium hence� this contribution

to the energy function serves to drive the angles between neighbouring links to �o� The stretching

and bending forces given in ����� and ����� are very similar to that used in the mechanical models

mentioned in the previous section�

The energy function describing a 
exible 	bre is now given by

E � Es ' Eb�

eIt is actually the quantity sin �o�ro that has the interpretation of curvature �see �FP��a� p� ������ for a full
discussion��
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The force densities that are needed in the Immersed Boundary Method are programmed within

the numerical code as derivatives of the above expressions� Calculating the force at a given 	bre

point requires that the contributions from each link involving that point be added together� The

number of links contributing to the force density at a particular 	bre point X�� � � �� �� �� � � � � Nb�

depends on whether the point is in the middle of the 	bre or near the endpoints �see Figure �����

� the force at an endpoint �� � � or Nb� receives contributions from only one stretching link

and one bending link 

� the points next to endpoints �� � � or � � Nb � �� each belong to two stretching links and

two bending links 

� all remaining points have the force computed from two stretching links and three bending

links�

bN -1b

0
N

1
....2

4

2

55 5

4
2

Figure ��	� Labeling of discrete �bre points along with the total number of links at each point

�circled��

An important consequence of this choice of energy function is that the force is now a non�linear

function of the 	bre positions X�� As a result� the MayoPeskin iterative scheme cannot be applied

to these problems� since it is built around the assumption that the force takes on the simple linear

form ������ Unfortunately� this means that we are reduced to handling the force explicitly� or at

the very best� we can use the approximate implicit approach� wherein only the 	bre position and

force are coupled together in a 	xed point iteration� as described on page ���

The 	nal aspect of the immersed boundary implementation for pulp 	bres is the modi	cation

of the 
uid solver to handle a shear 
ow� We modify the domain and boundary conditions for the
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U
L

L
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y

U

Figure ��
� The periodic channel domain for the pulp �bre simulations� with shearing motion

induced by moving top and bottom walls�

doublyperiodic box to the channel pictured in Figure ���� The channel has dimensions Lx � Ly�

and is periodic in the xdirection� Lx is chosen larger than Ly so that the e�ects of periodic

boundaries can be minimised� The top and bottom walls are moved with constant velocities U

in opposite directions� so that the shear rate is G � �U�Ly� We discretise the domain as before�

choosing Lx and Ly so that the 
uid mesh spacing h � Lx
Nx

� Ly
Ny

in each direction� and hb � L
Nb

for

the 	bre� If we further restrict the dimensions of the domain so that Nx is an integer power of ��

then an FFT algorithm may still be applied to solve the pressure Poisson equation� The method

must be modi	ed somewhat to account for the change in aspect ratio and nonzero boundary

conditions at the top and bottom of the domain� Essentially� the modi	ed method involves an

FFT in the xdirection only� which gives rise to a banded system of equations to be solved for the

transformed variables in the ydirection� The pressure is then found by transforming back to real

variables by an inverse FFT� The details are described in Appendix A�


�� Numerical Simulations

Our main purpose in this chapter is to demonstrate that the Immersed Boundary Method is a

useful tool for simulating the motion of pulp 	bres� To this end� we present comparisons with
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experimental and theoretical results � both qualitative and quantitative � to illustrate that

the computed results are physically reasonable� We also use the nondimensional 	bre 
exibility

measure � to show that the qualitative behaviour of 	bres for low Re is captured well over a large

range of parameters�

Experiments are often performed on synthetic 	bres made of rayon or dacron� immersed in

highly viscous 
uids such as corn syrup or castor oil #FM��b$� Representative values of parameters

in experiments are listed in Table ���� with references to the literature where appropriate� While the

Parameter Values Units References


 �density� ��� g�cm	

� �viscosity� ���� �castor oil�corn syrup� g�cm � s #FM��a$� #FM��b$

���� �water�

G �shear rate� ���� �experiment� s�� #FM��a$� #FM��b$

EI �bending sti�ness� ������ ���� �paper pulp� g cm	�s� #DK��$� #DK��$� #Sam��$

��� �nylon�

L �	bre length� ���� ��� cm #DK��$� #WGSO��$� #FM��a$

rc �aspect ratio� ���� �natural� #WGSO��$

����� �synthetic� #FM��a$�#FM��b$

Re �Reynolds number� ������ �

Table ���� Parameter values used in simulations� derived from a range of sources both exper�

imental and computational�

physical parameters corresponding to some experiments di�er signi	cantly from those for actual

pulp 	bres� the observed behaviour is very similar� Therefore� we will perform simulations on

parameters for both situations whenever possible in order to cover as wide a range of physics as we

can� within the stability constraints set by the numerical scheme� The Immersed Boundary Method

is limited to low Reynolds numbers �Re �� ����� and so we will perform most simulations for highly
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viscous 
uids and moderate shear rates� which are typical of the experiments just mentioned�

Our computational test chamber was taken in almost all cases to be a rectangle of dimensions

� � �
� cm� within which was suspended a 	ber of length ��� � ��� cm� We concentrate mainly

on the e�ects of shear rate �which has typically been the variable quantity in experiments� and

bending sti�ness� since both can be changed easily without modifying the computational domain�

The problem was discretised with a mesh spacing of h � �
� cm �that is� ���� �� 
uid grid points�

and either �� or �� 	bre points �depending on whether the 	bre is ��� or ��� cm long�f� The time

step k required for stability� using the fourth order RungeKutta time�stepping scheme� lies in the

range ���� ���� ����� The bending stress parameter �b has the same interpretation as Young�s

modulus E this quantity is chosen so that when scaled by an appropriate moment of area� the

resulting product �b � I lies in the range �������� g cm	�s�� There is no physical equivalent for

the stretching sti�ness �s� since pulp 	bres do not stretch appreciably consequently� we chose a

value large enough �typically from ������������ so that the 	bre length was held to within �+ of

its initial value throughout most simulations�

We begin by comparing the qualitative behaviour of solutions for four choices of bending

sti�ness that reproduce the orbit classes pictured earlier in Table ���� Time sequences from the

simulations are given in Figure ��� for EI lying between ����� and ���� The other parameters

were chosen to be G � ��� L � ���� and k � � � ����� except for the 	rst set of images where

the stretching sti�ness restricted the time step to half that size� The 	bre position was initially

speci	ed as an arc of a circle � we started with a slight curvature so that the various orbits would

develop within a reasonable amount of time �though this was not necessary� if we were willing to

wait long enough��

By comparing the images up to time t � ���� s� we can see that the 
exible 	bres complete

fThe mesh spacing and domain size were chosen so as to minimise the e�ect of boundaries on the solution
while at the same time keeping computational cost to a minimum� We performed various tests that showed
for h � 	

��
� the domain could be taken as small as � � 	

�
without appreciably changing the qualitative

behaviour of the computed solution for a �bre of length ���� ��� cm�
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Figure ���� Time sequences of orbits at times ����� ����� ����� ���
� ���� and �����
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their 	rst halfrotation in a signi	cantly shorter time than the rigid 	bre� This is something that

has been observed in experiments #AFM��$�

Something which is not apparent from these images is that after completing the loop� the 	bres

in the 	rst three orbits spend a great deal of time near the horizontal� This is consistent with the

theoretical orbits for rigid 	bres given by Je�ery�s equation ����� plots of the orientation angle

�the angle between the endpoints� versus time look very similar to that pictured in Figure ��� for

rigid ellipsoids� The fourth 	bre never straightens out� and hence its classi	cation as a �complex

rotation� � the period of rotation is signi	cantly smaller and the 	bre begins another turn very

shortly after t � ���� s� The other 	bres eventually pass through � � ��� as well� and begin a

second loop that is essentially a mirror image of the 	rst� with the period of rotation decreasing

as the 	bre sti�ness decreases�

A very useful way to compare orbits is to plot the endpoints of the 	bre in a reference frame

where the centre of the 	bre is 	xed Figure ��� compares the four orbits we just discussed� The

shape of the orbits appears very similar to that observed in experiments� where varying shear rate

was used to change the 	bre 
exibility �refer to the plot in Figure ����� Just as was observed in

experiments� the 	bre begins to buckle before the theoreticallypredicted critical bending angle of

� � ����

We can draw a more quantitative comparison with the theoretical predictions in terms of the

amount of time the 	bre spends at each angle �� We ran another series of computations with

bending sti�ness 	xed at �b � I � ���� and the shear rate taken between �� and ��� All 	bres

underwent snake turns� and we computed for a period of time comprising at least four complete

rotations� The probability distribution of � is plotted in Figure ���� at open points� We used the

average computed period of rotation� along with the formula in ������ to come up with an equivalent

ellipsoidal axis ratio� r�e � for each of the four cases� We then calculated the corresponding predicted

distributions of � from ������ which are plotted as solid curves on the same set of axes� From this�

we can draw the following comparisons�
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Figure ���� Comparison of the curves traced by the endpoints of the �bre for the various

orbits classes� Rigid �bres trace a circular orbit� with the curves deforming more as the

�bre �exibility is increased� These are the same orbits as pictured in Figure ����
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� The 	bre spends the majority of its time near the horizontal� with the proportion of time

increasing as the shear rate is decreased �that is� for more rigid 	bres��

� Unlike the theoretical distributions and simulations which ignore hydrodynamic interactions

�such as #YM��� Fig� ��$�� the distribution is not symmetrical about � � ���� Rather� there is

a tendency for the 	bre to remain at an angle slightly above the horizontal plane we believe

that this is due to the interaction between 	bre and 
uid which is not included in either

previous computations or the analytical formulae� Though the 	bre remains approximately


at when stalled in the streamwise direction� it continually undergoes very small 
exing

motions which cause the streamlines to curve slightly upward into the upper half of the

channel before the 	bre reaches � � ��� �see Figure ������ This appears to be enough

to cause the slight skewness in angle distribution observed here� and is something that we

observe in all simulations over a wide range of parameter values�

Figure ���� Flow streamlines for a �bre stalled at an angle � � �� The streamlines are

deformed near the �bre� and there are narrow zones of recirculation to the front and rear�

Note that even though the instantaneous streamlines cross the �bre� no �uid �ows passes

through since the �bre is moving with the �uid�

� Disregarding the slight o�set of the curve near the peak� the actual size and shape of the

distribution is very similar between the computed and predicted curves�

We have run a large number of simulations with varying 	bre length� bending sti�ness� shear

rate and viscosity� The resulting orbit classi	cations have been plotted in Figure ���� in terms
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Figure ����� Distribution of time spent at various angles throughout the motion of a �bre

undergoing springy rotation� The shear rate is varied from �� to ��� The points represent

the computed angle distributions� while the solid lines are the corresponding theoretical

predictions from Je�ery!s equation ����� �with an axis ratio r�e chosen to match the observed

average period��
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of the nondimensional 
exibility measure � and the bending sti�ness EI � We have classi	ed
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Figure ����� Comparison of the orbit class with bending sti�ness and �� The �bre length�

shear rate and viscosity are also varied� which accounts for the spread of the data from a

straight line� The computed orbits are plotted with open points" experiments from �FM��b�

Table III� are plotted as solid points for comparison�

each computed orbit as belonging to either class I� II� IIIb or IV� using a di�erent shape of open

point for each �class IIIa was never observed in computations�� Our criteria for judging the orbit

class was based on the exterior angle� �� between the tangents at the endpoints of the 	bre �see

Figure ������

I� If ���� � � � ����� then the 	bre was essentially rigid�

II� For ��� � � � ����� the ends of the 	bre always deformed in unison to induce a springy

rotation�
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IIIb� When � � ���� the ends of the 	bre tended to begin moving independently of each other�

leading to a snake turn� This independence of the motion of 	bre ends was the same criterion

used in #FM��b$ to identify snake turns� although the observation that the division occurred

at an angle of approximately ��� was not�

IV� When the 	bre never straightened out� the orbit was classi	ed as a complex rotation�

snake

α
α

springy

Figure ����� De�nition of the exterior angle �� measured between the ends of a �exible �bre�

There is a clear division of the orbit classes� which have been drawn as vertical lines at values of

� � ���� ��� and �� This is very strong evidence of our premise that � is a useful measure of 	bre


exibility�

To push the comparison even further� we have included on the same set of axes a sequence

of solid points which were taken from experiments by Forgacs " Mason #FM��b$� performed with

dacron and rayon 	laments suspended in corn syrup or castor oil� In order to ensure that the scaling

between experimental and computational results is the same� we have adjusted the parameter �

based on a single experimental data point �circled in Figure ����� which was classi	ed as lying on

the borderline between a springy rotation and a snake turn� the value of � was set to equal ���

for this experiment� and all other experimental points were scaled by the same factor� The line

� � ���� captures the division of experimental values between rigid and springy orbits very well�

and so it appears that the computational model predicts quite well the qualitative behaviour of

	bre orbits observed in experiments�

These results verify that the Immersed Boundary Method can indeed be used to simulate

the motion of 
exible 	bres at low Reynolds number� The qualitative behaviour of 	bre orbits is

very similar to what is observed in experiments� both in terms of the orbit classi	cation and the
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distribution of angular displacement throughout the orbital period�



Chapter �

Conclusions and Future Research

The outcome of any serious research can only be to

make two questions grow where only one grew before�

� Thorstein Veblen�

While the focus of much of the 	rst part of this work was analytical� the results were always

interpreted in terms of their application to the Immersed Boundary Method� In the process� we

gained a deeper understanding of the behaviour of solutions to the equations of motion governing

immersed 	bres� while at the same time making suggestions for improvements to the numerical

method that handle sti�ness and increase spatial and temporal accuracy� In the end� we contend

that we have an analytical tool that can be used to develop improved iterative solution schemes

and test their convergence behaviour a priori�

We will 	rst summarise the main conclusions that were drawn from our linearised analysis�

The highlights of the twodimensional pulp 	bre simulations will then be given� which demonstrate

great potential as a starting point for computations of threedimensional pulp suspensions� Finally�

we conclude with a description of several avenues of future research that have been opened up by

this work�

��� Conclusions

We began with a linear modal analysis of two systems of equations for the motion for an immersed

	bre� 	rst� for the jump formulation of the original problem and second� for a smoothed version

���
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of the delta function formulation� in which the delta functions are replaced by suitable approxima�

tions� The dispersion relation derived from both problems exhibited a set of discrete 	bre modes�

which arise due to the presence of the 	bre� Furthermore� there is a clear separation in both cases

between normal and tangential modes of oscillation numerical experiments were performed to

verify the presence of these decoupled modes in immersed boundary computations�

For the jump problem� we were able to push the analysis further and prove that the 	bre modes

are stable in time for all physically reasonable values of the parameters� We also showed that the

decay rates and frequencies corresponding to these modes vary in magnitude over a much greater

range of values than the modes of Stokes� equations without an immersed 	bre� An asymptotic

analysis of the decay rates identi	ed precisely how the decay rates depend on the parameters�

thereby recognising the tangential modes as the principal source of sti�ness� while the normal

modes are actually �perturbed� Stokes modes�

To see how well the smoothed problem approximates the original one� we compared the modes

from the two problems� and found that while the range of decays rates is much smaller� the

problem is still sti�� Furthermore� the lowest wavenumber mode �corresponding to the dominant

solution features� matches quite well between the two problems� except when the force or the

smoothing radius� �� are very large� We employed careful numerical experiments on an example

speciallytailored to the linear problem to verify the predicted solution behaviour�

For large forces� the smoothed problem exhibits oscillations with a frequency that is very large

in relation to the decay rate � this corresponds to eigenvalues that cluster near the imaginary

axis� We used stability diagrams to show analytically that the RungeKutta method of order four

is a much better alternative among the class of fully explicit schemes� and leads to signi	cant

improvements in e�ciency for explicit calculations at a high Reynolds number� Furthermore� the

RK� method is also very competitive with all of the implicit schemes that have been proposed to

date�

The smoothed problem yielded one more piece of information of particular signi	cance for the
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Immersed Boundary Method� By looking at an asymptotic expansion of the dispersion relation as

� � �� we evaluated the formal accuracy of various approximations to the delta function� In the

setting of this �idealised discretisation�� we investigated the link between satisfaction of moment

conditions and the formal accuracy of the resulting interpolation� We derived a new delta function

that satis	es the discrete second moment condition� for which a proof of formal second order

accuracy has eluded us� but which exhibits improved accuracy in 	nelyresolved computations�

The high degree of sti�ness inherent in immersed 	bres severely limits the allowable time step�

and so implicit methods must be considered if there is any hope of increasing the time step to a level

that will allow 	nely resolved calculations� We extended our analysis to semidiscretisations of

the immersed 	bre problem� and examined two implicit schemes� One is a CrankNicholsontype

scheme� which di�ers from the typical Immersed Boundary Method in that di�usion e�ects are

coupled implicitly to the force within a 	xed point iteration� The second is a method introduced

by Mayo " Peskin� which uses an ADI step for di�usion� followed by a 	xed point iteration on the

	bre position� with a judicious choice of preconditioner�

In the timediscrete case� the analysis leads to predictions of the convergence rate of the 	xed

point iteration embedded within each time step� The theoretical predictions match extremely well

with the convergence behaviour observed in calculations� Numerical experiments verify that the

CrankNicholson scheme o�ers no advantage over a method that treats the force explicitly this

is not surprising� as all of our work to this point has shown that it is the 	bre force that gives

rise to the sti�ness in the problem rather than the di�usive e�ects which are dominant in Stokes


ow� The predicted convergence rates for the MayoPeskin scheme are virtually identical to those

observed in computations over the entire physical range of forces�

One issue that has remained in the background throughout this thesis is the use of symbolic

computation� Maple has proven to be an indispensable tool in the derivation of most of the results

beyond Section ���� We have used it in its more mundane capacity as an algebraic manipulator� but

also for generating C and Fortran code� Hence� our approach has really been a threepronged
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one� combining mathematical analysis� symbolic computation and numerical experiments in an

e�ort to deepen our understanding of the immersed 	bre problem and the behaviour of numerical

methods based on it�

The 	nal chapter introduced a new application of the Immersed Boundary Method to simu�

lating the 
ow of pulp 	bres in two dimensions� This work is of particular interest to the paper

making industry as it is one of the 	rst attempts to compute the hydrodynamic coupling between

a 
exible 	bre and an incompressible 
uid� We demonstrate that the method reproduces the tum�

bling motions of 	bres observed experimentally in shear 
ows for reasonable physical parameters�

Comparisons of rotation rates with theoretical predictions and experimental observations are also

in very close agreement� The Immersed Boundary Method shows great promise as a quantitative

tool in pulp 	bre modeling�

��� Future Work

We hope to make a contribution to the development of more e�cient iterative schemes that do a

better job of combating the sti�ness inherent in the problem� A fully nonlinear Newton solver is

far too expensive to implement �as demonstrated by Tu " Peskin #TP��$�� while the most common

approach of building a semiimplicit scheme around a 	xed point iteration for the force does not

go far enough in handling the sti�ness e�ectively�

Our analysis clearly indicates a decoupling between normal and tangential modes of oscillation�

with the primary contribution to the sti�ness coming from the tangential modes� We believe that a

�local linearisation� of the problem that singles out the sti� interfacial modes will lead to a better

iterative technique� with a more e�ective preconditioning strategy� Once a fast and e�ective solver

has been devised for coupling the 	bre and 
uid� we hope to incorporate it into a semiimplicit

RungeKutta scheme �such as those described in #ARS��$�� which will give us all the advantages

of the better stability properties of RungeKutta schemes near the imaginary axis�

Further analysis can be performed on the Forward Euler�ADI scheme� since the results in
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Section ��� show that the time step restrictions cannot be determined in a straightforward way

from the e�ects of Stokes modes and 	bre modes� This might be addressed� at least in part� by

incorporating the e�ect of the ADI step into the analysis� Also� a further investigation of the

splitstep time discretisation underlying the MayoPeskin iterative scheme would show whether

the failure of the iteration to converge is due to timeinstability of the discretisation or spatially

discrete e�ects� such as 	bre mesh crossings�

Another interesting result in this thesis is the suggestion that the accuracy of the Immersed

Boundary Method may be increased by a suitable choice of delta function� This is not a new

idea� but the search for a better approximate smoothing function was seemingly abandoned after

the onedimensional analysis of Beyer " LeVeque #BL��$� We plan to continue our attempts to

derive a dispersion relation for our �new� delta function that would lead to a formal proof of

the accuracy of the interpolation� This improved delta function would also have application to

many other numerical schemes that use delta function smoothing to handle immersed interfaces�

including the level set method for incompressible 
ows #Hou��$ the particleincell method #SB���

LIB��$ spectral and pseudo�spectral methods applied to particle suspensions #Yus��$ and arterial


ow #Art��$ and 	nite element simulations of 
uid droplets #Tor��� TMSB��$�

Our work on pulp 	bres was really only a 	rst step in modeling pulp suspensions� since the

motion of 	bres in shear 
ow is fundamentally threedimensional� We plan to extend our immersed

boundary code to �D and include torsional sti�ness in the 	bre in order to capture a wider range

of complex 	bre motions�

Our pulp 	bre simulations to this point have neglected 	bre inertia� which in some situations

is considered an important factor� The mass of particles that are not neutrallybuoyant can be

accounted for in the immersed boundary model by including a variable density in the momentum

equations #PM��a$� Each 	bre contributes a singular mass distribution to the 
uid of the following

form


�x� t� � 
o '

Z
�
m�s� � �x�X �s� t�� ds�
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where m�s� is the additional mass per unit length of the 	bre �which can be negative�� and 
o is

the constant 
uid density in the absence of the 	bres� A variable density precludes the use of an

FFT solver� and so this extension will require development of an alternate fast 
uid solver�

The Immersed Boundary Method has proven very e�ective in modeling the 
ow of suspensions

that contain on the order of ������� particles in the platelet aggregation studies of Fogelson "

Peskin #FP��b$� These authors also incorporate particleparticle interactions using appropriate

modi	cations to the force in the 
uid equations� By modifying the interparticle force to conform

with the physics of pulp 	bre interaction using the previous work of Doi " Chen #DC��$ and

Yamamoto " Matsuoka #YM��$� we plan to investigate �semidilute� suspensions where aggrega�

tion of 	bres �known as ��occulation�� is an important factor� This will signi	cantly increase the

range of 
ow regimes in the papermaking process that can be investigated using the Immersed

Boundary Method�
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Appendix A

FFT Solver for Pressure on a Periodic

Channel

In this Appendix� we outline the Fast Fourier Transform �FFT� technique used to solve the discrete

pressure Poisson equation

Dh �Gh Pi�j � Ri�j�

on the domain #�� Lx$ � #�� Ly$� where Lx and Ly are chosen so that we can take an N �M grid

with spacing h � Lx
N � Ly

M that is identical in both directions� We must also ensure that M is an

integer power of � so that an FFT can be used to solved the problem�

The pressure is periodic in the xdirection� Updating the velocity requires values of the

pressure gradient at all interior points �i � �� �� � � � � N � � and j � �� �� � � � �M � �� and so the

pressure must be computed at all points including j � � and j � M �

Since the pressure is periodic in x� the basic solution procedure involves performing a discrete

Fourier transform in the xdirection� and then solving the remaining coupled equations in the

ydirection� Before describing the actual procedure� we will formulate the discrete equations�

A�� The discrete equations

We have written the discrete Laplacian as the product Dh �Gh� where

���
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� Gh is the standard centered di�erence approximation to the gradient operator�

GhPi�j �

�
Pi���j � Pi���j

�h
�
Pi�j�� � Pi�j��

�h

�
 

� D�
h is an approximation to the divergence operator� based on the technique proposed by

Chorin #Cho��$ and described more fully by Wetton #Wet��$� The �reduced divergence

operator� D�
h is based on simple centered di�erences at least two grid points away from the

boundary �that is� j � �� �� � � � �M � ���

D�
h � �Ui�j �

Ui���� � Ui����

�h
'
Vi�j�� � Vi�j��

�h
�

The stencils at the remaining points are derived using second order onesided di�erences at

points next to the boundary along with homogeneous boundary conditions�

D�
h � �Ui�� �

�Vi��� Vi��
�h

D�
h � �Ui�� �

Ui���� � Ui����

�h
'
Vi��
�h

D�
h � �Ui�M�� �

Ui���M�� � Ui���M��

�h
� Vi�M��

�h

D�
h � �Ui�M �

��Vi�M�� ' Vi�M��

�h

This ensures that the computed pressure will result in a velocity that satis	es the discrete

divergencefree condition with second order accuracy�

If we substitute the expression for GhPi�j into the divergence formulae above� we obtain

D�
h �GhPi�j �

�������������������������������

�
�h� ���Pi�� ' Pi�� ' �Pi�� � Pi�	� � if j � ��

�
�h� ���Pi���� ' Pi���� ' Pi�	 � �Pi��� � if j � ��

�
�h� �Pi���j ' Pi���j ' Pi�j�� ' Pi�j�� � �Pi�j� � if � 
 j 
M � ��

�
�h� �Pi���M�� ' Pi���M�� ' Pi�M�	 � �Pi�M��� � if j � M � ��

�
�h� ��Pi�M�	 ' �Pi�M�� ' Pi�M�� � �Pi�M� � if j � M�

�A���
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A�� The discrete Fourier transform

We now proceed to apply the discrete Fourier transform to equations �A���� which amounts to

substituting Pi�j � e���	i�M *P	�j into the discrete equations D�
h � GhPi�j � Ri�j If we do so� we

obtain

for j � �� �� *P	�� ' *P	�� ' � *P	�� � *P	�	 � �h� *R	���

for j � ��
�
� cos

�
�	
M

�� �
�

*P	�� ' *P	�	 � �h� *R	���

for � 
 j 
M � ��
�
� cos

�
�	
M

�� �
�

*P	�j ' *P	�j�� ' *P	�j�� � �h� *R	�j�

for j � M � ��
�
� cos

�
�	
M

�� �
�

*P	�M�� ' *P	�M�	 � �h� *R	�M���

for j � M � � *P	�M�	 ' � *P	�M�� ' *P	�M�� � � *P	�M � �h� *R	�M �

For each �� these equations form a banded system of M ' � equations in M ' � unknowns which

can be written in matrix form as��������������������������

�� � � �� � � � � � � �

� � ' *m	 � � � � � � � � �

� � *m	 � � � � � � � �

� � � *m	 � � � � � � �
���

� � �
� � �

� � �
� � �

� � �
� � �

� � �
���

� � � � � � � *m	 � � �

� � � � � � � *m	 � �

� � � � � � � � ' *m	 �

� � � � � �� � � ��

��������������������������

�

����������������������

*P	��

*P	��

*P	��

*P	�	
���

*P	�M��

*P	�M��

*P	�M

����������������������

� �h�

����������������������

*R	��

*R	��

*R	��

*R	�	

���

*R	�M��

*R	�M��

*R	�M

����������������������

where *m	 �� � cos
�
�	
M

�� ��

A�� The solution procedure

The basic outline of the solution procedure is given below� Subroutine names are identi	ed in

typewriter font� and are adapted from the Numerical Recipes code in #PTVF��$�
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�� Set up the matrix coe�cients and perform the LU decomposition using bandec �need only

be done once��

�� Transform the data� Ri�j �� *R	�j � using realft� � � � �����

�� Solve the banded system for each �� using bandsol�

�� Apply the inverse transform� *P	�j �� Pi�j � using realft� � � � ���� for each ��

The quantities *Pi�j and *Ri�j are complex� while the entries of the matrix are real� and so the

system above is a set of two coupled banded systems involving the same real�valued matrix for the

real and imaginary parts� The matrix is nonsingular for � � �� �� � � � � N� � �� but has two null

modes for each of the sets of equations corresponding to � � � and � � N
� � The null modes can be

eliminated by setting the four transform coe�cients *P��M��� *P��M � *PN���M�� and *PN���M to zero

before performing the inverse transform�


