### Mathematical modelling of concrete:

Coupling flow and reaction chemistry in porous materials

#### John Stockie

Department of Mathematics, SFU http://www.math.sfu.ca/~stockie

Canadian Symposium on Fluid Dynamics CAIMS\*SCMAI 2010

July 19, 2010

### Acknowledgments



#### Michael Chapwanya

- Postdoctoral fellow
- Currently an Assistant Professor at University of Pretoria



#### Wentao Liu

- Summer undergraduate research assistant
- Currently a PhD student at University of Waterloo





# Outline

#### Introduction

- What is concrete?
- Concrete composition and chemistry
- Motivation: Re-wetting experiments

#### 2 Mathematical model

- Physical set-up
- Governing equations

### 3 Numerical simulations

- Clogging simulation
- Sensitivity study

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

# Outline

#### Introduction

- What is concrete?
- Concrete composition and chemistry
- Motivation: Re-wetting experiments

#### 2 Mathematical model

- Physical set-up
- Governing equations

### 3 Numerical simulations

- Clogging simulation
- Sensitivity study

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

### Why study concrete?

Concrete has a reputation as a "low tech" material, but it is actually very complex and worthy of study! Furthermore ...

- It's the most widely used construction material in the world. In 1997, 6.4B m<sup>3</sup> was produced – that's 2.5 T per person!
- Of any material, only water has a higher consumption rate.
- It's a climate change villain: the cement industry produces 5–10% of man-made CO<sub>2</sub> globally.



Mathematical Modelling of Concrete



John Stockie – SFU

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

## Cement versus concrete?

The words "cement" and "concrete" are frequently misused/confused.

#### Cement:

- Is a binding agent that hardens and holds other materials together.
- Ingredients: limestone, clay, gypsum, and other additives.

#### **Concrete:**

- Is a mixture of cement, aggregate (gravel or crushed stone), sand, and water.
- Concrete hardens after mixing with water through a process called hydration.





What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

### Concrete composition

Water

- A typical concrete mix: cement (11%), gravel (41%), sand (26%), water (16%) and air voids (6%).
- This composition changes over time as the cement hydrates and concrete hardens.

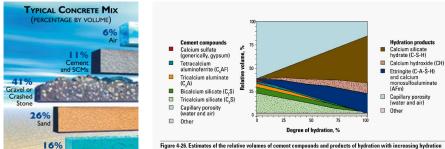



Figure 4-26. Estimates of the relative volumes of cement compounds and products of hydration with increasing hydration (adapted from Tennis and Jennings 2000).

Note: These estimates are for a 0.50 water-cementitious materials ratio; decreasing the ratio will decrease the capillary porosity.

Introduction Concrete composition and chemistry Mathematical model Numerical simulations

## Cement chemistry

- The primary (active) ingredients in Portland cement are:
  - Tricalcium silicate or "alite":  $3CaO \cdot SiO_2$  (55%)  $C_3S$  (55%)
  - Dicalcium silicate or "belite": 2CaO · SiO<sub>2</sub> (18%) C<sub>2</sub>S (18%)
  - Tricalcium aluminate:  $3CaO \cdot Al_2O_3$  (10%)  $C_3A$  (10%)
  - C₄AF (8%)
  - Tetracalcium aluminoferrite:  $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$  (8%)
- Water is the other main reactant: H<sub>2</sub>O H
- Main reaction products are calcium silicate hydrate gel:  $3C_{a}O \cdot 2SiO_{2} \cdot 3H_{2}O C_{3}S_{2}H_{3}$  or simply C-S-H and calcium hydroxide: Ca(OH)<sub>2</sub> CH
- Simplify: use standard cement chemistry notation

C = CaO,  $S = SiO_2$ ,  $H = H_2O$ ,  $A = AI_2O_3$ ,  $F = Fe_2O_3$ 

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

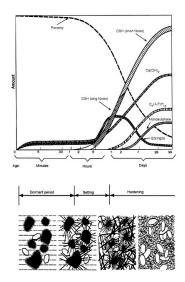
### Cement chemistry 2

Main reactions for alite and belite:

$$2C_3S + 6H \xrightarrow{r_a} C-S-H (aq) + 3CH$$
$$2C_2S + 4H \xrightarrow{r_b} C-S-H (aq) + CH$$

**Note:** Alite reaction is much faster than belite:  $r_a \gg r_b$ 

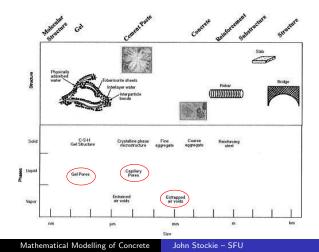
Precipitation/dissolution: gel forms from aqueous C-S-H


$$\mathsf{C}\text{-}\mathsf{S}\text{-}\mathsf{H}(\mathsf{a}\mathsf{q}) \xrightarrow[k_{\mathsf{diss}}]{k_{\mathsf{diss}}} \mathsf{C}\text{-}\mathsf{S}\text{-}\mathsf{H}(\mathsf{g}\mathsf{e}\mathsf{l})$$

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

## Cement chemistry 3

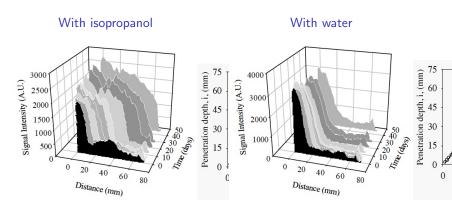
- Initial hydration: formation of crystalline "fingers" on silicate grains.
- Setting: over a period of hours, C-S-H gel matrix forms rapidly.
- Clogging: C-S-H gel causes porosity to decrease.
- Hardening/curing:


hydration continues for days and even months.



Introduction What is concrete? Mathematical model Concrete composition and chemistry Numerical simulations Motivation: Re-wetting experiments

#### Concrete structure


Hardened concrete has a complex, multi-scale porous structure with gel pores (10–100 nm)  $\ll$  capillary pores (10  $\mu$ m)  $\ll$  air voids (1 mm)



Introduction What is concrete? Mathematical model Concrete composition and chemistry Numerical simulations Motivation: Re-wetting experiments

### Motivation: Re-wetting experiments

Barrita (2002) studied re-wetting of hardened concrete with both isopropanol (non-reactive) and water (reactive) and observed ...



#### Wetting front obeys the usual

What is concrete? Concrete composition and chemistry Motivation: Re-wetting experiments

## Main hypothesis

#### Hypothesis (from experimentalists):

Re-hydration of residual (unreacted) silicates leads to C-S-H gel formation that in turn clogs capillary pores.

#### Note:

- Initial hydration and setting phases have been modelled extensively, e.g. Bentz et al. (1994), Tzschichholz et al. (1995), Preece et al. (2001), etc.
- Hall et al. (1995) present experimental evidence that re-wetting leads to "anomalously low absorption rates."
- However, re-wetting has not been modelled to date.

Physical set-up Governing equations

## Outline

#### **Introduction**

- What is concrete?
- Concrete composition and chemistry
- Motivation: Re-wetting experiments

#### 2 Mathematical model

- Physical set-up
- Governing equations

#### 3 Numerical simulations

- Clogging simulation
- Sensitivity study

Physical set-up Governing equations

### Barrita's re-wetting experiment

#### Barrita, Bremner & Balcom (2003):

- A long, thin, cylindrical sample of dry concrete.
- Sides are sealed.
- Bottom is placed in a liquid reservoir.
- Wetting front moves upwards due to capillary

Mathematical Modelling of Concrete



John Stockie – SFU

## Main assumptions

- **1** Problem is one-dimensional (sample is long and thin).
- Q Liquid transport obeys Darcy's law (capillary pore scale only).
- Solution No temperature variations (reactions are slow).
- Gravity is negligible (pores are small, low  $Bo = \frac{\rho g L^2}{\gamma}$ ).
- Solution Consider only silicate reactions (C<sub>3</sub>S and C<sub>2</sub>S make up 70-80% of active ingredients).
- Neglect individual ionic species.
- Ignore chemical shrinkage.

### Variables

Define the following dependent variables:

 $\theta(x, t) =$ liquid saturation  $C_a(x, t) = C_3 S$  (alite) concentration  $C_b(x, t) = C_2 S$  (belite) concentration  $C_q(x, t) =$ aqueous C-S-H concentration  $C_g(x, t) =$ solid C-S-H gel concentration

An important supplementary variable is porosity:

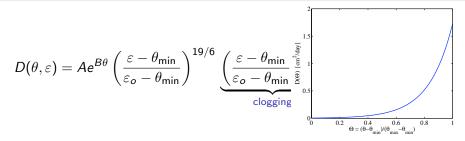
$$\varepsilon(x,t) = \varepsilon_o - \frac{C_g(x,t)}{\rho_g}$$

Physical set-up Governing equations

### Conservation laws

Water: 
$$\frac{\partial \theta}{\partial t} + \frac{\partial}{\partial x} \underbrace{\left(-D(\theta,\varepsilon)\frac{\partial \theta}{\partial x}\right)}_{\text{Darcy flux} = u} = -R_{\theta}$$

$$\begin{array}{lll} \text{Alite:} & \frac{\partial(\theta C_a)}{\partial t} + \frac{\partial(u C_a)}{\partial x} = \frac{\partial}{\partial x} \left( \theta D_a \frac{\partial C_a}{\partial x} \right) - R_a \\ \\ \text{Belite:} & \frac{\partial(\theta C_b)}{\partial t} + \frac{\partial(u C_b)}{\partial x} = \frac{\partial}{\partial x} \left( \theta D_b \frac{\partial C_b}{\partial x} \right) - R_b \\ \\ \text{Aqueous C-S-H:} & \frac{\partial(\theta C_q)}{\partial t} + \frac{\partial(u C_q)}{\partial x} = \frac{\partial}{\partial x} \left( \theta D_q \frac{\partial C_q}{\partial x} \right) + R_q \\ \\ \text{C-S-H gel:} & \frac{\partial(\theta C_g)}{\partial t} = R_g \end{array}$$


Physical set-up Governing equations

### Reaction terms

Consumption of alite:  $R_a = k_a C_a^{n_a} \left(\theta - \theta_{\min}\right)_+$  $= \min(\theta - \theta_{\min}, 0)$ ("shut-off")  $R_b = k_b C_b^{n_b} (\theta - \theta_{\min})_+$ Consumption of belite: Generation of C-S-H (aq + gel):  $R_{\rm csh} = \frac{m_{\rm csh}}{2} \left( \frac{R_a}{m_a} + \frac{R_b}{m_b} \right)$ (weighted by molar masses) Generation of water:  $R_{\theta} = k_{\theta} R_{\rm csh}$  $R_a = R_{csh} - R_g$ Generation of C-S-H (ag): Generation of C-S-H (gel):  $R_{\sigma} = (k_{\text{prec}} C_{\sigma} - k_{\text{diss}} C_{\sigma})(\theta - \theta_{\text{min}})_{+}$ (precipitation and dissolution)

Physical set-up Governing equations

## Water diffusion coefficient



- Exponential dependence on  $\theta$  is fit to concrete experiments, with  $B \approx 6$  and  $A \approx 0.003$ .
- Saturation is governed by a nearly degenerate diffusion equation with some interesting mathematical properties ... later ...
- The second factor represents clogging, and is commonly employed for biofilms in soil (Clement et al., 1996).

### Parameter values

Typical values of a few of the most important parameters:

- Sample length: L = 10 cm.
- Diffusivity: B = 6 and A = 0.003.
- Narrow range of saturation:  $\theta_{\min} = 0.04$ ,  $\theta_{\max} = \varepsilon_o = 0.067$ .
- Reaction exponents:  $n_a = 2.65$ ,  $n_b = 3.10$ .
- Reaction rates:  $k_a = 22.2 \text{ d}^{-1}$ ,  $k_b = 3.04 \text{ d}^{-1}$ .
- Precipitation/dissolution rates:  $k_{\text{prec}} = 32.2 \text{ d}^{-1}$ ,  $k_{\text{diss}} = 0$ .

#### Refs: Papadakis et al. (1989), Bentz (2006).

Clogging simulatior Sensitivity study

# Outline

#### Introduction

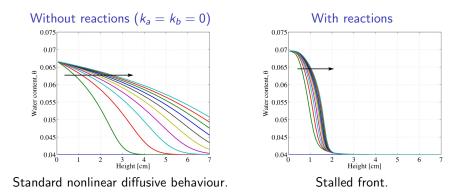
- What is concrete?
- Concrete composition and chemistry
- Motivation: Re-wetting experiments

#### 2 Mathematical model

- Physical set-up
- Governing equations

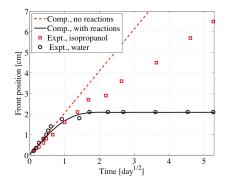
### 3 Numerical simulations

- Clogging simulation
- Sensitivity study


## Solution algorithm

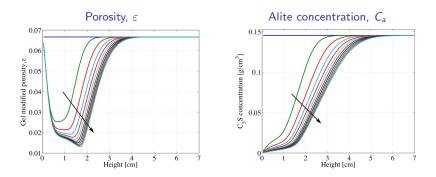
- Employ a method of lines approach with a second-order centered finite volume discretization in space.
- Use N = 100 grid points in space, which yields a coupled nonlinear system of 5N ODEs in time.
- Solve using Matlab's stiff solver ode15s.
- Requires less than 1 min. on a Mac PowerBook.

Clogging simulation Sensitivity study


## Clogging simulation

Plots of saturation over 28 days, at 10 equally-spaced time values:

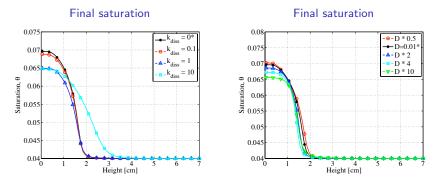



## Clogging simulation 2

- Discrepancy between initial slopes for water/isopropanol data is likely due to variations in samples used.
- Results are fit to water data using two parameters:
  - Choose  $A = 0.003 \text{ cm}^2/\text{day}$  to match wetting front speed.
  - Scale reaction rates to match stalling location.



# Clogging simulation 3

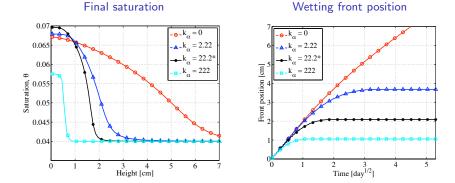

- Porosity is smallest (i.e., C-S-H gel concentration is largest) just behind the stall location  $x \approx 2$  cm.
- Most of the alite (and belite) reacts behind the front.
- Some reactions still occur ahead of the stalled front.



Clogging simulation Sensitivity study

## Sensitivity study

Results are relatively insensitive to variations in parameters such as dissolution rate ( $k_{diss}$ ) and diffusivity ( $D_a$ ,  $D_b$ ,  $D_q$ ):




(Chapwanya et al., J. Eng. Math., 2009)

Clogging simulation Sensitivity study

### Sensitivity study 2

Results much more sensitive to changes in reaction rates  $(k_{\alpha}, k_{\beta})$ :



(Chapwanya et al., J. Eng. Math., 2009)

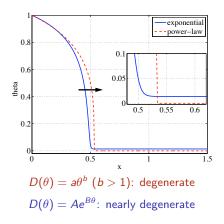
## Summary & Conclusions

- Developed a model for transport and reaction of water and silicates in hardened concrete.
- Calibration and comparison to a very detailed set of experiments.
- Numerical simulations support the hypothesis that hydration of residual silicates is responsible for anomalous water transport observed in re-wetting experiments.
- Sensitivity studies identify the most important physical parameters.

## Other results: Exponential diffusion

Water only:

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left( D(\theta) \frac{\partial \theta}{\partial x} \right) \quad \text{wind}$$


with 
$$D( heta) = Ae^{B heta}$$

- Compare to the more common power-law diffusivity:
  D(θ) = aθ<sup>b</sup> (classical PME).
- Previous asymptotic results for exponential *D*:

Babu (1976) Parslow et al. (1988) Parlange et al. (1992)

• Our matched asymptotics yield higher accuracy:

Budd & JMS (2010)



## Future work

- Further experiments are necessary to confirm our hypothesis about hydration of residual silicates (work with Barrita).
- Incorporate transport and reaction kinetics of individual ionic species, similar to other models of initial hydration, carbonation (Meier et al., 2007), and chlorination (Papadakis et al., 1992).
- Derive analytical results on wetting front motion and stall location, à la Muntean & Böhm (2006).
- Numerical studies of the related phenomenon of self-desiccation and associated shrinkage effects.
- Applications: high-performance concrete, monument degradation and restoration, etc.

### References I

#### D. K. Babu.

Infiltration analysis and perturbation methods. 1. Absorption with exponential diffusivity.

Water Resour. Res., 12(1):89-93, 1976.



#### P. Barrita.

*Curing of high-performance concrete in hot dry climates studied using magnetic resonance imaging.* 

PhD thesis, University of New Brunswick, Fredericton, NB, Nov. 2002.



#### P. Barrita, T. W. Bremner, and B. J. Balcom.

Effects of curing temperature on moisture distribution, drying and water absorption in self-compacting concrete.

Mag. Concr. Res., 55(6):517-524, 2003.

## References II

#### D. P. Bentz.

Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations.

Cement Conc. Res., 36(2):238-244, 2006.



D. P. Bentz, P. V. Coveney, E. J. Garboczi, M. F. Kleyn, and P. E. Stutzman.

Cellular automaton simulations of cement hydration and microstructure development.

Modelling Simul. Mater. Sci. Eng., 2:783-808, 1994.

#### C. J. Budd and J. M. Stockie.

Asymptotic behaviour of wetting fronts in porous media with exponential moisture diffusivity.

In preparation, 2010.

## References III

M. Chapwanya, W. Liu, and J. M. Stockie.

A model for reactive porous transport during re-wetting of hardened concrete.

J. Eng. Math., 65(1):53-73, 2009.

- T. P. Clement, B. S. Hooker, and R. S. Skeen.

Macroscopic models for predicting changes in saturated porous media properties cause by microbial growth.

Ground Water, 34(5):934-942, 1996.

C. Hall, W. D. Hoff, S. C. Taylor, M. A. Wilson, B.-G. Yoon, H.-W. Reinhardt, M. Sosoro, P. Meredith, and A. M. Donald. Water anomaly in capillary liquid absorption by cement-based materials.

J. Mater. Sci. Lett., 14:1178-1181, 1995.

## References IV

S. A. Meier, M. A. Peter, A. Muntean, and M. Böhm.

Dynamics of the internal reaction layer arising during carbonation of concrete.

Chem. Eng. Sci., 62:1125-1137, 2007.

A. Muntean and M. Böhm.

Length scales in the concrete carbonation process and water barrier effect: A matched asymptotics approach.

Report No. 06-07, Zentrum für Technomathematik, Universität Bremen, Sept. 2006.



V. G. Papadakis, M. N. Fardis, and C. G. Vayenas.

Hydration and carbonation of pozzolanic cements.

ACI Mater. J., 89(2):119-130, 1992.

### References V

V. G. Papadakis, C. G. Vayenas, and M. N. Fardis.

A reaction engineering approach to the problem of concrete carbonation. *AIChE J.*, 35(10):1639–1650, 1989.



M. B. Parlange, S. N. Prasad, J.-Y. Parlange, and M. J. M. Römkens.

Extension of the Heaslet-Alksne technique to arbitrary soil water diffusivities.

Water Resour. Res., 28(10):2793-2797, 1992.



J. Parslow, D. Lockington, and J.-Y. Parlange.

A new perturbation expansion for horizontal infiltration and sorptivity estimates.

Transp. Porous Media, 3:133-144, 1988.

S. J. Preece, J. Billingham, and A. C. King. On the initial stages of cement hydration.

J. Eng. Math., 40:43–58, 2001.

### References VI

#### F. Tzschichholz, H. J. Herrmann, and H. Zanni.

A reaction-diffusion model for the hydration/setting of cement.

arXiv:cond-mat/9508016v1, 4 August 1995.