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Why study concrete?

Concrete has a reputation as a “low tech” material, but it is
actually very complex and worthy of study! Furthermore . . .

It’s the most widely used construction material in the world.
In 1997, 6.4B m3 was produced – that’s 2.5 T per person!
Of any material, only water has a higher consumption rate.
It’s a climate change villain: the cement industry produces
5–10% of man-made CO2 globally.
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Cement versus concrete?

The words “cement” and “concrete” are frequently
misused/confused.

Cement:
Is a binding agent that hardens and
holds other materials together.
Ingredients: limestone, clay, gypsum,
and other additives.

Concrete:
Is a mixture of cement, aggregate
(gravel or crushed stone), sand, and
water.
Concrete hardens after mixing with
water through a process called
hydration.
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Concrete composition

A typical concrete mix: cement (11%), gravel (41%),
sand (26%), water (16%) and air voids (6%).

This composition changes over time as the cement hydrates
and concrete hardens.

Mathematical Modelling of Concrete John Stockie – SFU



Introduction
Mathematical model

Numerical simulations

What is concrete?
Concrete composition and chemistry
Motivation: Re-wetting experiments

Cement chemistry

The primary (active) ingredients in Portland cement are:

Tricalcium silicate or “alite”: 3CaO ·SiO2 (55%) C3S (55%)
Dicalcium silicate or “belite”: 2CaO ·SiO2 (18%) C2S (18%)
Tricalcium aluminate: 3CaO ·Al2O3 (10%) C3A (10%)
Tetracalcium aluminoferrite: 4CaO ·Al2O3 ·Fe2O3 (8%)
C4AF (8%)

Water is the other main reactant: H2O H

Main reaction products are calcium silicate hydrate gel:

3CaO · 2SiO2 · 3H2O C3S2H3 or simply C-S-H

and calcium hydroxide: Ca(OH)2 CH

Simplify: use standard cement chemistry notation

C = CaO, S = SiO2, H = H2O, A = Al2O3, F = Fe2O3
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Cement chemistry 2

Main reactions for alite and belite:

2C3S + 6H
ra−→ C-S-H (aq) + 3CH

2C2S + 4H
rb−→ C-S-H (aq) + CH

Note: Alite reaction is much faster than belite: ra � rb

Precipitation/dissolution: gel forms from aqueous C-S-H

C-S-H (aq)
kprec−−⇀↽−−
kdiss

C-S-H (gel)
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Cement chemistry 3

Initial hydration: formation
of crystalline “fingers” on
silicate grains.

Setting: over a period of
hours, C-S-H gel matrix
forms rapidly.

Clogging: C-S-H gel causes
porosity to decrease.

Hardening/curing:
hydration continues for days
and even months.
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Concrete structure

Hardened concrete has a complex, multi-scale porous structure with

gel pores (10–100 nm) � capillary pores (10 µm) � air voids (1 mm)
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Motivation: Re-wetting experiments

Barrita (2002) studied re-wetting of hardened concrete with both
isopropanol (non-reactive) and water (reactive) and observed . . .

With isopropanol With water

Wetting front obeys the usual
xf (t) ∝ t1/2 for porous media

flow.
Wetting front stalls!

Wetting front penetrates sample at a rate that decreases with time
AND water behaves differently from isopropanol.
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Main hypothesis

Hypothesis (from experimentalists):

Re-hydration of residual (unreacted) silicates leads to C-S-H gel
formation that in turn clogs capillary pores.

Note:

Initial hydration and setting phases have been modelled
extensively, e.g. Bentz et al. (1994), Tzschichholz et al. (1995),
Preece et al. (2001), etc.

Hall et al. (1995) present experimental evidence that re-wetting
leads to “anomalously low absorption rates.”

However, re-wetting has not been modelled to date.
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Barrita’s re-wetting experiment

Barrita, Bremner & Balcom (2003):

A long, thin, cylindrical
sample of dry concrete.

Sides are sealed.

Bottom is placed in a liquid
reservoir.

Wetting front moves
upwards due to capillary
action.

Use magnetic resonance
imaging to determine front
location.
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Main assumptions

1 Problem is one-dimensional (sample is long and thin).

2 Liquid transport obeys Darcy’s law (capillary pore scale only).

3 No temperature variations (reactions are slow).

4 Gravity is negligible (pores are small, low Bo = ρgL2

γ ).

5 Consider only silicate reactions (C3S and C2S make up
70–80% of active ingredients).

6 Neglect individual ionic species.

7 Ignore chemical shrinkage.
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Variables

Define the following dependent variables:

θ(x , t) = liquid saturation

Ca(x , t) = C3S (alite) concentration

Cb(x , t) = C2S (belite) concentration

Cq(x , t) = aqueous C-S-H concentration

Cg (x , t) = solid C-S-H gel concentration

An important supplementary variable is porosity:

ε(x , t) = εo −
Cg (x , t)

ρg
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Conservation laws

Water:
∂θ

∂t
+

∂

∂x

(
−D(θ, ε)

∂θ

∂x

)
︸ ︷︷ ︸

Darcy flux = u

= −Rθ

Alite:
∂(θCa)

∂t
+

∂(uCa)

∂x
=

∂

∂x

(
θDa

∂Ca

∂x

)
− Ra

Belite:
∂(θCb)

∂t
+

∂(uCb)

∂x
=

∂

∂x

(
θDb

∂Cb

∂x

)
− Rb

Aqueous C-S-H:
∂(θCq)

∂t
+

∂(uCq)

∂x
=

∂

∂x

(
θDq

∂Cq

∂x

)
+ Rq

C-S-H gel:
∂(θCg )

∂t
= Rg
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Reaction terms
Consumption of alite: Ra = kaC

na
a (θ − θmin)+︸ ︷︷ ︸

= min(θ−θmin,0)
(“shut-off”)

Consumption of belite: Rb = kbC
nb
b (θ − θmin)+

Generation of C-S-H (aq + gel):
(weighted by molar masses)

Rcsh =
mcsh

2

(
Ra

ma
+

Rb

mb

)

Generation of water: Rθ = kθRcsh

Generation of C-S-H (aq): Rq = Rcsh − Rg

Generation of C-S-H (gel):
(precipitation and dissolution)

Rg = (kprecCq − kdissCg )(θ − θmin)+
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Water diffusion coefficient

D(θ, ε) = AeBθ

(
ε− θmin

εo − θmin

)19/6 (
ε− θmin

εo − θmin

)19/6

︸ ︷︷ ︸
clogging
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Exponential dependence on θ is fit to concrete experiments,
with B ≈ 6 and A ≈ 0.003.

Saturation is governed by a nearly degenerate diffusion
equation with some interesting mathematical properties
. . . later . . .

The second factor represents clogging, and is commonly
employed for biofilms in soil (Clement et al., 1996).
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Parameter values

Typical values of a few of the most important parameters:

Sample length: L = 10 cm.

Diffusivity: B = 6 and A = 0.003.

Narrow range of saturation: θmin = 0.04, θmax = εo = 0.067.

Reaction exponents: na = 2.65, nb = 3.10.

Reaction rates: ka = 22.2 d−1, kb = 3.04 d−1.

Precipitation/dissolution rates: kprec = 32.2 d−1, kdiss = 0.

Refs: Papadakis et al. (1989), Bentz (2006).
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Solution algorithm

Employ a method of lines approach with a second-order
centered finite volume discretization in space.

Use N = 100 grid points in space, which yields a coupled
nonlinear system of 5N ODEs in time.

Solve using Matlab’s stiff solver ode15s.

Requires less than 1 min. on a Mac PowerBook.
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Clogging simulation

Plots of saturation over 28 days, at 10 equally-spaced time values:

Without reactions (ka = kb = 0) With reactions

Standard nonlinear diffusive behaviour. Stalled front.
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Clogging simulation 2

Discrepancy between initial slopes for water/isopropanol data
is likely due to variations in samples used.
Results are fit to water data using two parameters:

Choose A = 0.003 cm2/day to match wetting front speed.
Scale reaction rates to match stalling location.
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Clogging simulation 3

Porosity is smallest (i.e., C-S-H gel concentration is largest)
just behind the stall location x ≈ 2 cm.

Most of the alite (and belite) reacts behind the front.

Some reactions still occur ahead of the stalled front.

Porosity, ε Alite concentration, Ca
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Sensitivity study

Results are relatively insensitive to variations in parameters such as
dissolution rate (kdiss) and diffusivity (Da, Db, Dq):

Final saturation Final saturation
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(Chapwanya et al., J. Eng. Math., 2009)
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Sensitivity study 2

Results much more sensitive to changes in reaction rates (kα, kβ):

Final saturation Wetting front position
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(Chapwanya et al., J. Eng. Math., 2009)
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Summary & Conclusions

Developed a model for transport and reaction of water and
silicates in hardened concrete.

Calibration and comparison to a very detailed set of
experiments.

Numerical simulations support the hypothesis that hydration
of residual silicates is responsible for anomalous water
transport observed in re-wetting experiments.

Sensitivity studies identify the most important physical
parameters.
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Other results: Exponential diffusion

Water only:
∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
with D(θ) = AeBθ

Compare to the more common
power-law diffusivity:
D(θ) = aθb (classical PME).

Previous asymptotic results for
exponential D:

Babu (1976)
Parslow et al. (1988)
Parlange et al. (1992)

Our matched asymptotics
yield higher accuracy:

Budd & JMS (2010)
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D(θ) = aθb (b > 1): degenerate

D(θ) = AeBθ: nearly degenerate
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Future work

Further experiments are necessary to confirm our hypothesis
about hydration of residual silicates (work with Barrita).

Incorporate transport and reaction kinetics of individual ionic
species, similar to other models of initial hydration,
carbonation (Meier et al., 2007), and chlorination (Papadakis et

al., 1992).

Derive analytical results on wetting front motion and stall
location, à la Muntean & Böhm (2006).

Numerical studies of the related phenomenon of
self-desiccation and associated shrinkage effects.

Applications: high-performance concrete, monument
degradation and restoration, etc.
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