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■ Used to simulate deformable elastic membranes immersed in a viscous,
incompressible fluid

■ Originally developed for simulating blood flow in the heart (Peskin, 1972)

■ IB method has since been applied to:
◆ Swimming worms, cells, other microorganisms (Fauci, 1990–)

◆ Biofilms (Dillon, 1995–) , (Alpkvist & Klapper, 2007)

◆ Suspensions of flexible fibers (JS, 1997)

◆ Parachutes (Kim & Peskin, 2006)

◆ . . . and many other problems in biology and engineering

■ Recent work involves extensions to:
◆ Thick elastic solids (Griffith & Peskin, 2004) , (Wang, 2006)

◆ Massive boundaries, not neutrally buoyant (Zhu & Peskin, 2002)

◆ Variants specific to stationary walls (Goldstein et al., 1993–)

◆ Porous membranes (Kim & Peskin, 2006)
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■ Related methods:
◆ Immersed interface method (LeVeque & Li, 1994–) . . . including porous

effects (Layton, 2006)

◆ Immersed continuum method (Wang, 2007)

◆ Blob projection method (Cortez & Minion, 2000)

◆ IB finite element method (Wang & Liu, 2004) , (Boffi & Gastaldi, 2007)

◆ Level set interface tracking (Cottet & Maitre, 2004) , (Beale & Strain, 2007)

■ For an extensive review see:

Mittal & Iaccarino, Ann. Rev. Fluid Mech., 37:239–261, 2005
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Porous immersed boundaries

■ Many applications involve a deformable porous membrane:
◆ blood flow through porous capillary walls
◆ vesicles and cells
◆ cerebrospinal fluid in the brain (hydrocephalus)
◆ ocean wave barriers and wave makers
◆ biofilms
◆ parachutes

■ Most existing methods for simulating porous membranes assume the
membrane is stationary or else deforms only slightly

■ This talk: highly deformable porous boundaries
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The mathematical formulation

■ Peskin (Acta Numerica, 11, 2002): “The IB method is both a mathematical
formulation and a numerical method”

■ The IB formulation captures complex fluid-membrane interactions, under a
few major assumptions:
◆ Fluid lies both inside and outside the membrane
◆ Membrane is neutrally buoyant and has zero mass and volume
◆ Fluid + membrane form an incompressible composite material

Ω Γ

Ω = fluid domain
p(~x, t) = fluid pressure
~u(~x, t) = fluid velocity

Γ = immersed boundary/membrane
s = arclength parameter
~X(s, t) = IB position
~U(s, t) = IB velocity
~F (s, t) = IB force density
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■ The membrane is an elastic material obeying

~F (s, t) = σ

[
~Xs

(
1 − Req

| ~Xs|

)]

s

Req = resting length, σ = “spring constant” (Req = 0 =⇒ ~F = σ ~Xss linear)
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[
~Xs

(
1 − Req

| ~Xs|

)]

s

Req = resting length, σ = “spring constant” (Req = 0 =⇒ ~F = σ ~Xss linear)

■ The membrane exerts a singular force on adjacent fluid particles:

ρ (~ut + ~u · ∇~u) = µ∆~u −∇p +

∫

Γ

~F (s, t) δ(~x − ~X(s, t)) ds

∇ · ~u = 0

■ The membrane in turn moves at the fluid velocity – no slip condition :

~Xt = ~u( ~X(s, t), t) =

∫

Ω

~u(~x, t) δ(~x − ~X(s, t)) d~x

■ All interactions are mediated by delta functions
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Jump formulation

■ Delta function terms can be eliminated by integrating the momentum
equations across the immersed boundary:

[p] =
~F · ~n
| ~Xs|

µ~τ ·
[
∂~u

∂n

]
= −

~F · ~τ
| ~Xs|

where [·] = (·)|Γ+ − (·)|Γ−

■ The immersed interface method uses these jump conditions to derive
high-order corrections to difference stencils within cells adjacent to Γ

■ The jump formulation is more useful for deriving analytical results
e.g. (JS & Wetton, 1995) , (Cortez et al., 2004)
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The numerical method

Basic idea:
■ Mixed, Eulerian–Lagrangian approach:

◆ fixed, rectangular fluid grid
◆ moving points define the membrane location

■ Delta functions are replaced by discrete approximations with finite support

δ(~x) ≈ dh(x) · dh(y) where dh(x) =
1

4h

(
1 + cos

πx

2h

)
, |x| ≤ 2h

■ Second-order centered differences in space
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◆ moving points define the membrane location

■ Delta functions are replaced by discrete approximations with finite support

δ(~x) ≈ dh(x) · dh(y) where dh(x) =
1

4h

(
1 + cos

πx

2h

)
, |x| ≤ 2h

■ Second-order centered differences in space

Original implementation of the IB method (Peskin, 1977) :
■ Split-step projection method for Navier-Stokes equations (Chorin)

■ For periodic BC’s, pressure solver is an FFT

■ Boundary evolution equation is handled explicitly – can be very stiff!
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Advantages of the IB approach:
■ Simple (handles complex boundaries easily)

■ Efficient (FFT is “optimal,” main cost is in δ–interactions)

■ Robust
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Advantages of the IB approach:
■ Simple (handles complex boundaries easily)

■ Efficient (FFT is “optimal,” main cost is in δ–interactions)

■ Robust

Disadvantages:
■ Limited to low Reynolds number (e.g., bio-fluid applications)

■ Only first order accurate, second order for “smooth” boundaries
(Griffith & Peskin, 2004)

■ Significant volume conservation errors

. . . all of these drawbacks have been addressed (at least partially) by IB
method variants appearing in recent years
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Adding porosity
■ Two recent papers deal with porous immersed boundaries:

◆ Cell membranes with the immersed interface method (Layton, 2006)

◆ Parachute dynamics (Kim & Peskin, 2006)
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■ Simple Idea: Darcy’s law gives porous slip velocity normal to membrane
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where a is membrane thickness and K is permeability

■ Using the normal stress jump condition [p] = ~F · ~n/| ~Xs|,

Up(s, t) = −α(~F · ~n)

| ~Xs|
where α =

K

µa

■ Porous slip is introduced as a correction to the IB velocity

~Xt = −Up(s, t) ~n +

∫

Ω

~u(~x, t) δ(~x − ~X(s, t)) d~x

■ Advantage: This is trivial to implement in the IB method!
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Exact solution in 2D

Consider a 2D, radially–symmetric, porous membrane with radius r(t)

■ Equilibrium configuration is a circle of radius Req

=⇒ IB force density is ~F = −σ(r − Req)~n
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■ Equilibrium configuration is a circle of radius Req

=⇒ IB force density is ~F = −σ(r − Req)~n
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Exact solution in 2D

Consider a 2D, radially–symmetric, porous membrane with radius r(t)

■ Equilibrium configuration is a circle of radius Req

=⇒ IB force density is ~F = −σ(r − Req)~n

■ Assume membrane deformations arise solely from porosity (i.e., |~u| ≪ 1):

Up(s, t) = ασ

(
1 − Req

r(t)

)
=⇒ dr

dt
= −ασ

(
1 − Req

r(t)

)

■ Apply initial condition r(0) = Ro, and solve exactly:

r(t) =





max(0, Ro − ασt), if Req = 0

Req

[
1 + W (m exp[−ασt/Req])

]
, if Req > 0

where W (x) is the Lambert W–function satisfying WeW = x, and

m =

(
Ro

Req
− 1

)
exp

(
Ro

Req
− 1

)
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Typical solutions

Req = 0 Req = 0.2
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■ Membrane velocity (rate of decay) increases for larger values of ασ (also for
smaller Req)

■ The Lambert–W solution (for Req > 0) has an exponential character
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One last detail: Membrane thickness

■ The IB model assumes membrane has zero thickness
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◆ Replace α with α̃ = K/(µCa), and repeat the calculation until the
analytical and computed solutions match
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One last detail: Membrane thickness

■ The IB model assumes membrane has zero thickness

■ BUT the discrete delta function introduces an effective thickness , a
=⇒ a must be determined numerically

■ We expect that a = 4Ch with C / 1

■ Proposed method for estimating C:
◆ Perform a numerical simulation for some K > 0

◆ Compare with the analytical solution using α = K/(µa) with a = 4h

◆ Replace α with α̃ = K/(µCa), and repeat the calculation until the
analytical and computed solutions match

■ This procedure can be automated!
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Numerical simulations: Circular membrane

■ Initially circular membrane with Ro = 0.4, Req = 0, σ = 105

■ Numerical parameters N = 64, Nb = 200 =⇒ C ≈ 0.794
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■ Analytical solution (dashed lines, left) is indistinguishable from numerics!

■ Error (right) increases with increased K, owing to larger velocities
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Numerical simulations: Elliptical membrane
■ Initial membrane is an ellipse with rmax = 0.4 and rmin = 0.2

■ Other parameters are Req = 0.2, σ = 105
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■ Ellipse simulations (solid lines) plotted alongside circular analytical solution
with Req = 0.2 and Ro = 0.2828 (same area as initial ellipse)
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■ As K → 0, tends toward solution for non-porous membrane with circular
equilibrium state Req =

√
rmin · rmax = 0.2828
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Volume conservation errors

■ A closed, elastic membrane should conserve volume owing to
incompressibility condition, BUT . . .

■ A big drawback of the IB method is an inherent loss of volume

Example: LeVeque & Li, 1997 IB (dotted) vs. Immersed Interface (solid)

Time (s)
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■ Various attempts have been made to improve volume conservation:
◆ Modified discrete divergence stencil (Peskin & Printz, 1993)

◆ Immersed interface method (LeVeque & Li, 1994)

◆ Blob projection method (Cortez & Minion, 2000)

◆ Hybrid IB/immersed interface method (Lee & LeVeque, 2003)

◆ Modified velocity interpolation (Newren, 2007)

■ Volume loss has been attributed to various sources, but was finally correctly
associated with errors in incompressibility from the velocity interpolation step
(Newren, 2007)
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Correction for volume loss

■ Peskin & Printz (1993) observed . . .
“a systematic tendency for a closed pressurized chamber to lose volume
slowly at a rate proportional to the pressure difference across its walls,

almost as though the fluid were leaking out through a porous boundary.”



Duke University 23 March, 2009 - p. 19

Correction for volume loss

■ Peskin & Printz (1993) observed . . .
“a systematic tendency for a closed pressurized chamber to lose volume
slowly at a rate proportional to the pressure difference across its walls,

almost as though the fluid were leaking out through a porous boundary.”

■ They also performed numerical studies showing that fluid particles were not
leaking through the boundary . . . yet there is still a normal slip velocity



Duke University 23 March, 2009 - p. 19

Correction for volume loss

■ Peskin & Printz (1993) observed . . .
“a systematic tendency for a closed pressurized chamber to lose volume
slowly at a rate proportional to the pressure difference across its walls,

almost as though the fluid were leaking out through a porous boundary.”

■ They also performed numerical studies showing that fluid particles were not
leaking through the boundary . . . yet there is still a normal slip velocity

■ One interpretation of these results is that discretization errors introduce an
intrinsic permeability Kint into immersed boundaries



Duke University 23 March, 2009 - p. 19

Correction for volume loss

■ Peskin & Printz (1993) observed . . .
“a systematic tendency for a closed pressurized chamber to lose volume
slowly at a rate proportional to the pressure difference across its walls,

almost as though the fluid were leaking out through a porous boundary.”

■ They also performed numerical studies showing that fluid particles were not
leaking through the boundary . . . yet there is still a normal slip velocity

■ One interpretation of these results is that discretization errors introduce an
intrinsic permeability Kint into immersed boundaries

■ Idea: An extra Darcy-like correction term might be used to minimize (or
eliminate?) errors in volume conservation
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Intrinsic permeability

A method for estimating intrinsic permeability Kint . . .
■ Simulate a non-porous circular membrane (K = 0)
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~F · ~n
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■ Estimate the slope (linear decay rate) and then Kint = − (slope)µa|Xs|
~F · ~n

■ Yields Kint = 2.0 × 10−9 cm2 for standard IB method

and Kint = 1.8 × 10−11 cm2 for Peskin-Printz’s corrected stencil
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Intrinsic permeability

A method for estimating intrinsic permeability Kint . . .
■ Simulate a non-porous circular membrane (K = 0)
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Peskin−Printz
Standard IB

■ Estimate the slope (linear decay rate) and then Kint = − (slope)µa|Xs|
~F · ~n

■ Yields Kint = 2.0 × 10−9 cm2 for standard IB method

and Kint = 1.8 × 10−11 cm2 for Peskin-Printz’s corrected stencil

■ Volume loss is only noticeable if K ∼ Kint or t is large enough
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Numerical simulations: Circle revisited

■ Consider a non-porous membrane (K = 0)

■ Initial state is circular with Ro = 0.4, Req = 0, σ = 105

■ Correct for volume loss using a porous slip velocity term with K = −Kint
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■ Similar results for porous membranes with corrected permeability K − Kint
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Summary

■ Generalized the IB formulation to handle porous immersed boundaries,
characterized by permeability K and membrane thickness a

■ Trivial to implement in the IB method

■ Derived a radially-symmetric analytical solution

■ Numerical simulations match very well

■ Demonstrated that volume loss appears as an intrinsic permeability Kint, and
can be corrected by replacing K by K − Kint
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Future work

■ A comprehensive study of volume loss and the proposed porous slip
correction

■ Investigate sensitivity of Kint and C to discretization and choice of δh

■ Apply the method to deformable porous boundaries, e.g. porous
wavemakers, biofilms ...
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Future work: Biofilms

■ Develop an IB model for deformation and detachment in food processing and
wastewater treatment

■ Porous flow within the biofilm is important for nutrient transport

■ Two main differences from IB model considered earlier:
◆ Biofilm is no longer an interface but rather a solid matrix, with a definite

thickness
◆ Biofilm is a non-Newtonian, visco/elasto-plastic material



Duke University 23 March, 2009 - p. 25

Biofilms (cont’d)

Main differences:
■ Immersed boundary parametrization: ~F (s, t) → ~F (~q, t)

■ Brinkman extension to Navier-Stokes equations

ρ (~ut + ~u · ∇~u) = µ∆~u −∇p +
x

B

~FIB(~q, t) δ(~x − ~X(~q, t)) d~q

︸ ︷︷ ︸
not singular

−

µ

K
~u

■ Viscosity is solution-dependent, µ(~u)
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