00000	

Algorithmic advances

Extensions and applications

Closing remarks

Immersed boundary method:

Recent developments in analysis, algorithms and applications

John Stockie

Department of Mathematics Simon Fraser University Burnaby, British Columbia, Canada http://www.math.sfu.ca/~stockie

ICIAM Congress, Beijing

August 10, 2015

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000	0000	0000	00000	0000

Acknowledgments

Many of the results I present are the work of recent PhD students:

Sudeshna Ghosh India

Funding provided by:

Jeffrey Wiens MDA Corp.

Will Ko U. Cincinnati

Bamdad Hosseini PhD, SFU

		Algorithmic advances	Extensions and applications	Closing remarks
00000000000000	0000	0000	00000	0000
What is a	an immersed	boundary?		

Immersed boundary or IB:

... a solid, moving and/or deformable object that is immersed within an incompressible fluid

		Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	00000	0000	00000	0000
Purpose				

The purpose of this talk is ...

- to provide a brief overview of the immersed boundary method, both mathematical formulation and numerial scheme.
- to summarize recent advances (last 10 years) in
 - analysis,
 - algorithms,
 - applications and extensions.
- to highlight several recent results by SFU students.

"The IB method is both a mathematical formulation and a numerical scheme." (Peskin, 2002)

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
0000000000000	0000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

- 8 Recent advances: Algorithmic improvements, parallel computing
- Recent advances: Extensions and applications

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000	000000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

- 3 Recent advances: Algorithmic improvements, parallel computing
- 4 Recent advances: Extensions and applications

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
••••••	00000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

- 3 Recent advances: Algorithmic improvements, parallel computing
- 4 Recent advances: Extensions and applications

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Geometry and assumptions

- Ω : fluid domain, $\mathbf{x} \in \mathbb{R}^2$
- $\begin{array}{ll} \mathsf{F} \colon & \text{immersed boundaries,} \\ & \text{parameterized by } q \in \mathbb{R} \text{ (fiber)} \\ & \text{or } \mathbf{q} \in \mathbb{R}^2 \text{ (region)} \end{array}$

Fundamental principle: Effect of solid structures can be captured by distributing appropriate forces onto the fluid.

Three main assumptions: (for simplicity, easily relaxed)

- Rectangular 2D domain with doubly periodic boundary conditions.
- IBs have zero mass and are permeated by fluid (neutrally buoyant).
- Fluid is incompressible.

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Governing equations

Variables: $\mathbf{u}(\mathbf{x}, t) = \text{velocity}, \quad p(\mathbf{x}, t) = \text{pressure}$ $\mathbf{X}(\mathbf{q}, t) = \text{IB position}, \quad \mathbf{F}(\mathbf{q}, t) = \text{IB force density}$

Parameters: $\rho = \text{density}, \quad \mu = \text{viscosity}$

Incompressible Navier-Stokes equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \mu \nabla^2 \mathbf{u} - \nabla \rho + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

IB elastic force (IB \rightarrow fluid):

$$\mathbf{f}(\mathbf{x},t) = \int_{\Gamma} \mathbf{F}(\mathbf{q},t) \, \delta(\mathbf{x} - \mathbf{X}(\mathbf{q},t)) \, d\mathbf{q}$$
 "force spreading"

IB evolution equation (fluid \rightarrow IB): no-slip condition

$$rac{\partial {f X}}{\partial t} = \int_\Omega {f u}({f x},t) \; \delta({f x}-{f X}({f q},t)) \, d{f x}$$
 "velocity interpolation"

Fluid-structure interaction is mediated by delta functions!

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Governing equations

Variables: $\mathbf{u}(\mathbf{x}, t) = \text{velocity}, \quad p(\mathbf{x}, t) = \text{pressure}$ $\mathbf{X}(\mathbf{q}, t) = \text{IB position}, \quad \mathbf{F}(\mathbf{q}, t) = \text{IB force density}$

Parameters: $\rho = \text{density}, \quad \mu = \text{viscosity}$

Incompressible Navier-Stokes equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \mu \nabla^2 \mathbf{u} - \nabla \rho + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

IB elastic force (IB \rightarrow fluid):

$$\mathbf{f}(\mathbf{x},t) = \int_{\Gamma} \mathbf{F}(\mathbf{q},t) \, \delta(\mathbf{x} - \mathbf{X}(\mathbf{q},t)) \, d\mathbf{q}$$
 "force spreading"

 $\mathsf{IB} \text{ evolution equation (fluid} \to \mathsf{IB}): \quad \mathsf{no-slip \ condition}$

$$\frac{\partial \mathbf{X}}{\partial t} = \int_{\Omega} \mathbf{u}(\mathbf{x}, t) \ \delta(\mathbf{x} - \mathbf{X}(\mathbf{q}, t)) \ d\mathbf{x}$$
 "velocity interpolation"

Fluid-structure interaction is mediated by delta functions!

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	00000	0000	00000	0000

Governing equations

Variables: $\mathbf{u}(\mathbf{x}, t) = \text{velocity}, \quad p(\mathbf{x}, t) = \text{pressure}$ $\mathbf{X}(\mathbf{q}, t) = \text{IB position}, \quad \mathbf{F}(\mathbf{q}, t) = \text{IB force density}$

Parameters: $\rho = \text{density}, \quad \mu = \text{viscosity}$

Incompressible Navier-Stokes equations:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \mu \nabla^2 \mathbf{u} - \nabla \rho + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

IB elastic force (IB \rightarrow fluid):

$$\mathbf{f}(\mathbf{x},t) = \int_{\Gamma} \mathbf{F}(\mathbf{q},t) \, \delta(\mathbf{x} - \mathbf{X}(\mathbf{q},t)) \, d\mathbf{q}$$
 "force spreading"

IB evolution equation (fluid \rightarrow IB): no-slip condition

$$\frac{\partial \mathbf{X}}{\partial t} = \int_{\Omega} \mathbf{u}(\mathbf{x}, t) \ \delta(\mathbf{x} - \mathbf{X}(\mathbf{q}, t)) \ d\mathbf{x} \qquad \text{``velocity interpolation''}$$

Fluid-structure interaction is mediated by delta functions!

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
0000000000	000000	0000	00000	0000
Elastic	forces			

The heart of any IB model is the elastic force density F(q, t):

- IB configuration X(q, t) determines the stressed elastic state.
- Formulate in terms of an elastic energy functional *E*[**X**].

• Principle of virtual work:
$$\mathbf{F} = -\frac{\wp E}{\wp \mathbf{X}}$$
 (Fréchet derivative).

Simple case: Elastic fiber with tension T(q, t), tangent vector $\tau(q)$:

$$\mathbf{F} = rac{\partial}{\partial q}(T oldsymbol{ au}) \hspace{0.5cm} ext{with} \hspace{0.5cm} oldsymbol{ au} = rac{\mathbf{X}_q}{|\mathbf{X}_q|}$$

Even simpler: Hookean springs, zero rest-length, $T(q) = \sigma |X_q|$:

$$\mathbf{F} = rac{\partial^2 \mathbf{X}}{\partial q^2}$$
 (linear)

Source: Guy & Hartenstine

Overview		Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000
Other typ	pes of forces			

- Resistance to bending
- Resistance to torque in flexible rods
- "Tether" points for solid boundaries or other objects with an imposed location or motion
- Active contractile forces (e.g., muscles)
- Attraction/repulsion due to adhesion, contact or lubrication
- Electrochemical forces in ionic solutions
- Thermal fluctuations in microscale systems

	· · · ·			
000000000000000000000000000000000000000	0000	0000	00000	0000
Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks

Alternate formulation: Jump conditions

• Solve Navier-Stokes equations away from Γ (where $\mathbf{f} = 0$):

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = \mu \nabla^2 \mathbf{u} - \nabla p \qquad \text{on } \Omega \setminus \Gamma$$
$$\nabla \cdot \mathbf{u} = 0$$

 Eliminate delta functions and singular force term in favour of jumps across Γ:

$$\llbracket \mathbf{u} \rrbracket = \mathbf{0}$$
$$\llbracket \mathbf{p} \rrbracket = \frac{\mathbf{F} \cdot \mathbf{n}}{|\mathbf{X}_q|}$$
$$\mu \mathbf{\tau} \cdot \llbracket \frac{\partial \mathbf{u}}{\partial \mathbf{n}} \rrbracket = -\frac{\mathbf{F} \cdot \mathbf{\tau}}{|\mathbf{X}_q|}$$

References: Peskin & Printz (1993), Lai & Li (2001)

This "jump formulation" is the basis for the Immersed Interface Method (LeVeque & Li, 1994), (Li & Ito, 2006) MS-{We,Th}-*-26

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Dual philosophy

"Original" IB method:

- Ideally suited to biofluid problems with dynamically deforming structures.
- External boundaries are not so important commonly assume an infinite or periodic fluid domain.
- When rigid boundaries or objects are present, treat them as "tethered" IBs with a very large elastic stiffness.

"Direct (or discrete) forcing" IB method: (Mittal & laccarino, 2005)

- Originally developed for IBs that are either stationary or have a prescribed motion, **U**_b.
- Idea: apply a fictitious body force whose sole purpose is to bring the velocity to **U**_b.
- Much more common in the engineering literature.

Our focus is on the first class of problems ...

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Dual philosophy

"Original" IB method:

- Ideally suited to biofluid problems with dynamically deforming structures.
- External boundaries are not so important commonly assume an infinite or periodic fluid domain.
- When rigid boundaries or objects are present, treat them as "tethered" IBs with a very large elastic stiffness.

"Direct (or discrete) forcing" IB method: (Mittal & laccarino, 2005)

- Originally developed for IBs that are either stationary or have a prescribed motion, **U**_b.
- Idea: apply a fictitious body force whose sole purpose is to bring the velocity to **U**_b.
- Much more common in the engineering literature.

Our focus is on the first class of problems ...

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000

Dual philosophy

"Original" IB method:

- Ideally suited to biofluid problems with dynamically deforming structures.
- External boundaries are not so important commonly assume an infinite or periodic fluid domain.
- When rigid boundaries or objects are present, treat them as "tethered" IBs with a very large elastic stiffness.

"Direct (or discrete) forcing" IB method: (Mittal & laccarino, 2005)

- Originally developed for IBs that are either stationary or have a prescribed motion, **U**_b.
- Idea: apply a fictitious body force whose sole purpose is to bring the velocity to **U**_b.
- Much more common in the engineering literature.

Our focus is on the first class of problems ...

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000	0000000	0000	00000	0000
Outline	e			

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering
- 2 Recent advances: Analysis of IB problems
- 3 Recent advances: Algorithmic improvements, parallel computing
- 4 Recent advances: Extensions and applications

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	00000	0000	00000	0000
Spatial d	liscretization			

- Fluid domain Ω is divided into a rectangular grid x_{i,j} = (ih, jh) with cells of size h × h.
- Immersed boundary Γ is discretized at Lagrangian points X_ℓ(t) that move relative to the underlying fluid grid.

Overview	Analytical advances	Algorithmic advances	Extensions and applications
00000000000	000000	0000	00000

Algorithm outline

Replace delta function by a smooth regularization $\delta_h(\mathbf{x}) = d_h(x) d_h(y)$

e.g.,
$$d_h(x) = \frac{1}{4h} \left(1 + \cos\left(\frac{\pi x}{2h}\right) \right)$$

Then, within each time step:

- Compute discrete "spring" forces, Fⁿ_l
- Approximate force spreading integral:

$$\mathbf{f}_{i,j}^n = \sum_{\ell} \mathbf{F}_{\ell}^n \, \delta_h(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}^n) \cdot h_b$$

- Step velocity/pressure using your "favourite" fluid solver $\rightarrow \mathbf{u}_{i,j}^{n+1}, p_{i,j}^{n+1}$
- Update IB configuration:

$$\mathbf{X}_{\ell}^{n+1} = \mathbf{X}_{\ell}^{n} + \Delta t \sum_{i,j} \mathbf{u}_{i,j}^{n+1} \, \delta_h(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}^{n}) \cdot h^2$$

Overview		Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	000000	0000	00000	0000
Alastit	nm qutling			

Algorithm outline

Replace delta function by a smooth regularization $\delta_h(\mathbf{x}) = d_h(x) d_h(y)$

e.g.,
$$d_h(x) = \frac{1}{4h} \left(1 + \cos\left(\frac{\pi x}{2h}\right) \right)$$

Then, within each time step:

- Compute discrete "spring" forces, \mathbf{F}_{ℓ}^{n}
- Approximate force spreading integral:

$$\mathbf{f}_{i,j}^n = \sum_{\ell} \mathbf{F}_{\ell}^n \, \delta_h(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}^n) \cdot h_b$$

- Step velocity/pressure using your "favourite" fluid solver $\rightarrow \mathbf{u}_{i,j}^{n+1}, p_{i,j}^{n+1}$
- Update IB configuration:

$$\mathbf{X}_{\ell}^{n+1} = \mathbf{X}_{\ell}^{n} + \Delta t \sum_{i,j} \mathbf{u}_{i,j}^{n+1} \, \delta_h(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}^{n}) \cdot h^2$$

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
Pros and	cons	0000	00000	0000

Advantages:

- Flexible: handles complex IBs with nearly arbitrary elastic forcing.
- Simple: explicit algorithm on a fixed Cartesian mesh is very easy to implement.
- Robust: relatively insensitive to changes in geometry, IB forcing, fluid properties, etc.

Disadvantages:

- Numerical stiffness: can be severe owing to large elastic forces.
- Nonlinearity and non-locality: make implementing an implicit solver extremely difficult.
- First-order: accuracy drops near the IB because interpolated fluid velocity field (^{∂X}/_{∂t}) is not div-free. (Newren, 2007 thesis)

Overview		Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000
Pros and	cons			

Advantages:

- Flexible: handles complex IBs with nearly arbitrary elastic forcing.
- Simple: explicit algorithm on a fixed Cartesian mesh is very easy to implement.
- Robust: relatively insensitive to changes in geometry, IB forcing, fluid properties, etc.

Disadvantages:

- Numerical stiffness: can be severe owing to large elastic forces.
- Nonlinearity and non-locality: make implementing an implicit solver extremely difficult.
- First-order: accuracy drops near the IB because interpolated fluid velocity field (^{∂X}/_{∂t}) is not div-free. (Newren, 2007 thesis)

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000000000	0000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

3 Recent advances: Algorithmic improvements, parallel computing

4 Recent advances: Extensions and applications

Applications in biology and engineering

Biology:

- blood in heart and arteries: Peskin-McQueen, Griffith, Fogelson, Glowinski
- cilia and flagella: Fauci, Dillon, Kim-Lim-Peskin
- cell growth and locomotion: Bottino, Dillon, Rejniak, Strychalski–Guy, Vanderlei–Feng–Keshet
- swimming organisms: Fauci, Miller, Bhalla, Lushi-Peskin, Guy, Khatri
- vesicles and membrane transport: Huang, Kim-Lai
- viscoelastic biofluids: Chrispell, Strychalski-Guy, Devendran
- cochlear dynamics: Peskin-LeVeque-Lax, Beyer, Givelberg, Edom, Ko-JS
- biofilms: Klapper, Dillon-Fauci, Bortz et al., Sudarsan-Ghosh-JS
- aerodynamics and flying: Miller, Zhao

Engineering:

- particle suspensions: Fauci, Pan–Glowinski, Wang–Layton, Breugem, Ghosh–JS
- parachutes and flags: Kim-Peskin, Zhu
- foams: Kim-Lai-Peskin
- electrohydrodynamics: Bhalla et al.
- fishing nets: Takagi et al.

Speakers in this and related sessions: Invited Tu 11:10 MS-{We,Th}-*-26 MS-We-D-55

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing r
00000000000	000000	0000	00000	0000
<u> </u>				

Seminal reference

Acta Numerica (2002), pp. 479–517 DOI: 10.1017/S0962492902000077 © Cambridge University Press, 2002 Printed in the United Kingdom

The immersed boundary method

Charles S. Peskin

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY10012-1185, USA E-mail: peskin@cims.nyu.edu

Peskin has posted lecture notes and code at

http://www.math.nyu.edu/faculty/peskin/ib_lecture_notes

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000	000000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

- 3 Recent advances: Algorithmic improvements, parallel computing
- 4 Recent advances: Extensions and applications

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	000	0000	00000	0000
Analytica	al results			

- Rigorous derivation of IB formulation from first principles: Peskin (2002, 2011 notes)
- Analysis of numerical stiffness, stability and time-step restrictions: Gong, Huang & Lu (2008), Hou & Shi (2008), Boffi, Gastaldi & Heltai (2007)
- Proof of pointwise and L^p convergence in u and p for Stokes flow with stationary IB: Mori & Liu (2008–2014) (beautiful!)
- Stability analysis for internally-forced spherical membranes: Ko & JS (2015)
- Regularized delta functions: Bringley (2008 thesis), Liu & Mori (2012), Hosseini et al. (2015), Bao et al. (2015), ...

Extensions and application

Parametrically-forced oscillations in spherical membranes

Ko & JS, SIAM J. Appl. Math., submitted, arXiv:1411.1345

- Extends earlier work on parametric resonance for internally-forced 2D membranes by Cortez et al. (2004).
- Aims also to explain instabilities in 3D computations of Maitre & Cottet (2006).
- Take linear elastic membrane with periodic forcing:

$$\mathbf{F}(\mathbf{X},t) = \sigma(1+2\tau\sin(\omega t))\Delta_{S}\mathbf{X}$$

• Look for a Floquet series solution in vector spherical harmonics:

$$\mathbf{u}(r,\theta,\phi,t) = e^{\gamma t} \sum_{n=-\infty}^{\infty} e^{int} \left(u_n^r(r) \, \mathbf{Y}_{m,k} + u_n^{\Psi}(r) \, \mathbf{\Psi}_{m,k} + u_n^{\Phi}(r) \, \mathbf{\Phi}_{m,k} \right)$$

and similarly for p and X.

000000000000000		0000	00000	0000
C	1.			

- Stability results
 - Finding neutrally stable solutions (Re $\gamma = 0$) reduces to a large eigenvalue problem.
 - Plotting stability regions in parameter space clearly identifies unstable modes.
 - IB simulations verify that instabilities occur for the same parameters.

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000000	00000	0000	00000	0000
Outline				

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

3 Recent advances: Algorithmic improvements, parallel computing

4 Recent advances: Extensions and applications

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000
		· · · · · · · · · · · · · · · · · · ·		

Algorithm improvements and extensions

- Adaptive mesh refinement yields practical second-order accuracy: Griffith et al. (2007)
- Various approaches to reducing volume conservation errors: Newren (2007), Griffith (2012), Li et al. (2012)
- Implicit treatment of the IB evolution equation: Mori & Peskin (2008), Newren et al. (2008), Hou & Shi (2008), Guy & Philip (2012) – multigrid
- Lattice-Boltzmann fluid solver: Crowl & Fogelson (2010), Hao & Zhu (2010)
- Finite element formulation: Boffi, Gastaldi & Heltai (2004–), Griffith & Luo (2014)
- IB benchmark problems: Roy, Heltai & Costanzo (2015)
- Other closely related methods:
 - regularized Stokeslets: Cortez, Olson, Huang
 - embedded boundary method: Stein, Guy & Thomases (2015)
 - . . .

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000000000000000000000000	0000	0000	00000	0000
Parallel implementations				

- IBAMR: Griffith et al. (2009) + very active user group
- Titanium: Givelberg & Yelick (2006)
- Direct-forcing IB method on GPUs: Layton et al. (2011)
- Pseudo-compressible fluid solver for distributed-memory clusters: Wiens & JS (2015)

Wiens & JS, J. Comput. Phys., 281:917-941, 2015

- Pseudo-compressibility method (Guermond & Minev, 2011): Navier-Stokes solve reduces to tridiagonal linear systems.
- Use parallel domain decomposition, exploit rectangular geometry, communicate IB data between subdomains via ghost cells.
- Extensively tested on a variety of "standard" 2D/3D problems.
- Numerical simulations demonstrate exceptional parallel scaling and near optimal efficiency ($E_P = \frac{T_1}{PT_P}$ on P processors)

... it's possible to simulate suspensions of 100's to 1000's of objects!

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
0000000000	0000000	0000	00000	0000
Outlin	e			

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

3 Recent advances: Algorithmic improvements, parallel computing

4 Recent advances: Extensions and applications

Overview 0000000000000	Analytical advances	Algorithmic advances	Extensions and applications •0000	Closing remarks 0000
Extensior	ns to the IB f	ormulation		

The IB formuation has been extended to handle much more than just the simple massless elastic membrane problem:

- Massive boundaries using penalty IB method (Kim & Peskin, 2007) or D'Alembert force (Mori & Peskin, 2008)
- Porous boundaries: Kim & Peskin (2006), JS (2009)
- Generalized IB method for torque in flexible rods: Lim et al. (2008)
- Membrane transport and osmosis: Atzberger & Peskin (2006), Huang et al. (2009), Gong, Gong & Huang (2014)
- Stochastic IB method: Atzberger, Kramer & Peskin (2007, 2008)
- Variable density and viscosity fluids: Fai et al. (2013, 2014)
- Arbitary linearly elastic materials: Mori & Peskin (2009)

Ghosh & JS, Commun. Comput. Phys., 18(2):380-416, 2015

- We aim to perform IB simulations that reproduce observed DKT dynamics and wall-particle interactions.
- Added mass incorporated using a D'Alembert forcing approach.

• Ongoing work: extension to irregular, deformable particles.

Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
00000000000000000	0000	0000	00000	0000

The "active" cochlea

BM cross-section

- The cochlea or inner ear is capable of amplifying very weak signals and fine-tuning over an enormous frequency range.
- The basilar membrane (BM) is immersed in fluid and has been well-studied with IB methods. (LeVeque, Peskin & Lax, 1985, 1988)
- Outer hair cells (OHC) oscillate in response to sound, and in turn modulate the BM elastic stiffness. (Mammano & Ashmore, 1993)

Cochlea unrolled

Ko & JS, SIAM J. Appl. Math, 75(3):1065-1089, 2015

- We hypothesize that parametric resonance, driven by OHC oscillations, may contribute to cochlear function.
- Using a simple 2D BM geometry (below) we show that:
 - a Floquet stability analysis yields resonant modes of oscillation within the parameter range relevant to human hearing.
 - numerical simulations produce travelling wave solutions that are similar to those observed in passive BM models.

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000	0000000	0000	00000	0000
Outlin	e			

- Mathematical formulation
- Numerical scheme
- Applications in biology and engineering

2 Recent advances: Analysis of IB problems

- 3 Recent advances: Algorithmic improvements, parallel computing
- 4 Recent advances: Extensions and applications

A flurry of recent activity

There has been a very rapid growth in recent study of IB problems:

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000000000	00000	0000	00000	0000
Progress	on many f	ronts		

Most of the research challenges identified in Peskin's *Acta Numerica* paper in 2002 have been met:

- implicit and semi-implicit versions of the IB method, and associated stability analysis
- adaptive mesh refinement
- second order accuracy for "thick" elastic shells, but still not for thin membranes
- several approaches for obtaining better volume conservation
- parallel implementations
- variable viscosity and anisotropic viscoelastic materials
- convergence proof for the IB method
- turbulent flows (handled in the direct-forcing framework)

	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks
000000000000	000000	0000	00000	0000
Opport	inities			

- Extend Mori's convergence proof to Navier–Stokes with a moving boundary.
- Fluid structure interaction coupled with other physical processes
- Multiscale numerical approaches

- Other algorithmic improvements
- Many more applications in biology, engineering, ...

		Algorithmic advances	Extensions and applications	Closing remarks
00000000000000000	0000	0000	00000	0000

Thank-you!

$http://www.math.sfu.ca/{\sim}stockie$

000000000000000		0000	00000	0000
Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks

References I

L. J. Fauci and R. Dillon.
Biofluidmechanics of reproduction.
Annual Review of Fluid Mechanics, 38:371–394, 2006.

S. Ghosh and J. M. Stockie. Numerical simulations of particle sedimentation using the immersed boundary method. Communications in Computational Physics, 18(2):380–416, 2015.

B. Hosseini, N. Nigam, and J. M. Stockie. On regularizations of the delta distribution. *Journal of Computational Physics*, Jan. 2015. Under revision, arXiv:1412.4139 [math.NA].

W. Ko and J. M. Stockie. An immersed boundary model of the cochlea with parametric forcing. SIAM Journal on Applied Mathematics, 75(3):1065–1089, 2015.

▶ W. Ko and J. M. Stockie.

Parametric resonance in spherical immersed elastic shells. *SIAM Journal on Applied Mathematics*, Apr. 2015. Submitted, arXiv:1411.1345 [physics.flu-dyn].

M.-C. Lai and Z. Li.

A remark on jump conditions for the three-dimensional Navier-Stokes equations involving an immersed moving membrane.

Applied Mathematics Letters, 14:149–154, 2001.

Reference	es II			
0000000000000	0000	0000	00000	0000
Overview	Analytical advances	Algorithmic advances	Extensions and applications	Closing remarks

R. J. LeVeque and Z. Li.

The immersed interface method for elliptic equations with discontinuous coefficients and singular sources.

SIAM Journal on Numerical Analysis, 31(3):1019-1044, 1994.

Z. Li and K. Ito.

The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, volume 33 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 2006.

R. Mittal and G. laccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–261, 2005.

 C. S. Peskin. The immersed boundary method. Acta Numerica, 11:1–39, 2002.

C. S. Peskin and B. F. Printz.

Improved volume conservation in the computation of flows with immersed elastic boundaries. *Journal of Computational Physics*, 105:33–46, 1993.

S. Roy, L. Heltai, and F. Costanzo.

Benchmarking the immersed finite element method for fluid-structure interaction problems. *Computers and Mathematics with Applications*, 69(10):1167–1188, 2015.

		Algorithmic advances	Extensions and applications	Closing remarks
00000000000000000	00000	0000	00000	0000
Referen	ces III			

J. K. Wiens and J. M. Stockie.

An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. *Journal of Computational Physics*, 281:917–941, 2015.

J. K. Wiens and J. M. Stockie.

Simulating flexible fiber suspensions using a scalable immersed boundary algorithm. *Computer Methods in Applied Mechanics and Engineering*, 290:1–18, 2015.