Simulating Transport Processes in PEM Fuel Cells

John Stockie

http://www.math.sfu.ca/~stockie/

Department of Mathematics, Simon Fraser University

Burnaby, British Columbia, Canada

June 7, 2005

Acknowledgments

Background: Fuel cells

Catalyst Layer Model

Electrode Model

Joint work with:

BALLARD

- Keith Promislow (Michigan State University)
 Akeel Shah (Simon Fraser University)
- Brian Wetton (University of British Columbia)

Funding was provided by:

Background: Fuel cells

What is a PEM fuel cell?

Converts chemical energy of fuel (hydrogen and oxygen) directly into electricity

Governing reaction is "reverse electrolysis":

Anode (-): $2H_2 \xrightarrow{Pt} 4H^+ + 4e^-$ Cathode (+): $O_2 + 4H^+ + 4e^- \xrightarrow{Pt} 2H_2O$

- The proton exchange membrane (PEM) lies at the "heart" of the fuell cell:
 - consists of a thin (50–200 µm) polymer sheet Nafion[®]
 - permits only protons and water to pass through
 - prevents reactants combining (potentially explosively) in gaseous form
- No pollution, produces only water as a by-product
- Efficiency $\approx 50\%$: much higher than other energy sources

Background: Fuel cells ● What is a PEM fuel cell?

- A "multi-physics" problem
- Fuel cell modelling
- Previous work

Our approach

Catalyst Layer Model

Electrode Model

What is a PEM fuel cell? (2)

- A "multi-physics" problem
- Fuel cell modelling
- Previous work
- Our approach

Catalyst Layer Model

Electrode Model

Source: Ballard Power Systems

A "multi-physics" problem

Fuel cells are incredibly complicated devices, involving:

- transport of mass, momentum and heat
- multiphase (gas / liquid) flow in porous media
- phase change (condensation / evaporation)
- conductive charge transport (electrons)
- membranes transport (protons and water)
- catalyzed reaction chemistry
- interfacial phenomena
- "nonstandard" materials (graphite, polymer membranes, Platinum, Teflon, etc.) with composite, anisotropic, multiscale structure

Background: Fuel cells ● What is a PEM fuel cell?

- A "multi-physics" problem
- Fuel cell modelling
- Previous work
- Our approach

Catalyst Layer Model

Electrode Model

Fuel cell modelling

Background: Fuel cells

- What is a PEM fuel cell?
- A "multi-physics" problem
- Fuel cell modelling
- Previous work
- Our approach

Catalyst Layer Model

Electrode Model

This talk is a survey of modelling and computational issues arising in two components of the PEM fuel cell:

- 1. transport and reaction in **catalyst** layers
- 2. multiphase transport in porous electrodes

Previous work

Background: Fuel cells

- What is a PEM fuel cell?
- A "multi-physics" problem
- Fuel cell modelling
- Previous workOur approach
- Catalyst Layer Model

Electrode Model

The vast majority of previous work on simulating fuel cells:

- uses "standard" fluid solvers (often commercial CFD codes)
 Sivertsen & Djilali (2004), Hu et al. (2004), Femlab
- 2D/3D geometry, restricted to very small regions of the cell
- makes major, and sometimes questionable, simplifying assumptions (isothermal, multiphase "mist")
 Um & Wang (2004), Van Zee et al. (2001)
- no in-depth analysis of the underlying equations, few analytical solutions
- little attention paid to fast, robust numerical solvers, that are tailored specifically to fuel cells
- unsuitable for stack level simulations

Our approach

Background: Fuel cells

- What is a PEM fuel cell?
- A "multi-physics" problem
- Fuel cell modelling
- Previous work
- Our approach

Catalyst Layer Model

Electrode Model

As mathematicians and numerical analysts in this field, we're breaking new ground by focusing on:

- deriving simpler models which take advantage of scale separation and dimensional reduction
- using analytical solutions to justify simplifications and validate results
- developing fast and robust solvers for component parts, and then coupling them together in sensible ways

Our eventual aim is a comprehensive and efficient stack-level model

[See papers at http://www.math.ubc.ca/~wetton/mmsc]

Catalyst Layer Model

Limiting currents

Background: Fuel cells

Catalyst Layer Model● Limiting currents

- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

One indicator of PEMFC performance is the polarization curve – a plot of voltage (V) vs. current density (I)

Source: Williams et al. (2004)

Limiting currents

Background: Fuel cells

Catalyst Layer Model● Limiting currents

- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

One indicator of PEMFC performance is the polarization curve – a plot of voltage (V) vs. current density (I)

Source: Williams et al. (2004)

- Performance is improved by pushing the "knee" outwards
- Limiting current is attributed to a variety of sources in electrodes and catalyst – Cutlip (1975), Springer et al. (1993), Kulikovsky (2004)

Agglomerate structure:

Nafion (ionomer), Carbon, and Platinum

TEM (18,400 ×)

Source: von Spakovsky (2003)

Background: Fuel cells

Cata	lyst	Layer	N	lod	lel
------	------	-------	---	-----	-----

• Limiting currents

Catalyst layer structure

- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Agglomerate structure:

Nafion (ionomer), Carbon, and Platinum

Idealized view

Background: Fuel cells

Catalyst	Layer I	Model
----------	---------	-------

• Limiting currents

Catalyst layer structure

- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Background: Fuel cells

Catalyst Layer Model

Limiting currents

Catalyst layer structure

- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Agglomerate structure:

Nafion (ionomer), Carbon, and Platinum

Reaction occurs only at locations where the three meet (a materials science challenge!)

Idealized view

Background: Fuel cells

Catalyst Layer Model

Limiting currents

- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Agglomerate structure:

Nafion (ionomer), Carbon, and Platinum

Reaction occurs only at locations where the three meet (a materials science challenge!)

Possible limiting mechanisms in the cathode catalyst layer:

- diffusion in membrane phase
- diffusion in macro-pores
- X diffusion in nano-pores (not shown)
- **X** water flooding the catalyst

Idealized view

Model assumptions

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Mechanism: O_2 diffuses through gas pores, dissolves in Nafion phase, and diffuses to active catalyst sites

Primary assumption: The reaction is locally self-limiting due to O_2 adsorption kinetics

- No electron transport limitations or membrane potential losses
- No convective gas transport (Fickian diffusion only)
- Membrane phase water content is constant
- All Pt surface area is available to react
- Steady state

Geometry

A simplified, rectangular geometry:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions

Geometry

- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work
- Electrode Model

- y is the distance along a pore ($y \sim 10^{-5} m$)
- ξ is "burial depth" of reaction sites ($\xi \sim 10^{-8} m$)
- **Scale separation** with $\xi \ll y \implies a 1+1D \mod del$

Governing equations

The primary unknowns are:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry

• Governing equations

- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

 $C_{o,p}(y)$ pore O_2 concentration (mol/m^3)

 $C_{o,a}(y, \xi)$ dissolved O_2 concentration in agglomerate (mol/m^3) ($\mathcal{H} =$ Henry's constant)

> cathode overpotential (V) membrane phase electric potential (V), $U - \phi(y) = E_o - \eta(y)$

(potentials taken independent of ξ since $\xi \ll y$)

 $i(y,\xi) \ I_{avg}(y)$

 $\eta(y)$

 $\phi(y)$

 $\begin{array}{ll} \text{(volumetric) current density } (A/m^3) \\ \text{(y)} & \text{average current density } (A/m^2), \\ I_{avg}(y) = \int_0^{\varepsilon_a} i(y,\xi) \, d\xi \end{array}$

Governing equations (2)

Three nonlinear DE's in $C_{o,p}(y)$, $C_{o,a}(y,\xi)$ and $\eta(y)$:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry

• Governing equations

- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

$$-\frac{\partial}{\partial\xi} \left(\mathcal{H}D_m \frac{\partial C_{o,a}}{\partial\xi} \right) = -\frac{i}{4F} \qquad (O_2 \text{ in agglomerate})$$
$$-\varepsilon_p \frac{d}{dy} \left(D \frac{dC_{o,p}}{dy} \right) = -\frac{I_{avg}}{4F} \qquad (O_2 \text{ in pore})$$

$$-\frac{\varepsilon_a a F}{RT} \frac{d}{dy} \left(D_+ C_+ \frac{d\phi}{dy} \right) = -\frac{I_{avg}}{F}$$

(electric potential)

Governing equations (2)

Three nonlinear DE's in $C_{o,p}(y)$, $C_{o,a}(y,\xi)$ and $\eta(y)$:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry

• Governing equations

- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

$$-\frac{\partial}{\partial\xi} \left(\mathcal{H}D_m \frac{\partial C_{o,a}}{\partial\xi} \right) = -\frac{i}{4F} \qquad (O_2 \text{ in agglomerate} \\ -\varepsilon_p \frac{d}{dy} \left(D \frac{dC_{o,p}}{dy} \right) = -\frac{I_{avg}}{4F} \qquad (O_2 \text{ in pore}) \\ -\frac{\varepsilon_a aF}{RT} \frac{d}{dy} \left(D_+ C_+ \frac{d\phi}{dy} \right) = -\frac{I_{avg}}{F} \qquad \text{(electric potential)}$$

Using relationships for $\phi(y)$ and $I_{avg}(y)$: $\phi(y) = \eta(y) + U - E_o$

$$I_{avg}(y) = \int_0^{\varepsilon_a} i(y,\xi) \, d\xi = \dots = -4F\mathcal{H}D_m \frac{\partial C_{o,a}(y,0)}{\partial \xi}$$

the last two equations reduce to

$$\frac{d^2 C_{o,p}}{dy^2} = -\sigma_1 \frac{\partial C_{o,a}(y,0)}{\partial \xi} \quad \text{and} \quad \frac{d^2 \eta}{dy^2} = -\sigma_2 \frac{\partial C_{o,a}(y,0)}{\partial \xi}$$

Adsorption kinetics

Local current density i is determined by reaction kinetics ...

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Let $\theta(x,t)$ denote the local fraction of Pt surface covered by O_2 :

$$\mathcal{C}_{Pt} \frac{d\theta}{dt} = \underbrace{k_{+}\mathcal{H}C_{o,a}(1-\theta)}_{\text{adsorption}} - \underbrace{k_{-}\mathcal{C}_{Pt}\theta}_{\text{desorption}} - \underbrace{\frac{i}{4F}}_{\text{reaction}}$$

Set $\frac{d\theta}{dt} = 0$ (steady state) and $i = r_o \theta e^{-\alpha_c \eta}$ (Butler-Volmer):

$$\implies i = \frac{k_{+}\mathcal{H}C_{o,a}r_{o}e^{-\alpha_{c}\eta}}{k_{+}\mathcal{H}C_{o,a} + k_{-}\mathcal{C}_{Pt} + (r_{o}/4F)e^{-\alpha_{c}\eta}} \qquad (*)$$

So the limiting current density is $i_{lim} = \lim_{\eta \to -\infty} i = 4Fk_+ \mathcal{H}C_{o,a}$

Adsorption kinetics

Local current density i is determined by reaction kinetics ...

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- Summary
- Future work

Electrode Model

Let $\theta(x,t)$ denote the local fraction of Pt surface covered by O_2 :

$$\mathcal{C}_{Pt} \frac{d\theta}{dt} = \underbrace{k_{+}\mathcal{H}C_{o,a}(1-\theta)}_{\text{adsorption}} - \underbrace{k_{-}\mathcal{C}_{Pt}\theta}_{\text{desorption}} - \underbrace{\frac{i}{4F}}_{\text{reaction}}$$

Set $\frac{d\theta}{dt} = 0$ (steady state) and $i = r_o \theta e^{-\alpha_c \eta}$ (Butler-Volmer):

$$\implies i = \frac{k_{+}\mathcal{H}C_{o,a}r_{o}e^{-\alpha_{c}\eta}}{k_{+}\mathcal{H}C_{o,a} + k_{-}\mathcal{C}_{Pt} + (r_{o}/4F)e^{-\alpha_{c}\eta}} \qquad (*)$$

So the limiting current density is $i_{lim} = \lim_{\eta \to -\infty} i = 4Fk_+ \mathcal{H}C_{o,a}$

Note: With Butler-Volmer alone, $i_{lim} = \infty$

Solution algorithm

1. Given a target current density I^* , guess the cell voltage U.

2. Iterate on U:

(a) Solve the following 1D BVP's $C_{o,p}(y)$ and $\eta(y)$:

$$\frac{d^2 C_{o,p}}{dy^2} = -\sigma_1 \frac{\partial C_{o,a}(y,0)}{\partial \xi} \quad \text{and} \quad \frac{d^2 \eta}{dy^2} = -\sigma_2 \frac{\partial C_{o,a}(y,0)}{\partial \xi}$$

(b) Determine the agglomerate concentration C_{o,a}(y, ξ):
■ Solve a 1D BVP in ξ at each y-location:

$$\frac{\partial^2 C_{o,a}}{\partial \xi^2} = \frac{i}{4F\mathcal{H}D_m}$$

• Use the current iterate for $C_{o,p}(y)$ as the boundary condition for $C_{o,a}(y,0)$.

(c) Update i and I_{avg} .

(d) If $|I_{avg} - I^*| > TOL$, then update U & return to step 2a.

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics

Solution algorithm

- Results
- Summary
- Future work

Electrode Model

Results: Base case

Computation time: $20 \ s$ for a 20×20 grid

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm

Results

- Summary
- Future work

Electrode Model

U = 0.62 V

Results: Dry membrane

Reduce membrane diffusivity D_m by a factor of 10:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm

Results

- Summary
- Future work

Electrode Model

U = 0.62 V

U = 0.42 V

Results: Narrow pore

Reduce pore size ε_p by a factor of 2:

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm

Results

- Summary
- Future work

Electrode Model

U = 0.62 V

Summary

Background: Fuel cells

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results

Summary

Future work

Electrode Model

- Developed a 1+1D two-scale model for the cathode catalyst layer, incorporating a self-limiting reaction rate
- Dead core region observed under a variety of operating conditions
- Study catalyst utilization and optimize microstructural properties

Catalyst Layer Model

- Limiting currents
- Catalyst layer structure
- Model assumptions
- Geometry
- Governing equations
- Adsorption kinetics
- Solution algorithm
- Results
- SummaryFuture work
- Electrode Model

- Investigate other limiting mechanisms:
 - liquid water
 - diffusion in nanopores (multiscale pore structure)
- Develop a faster iterative algorithm
- Incorporate a detailed catalyst model into our unit cell model for use in stack simulations
- Include more aspects of microstructure into a continuum (macro-scale) model > multiscale methods

Electrode Model

Gas diffusion electrode

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrodeWater management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

The gas diffusion electrode (GDE) consists of carbon fibre paper, sandwiched between catalyst / PEM and flow channels:

- anisotropic, fibrous porous medium
- approximately 200–300 μm thick
- treated with Teflon to improve water transport

Source: C. Y. Wang (2003)

Water management

Background: Fuel cells

Catalyst Layer Model

Electrode Model

Gas diffusion electrode

• Water management

- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

Water management is a key and complex issue, with direct impact on performance:

- membrane protonic conductivity is a strong function of water content
- liquid water in the flow channels or porous electrodes hinders reactant transport
- high temperature prevents water from condensing BUT damages certain components (e.g., PEM)
- "electro-osmotic drag": water is dragged along with protons, from anode to cathode
- both inlet gas streams are humidified
- Teflon is applied in electrode and catalyst to improve wetting behaviour

Geometry

Background: Fuel cells

Catalyst Layer Model

Electrode Model

Gas diffusion electrode

Water management

Geometry

- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

2) Down-the-channel

graphite plate

anode GDE

PEM

cathode GDE

graphite plate

W

 $/H_{2}$

 O_2

́н.

 O_2

catalyst

Detailed local geometry for flow channel optimization Averaged cross-channel, ideal for stack simulations (scale separation)

Governing equations

The primary unknowns are:

C	gas mixture concentration ($ ho = MC$)
C_o , C_v	oxygen and vapour concentrations
T	phase-averaged temperature
S	liquid saturation

The following conservation laws govern multiphase flow in cathode GDE:

$$((1-s)\rho)_{t} + \nabla \cdot \left(\rho \vec{U}_{g}\right) = -M\Gamma \qquad \text{(gas mixture, } \rho = MC)$$
$$((1-s)C_{o})_{t} + \nabla \cdot \left(C_{o}\vec{U}_{g} + \vec{J}_{o}\right) = 0 \qquad \text{(oxygen)}$$
$$((1-s)C_{v})_{t} + \nabla \cdot \left(C_{v}\vec{U}_{g} + \vec{J}_{v}\right) = -\Gamma \qquad \text{(water vapour)}$$
$$(\overline{\rho c}T)_{t} + \nabla \cdot \left(\overline{\rho c U}T - \kappa \nabla T\right) = \frac{I^{2}}{\sigma} + h\Gamma \qquad \text{(energy)}$$
$$s_{t} + \nabla \cdot (s\vec{U}_{\ell}) = \Gamma/C_{\ell} \qquad \text{(liquid water)}$$

Governing equations (2)

Constitutive equations:

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry

Governing equations

- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

$\vec{J_i} = -CD_i \nabla \left(\frac{C_i}{C}\right)$
$\vec{U}_i = -\frac{K \ k_{rel,i}(s)}{\varepsilon \mu_i} \ \nabla P_i$
$P_g = CRT$

(Fick's law,
$$i = o, v$$
)

(Darcy's law, $i = g, \ell$) (ideal gas law) (capillary pressure)

Condensation / evaporation rate:

 $P_{\ell} = P_{q} + P_{c}(s)$

$$\Gamma = \begin{cases} \gamma^{+}(1-s)(C_{v} - C_{v}^{sat}(T)), & \text{if } C_{v} \ge C_{v}^{sat}(T) \\ \gamma^{-}s(C_{v} - C_{v}^{sat}(T)), & \text{if } C_{v} < C_{v}^{sat}(T) \end{cases}$$

Boundary conditions.

Liquid transport

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

- Define a reduced saturation, $\tilde{s} = \frac{s-s_*}{1-s_*}$
- Two key constitutive relations for GDE:

Capillary pressure (van Genuchten)

 $P_c(s) = A_c \mathcal{J}(s)$ $= A_c [(1 - \tilde{s})^{-2} - 1]^{1/2}$

$$k_{rel,\ell}(s) = \tilde{s}^{1/2}$$

Comparison: Groundwater flow

Background: Fuel cells

Catalyst Layer Model

- Electrode Model
- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

Advanced methods have been developed for multiphase transport in groundwater flow and oil reservoir simulation

These methods are not generally applicable to fuel cells

	Groundwater	Fuel cell GDE
time scales:	hrs to yrs	μs to ms
length scales:	$m \ { m to} \ km$	μm to mm
anisotropy:	low	high
wettability:	hydrophilic	hydrophobic
dominant mechanism:	convection	diffusion
		(and convection)

Experiments are much harder to undertake on fuel cells, and so many material properties are not known

Numerical method

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method

Results

- Conservative finite volume discretization
 - Stiff system with time scales ranging from $10^{-7} s$ to $10^2 s$ \implies use stiff solver ode15s in Matlab
- Saturation equation is a degenerate diffusion equation:

 $s_t + f(s)\nabla s + \nabla \cdot (g(s)\nabla s) = h(s) + \Gamma/C_\ell$

with $g(s) = Ask_{rel,\ell}(s)\mathcal{J}'(s)$

- \implies regularize $k_{rel,\ell}$ and \mathcal{J} **KEY!**
- Γ source terms are typically very large

Computation time: 15 mins for a 20×20 grid (compare to **days** for a straightforward discretization)

Results

Cathode fed with humidified air at $70^{\circ}C$:

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method

Results

Temperature contours

Saturation

Results: Wettability comparison

Hydrophobic nature of GDE leads to sharp wetting fronts

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method

Results

ICSC - Nanjing, June 4-8, 2005

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method

Results

- Explain severe stiffness observed in computations (also present in 1D through-plane GDE model)
- Develop more efficient methods based on splitting (liquid time scale is much slower)
- Investigate multi-scale approaches for catalyst and PEM.
- Derive reduced 1D (semi-analytical) models ideal for 1+1D stack-level simulations

1D MEA model

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method
- Results

- Explain severe stiffness observed in computations (also present in 1D through-plane GDE model)
- Develop more efficient methods based on splitting (liquid time scale is much slower)
- Investigate multi-scale approaches for catalyst and PEM.
- Derive reduced 1D (semi-analytical) models ideal for 1+1D stack-level simulations

Background: Fuel cells

Catalyst Layer Model

Electrode Model

- Gas diffusion electrode
- Water management
- Geometry
- Governing equations
- Liquid transport
- Comparison: Groundwater
- Numerical method

Results

- Explain severe stiffness observed in computations (also present in 1D through-plane GDE model)
- Develop more efficient methods based on splitting (liquid time scale is much slower)
- Investigate multi-scale approaches for catalyst and PEM.
- Derive reduced 1D (semi-analytical) models ideal for 1+1D stack-level simulations

