Immersed boundaries with mass 00000 Simulations of settling cylinders

Conclusions

Immersed boundary simulations of gravitational settling

John Stockie

Department of Mathematics Simon Fraser University Burnaby, British Columbia, Canada

http://www.math.sfu.ca/~stockie

MIT Conference on Computational Fluid and Solid Mechanics

June 12, 2013

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Acknowledgments

Sudeshna Ghosh

Natural Sciences and Engineering Research Council of Canada

イロト イポト イヨト イヨト 二日

Immersed boundaries with mass 00000 Simulations of settling cylinders

Conclusions

Outline

Gravitational settling

- Analytical solutions
- Experimental results
- Numerical simulations

Immersed boundaries with mass

- Mathematical formulation
- Immersed boundary method

Simulations of settling cylinders

- Single particle
- Two particles and draft-kiss-tumble dynamics

4 Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Immersed boundaries with mass 00000

Simulations of settling cylinders

Conclusions

Outline

Gravitational settling

- Analytical solutions
- Experimental results
- Numerical simulations

2 Immersed boundaries with mass

- Mathematical formulation
- Immersed boundary method

Simulations of settling cylinders

- Single particle
- Two particles and draft-kiss-tumble dynamics

4 Conclusions

イロト 不得 とくまとうましょう

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Motivation: Sedimentation in applications

Sedimentation is the settling of particles under the influence of gravity:

- Biofilm dynamics.
- Marine organisms: algae, jellyfish.
- Industrial processes: wood pulp fibers, crystal precipitation, mine tailings.
- Natural phenomena: hailstorms, sediment transport in rivers and lakes.
- Tea leaves in a teacup.

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Previous work on sedimentation

Gravitational settling of particle suspensions has been studied extensively in the literature using

- mathematical analysis,
- experiments,
- numerical simulations.

Immersed boundaries with mass 00000 Simulations of settling cylinders

Conclusions

Analytical solutions

• Stokes' law (1851): in a creeping flow of infinite extent, balancing gravity and drag forces yields settling velocity for a sphere in 3D:

$$V_s = \frac{gD^2(\rho_p - \rho_f)}{18\mu}$$

where D = diameter, $\mu =$ viscosity.

- Analogous result can be derived for a 2D circular particle (infinite cylinder) ⇒ a nonlinear equation in V_s.
- An overview of more recent analytical results can be found in Guazzelli & Morris (2012).

イロト 不得 とくまとうましょう

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Experimental results

- An enormous experimental literature exists owing to the importance of sedimentation in industrial and other applications. [Davis & Acrivos, 1985]
- Of particular interest to us are estimates of wall-corrected settling velocity for a particle in a channel of width *W*:

$$\widetilde{V}_s = rac{V_s}{\lambda(k)}$$
 where $k = rac{D}{W}$

and $\lambda(k)$ is a fitted correction factor.

• For example, Faxén's (1946) experiments yield

$$\lambda(k) pprox rac{-4\pi}{0.9157 + \ln(k) - 1.724k^2 + 1.730k^4 - 2.406k^6 + 4.591k^8}$$

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

- Many authors have simulated 2D and 3D suspension flows numerically using:
 - finite element method,
 - lattice-Boltzmann method,
 - boundary element method,
 - . . .
- IB method has been applied to gravitational settling of
 - rigid fibers [Wang & Layton, 2009]
 - suspensions of swimming algal cells [Hopkins & Fauci, 2002]
- Direct-forcing IB approach has also been applied to sedimentation [Uhlmann, 2005] [Wang, Fan & Luo, 2008] [Breugem, 2012]
- However, there has not yet been an extensive validation of the IB method for particulate flows with settling.

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

- Many authors have simulated 2D and 3D suspension flows numerically using:
 - finite element method,
 - lattice-Boltzmann method,
 - boundary element method,
 - . . .
- IB method has been applied to gravitational settling of
 - rigid fibers [Wang & Layton, 2009]
 - suspensions of swimming algal cells [Hopkins & Fauci, 2002]
- Direct-forcing IB approach has also been applied to sedimentation [Uhlmann, 2005] [Wang, Fan & Luo, 2008] [Breugem, 2012]
- However, there has not yet been an extensive validation of the IB method for particulate flows with settling.

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

- Many authors have simulated 2D and 3D suspension flows numerically using:
 - finite element method,
 - lattice-Boltzmann method,
 - boundary element method,
 - . . .
- IB method has been applied to gravitational settling of
 - rigid fibers [Wang & Layton, 2009]
 - suspensions of swimming algal cells [Hopkins & Fauci, 2002]
- Direct-forcing IB approach has also been applied to sedimentation [Uhlmann, 2005] [Wang, Fan & Luo, 2008] [Breugem, 2012]
- However, there has not yet been an extensive validation of the IB method for particulate flows with settling.

Immersed boundaries with mass

Simulations of settling cylinders

A D >
 A D >

Conclusions

- Many authors have simulated 2D and 3D suspension flows numerically using:
 - finite element method,
 - lattice-Boltzmann method,
 - boundary element method,
 - . . .
- IB method has been applied to gravitational settling of
 - rigid fibers [Wang & Layton, 2009]
 - suspensions of swimming algal cells
 [Hopkins & Fauci, 2002] ← basis for our approach!
- Direct-forcing IB approach has also been applied to sedimentation [Uhlmann, 2005] [Wang, Fan & Luo, 2008] [Breugem, 2012]
- However, there has not yet been an extensive validation of the IB method for particulate flows with settling.

Immersed boundaries with mass

Simulations of settling cylinders

Aims of this study

- Sedimentation is very well-studied for rigid particles such as spheres, ellipsoids, fibers, . . .
- For simplicity, we consider spherical particles that are only slightly heavier than the suspending fluid: $\frac{\rho_p \rho_f}{\rho_c} \ll 1$.
- We develop a very general numerical approach and validate it using results for rigid particles.
- Our long-term aim is to simulate sedimentation of both rigid and deformable particles. Hence, the need for the IB method!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Immersed boundaries with mass

Simulations of settling cylinders

Outline

Gravitational settling

- Analytical solutions
- Experimental results
- Numerical simulations

Immersed boundaries with mass

- Mathematical formulation
- Immersed boundary method

Simulations of settling cylinders

- Single particle
- Two particles and draft-kiss-tumble dynamics

4 Conclusions

イロト イポト イヨト イヨト 二日

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Problem geometry

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Governing equations

Variables: $\mathbf{u}(\mathbf{x}, t) = \text{velocity}, \ p(\mathbf{x}, t) = \text{pressure}, \ \mathbf{X}(s, t) = \text{IB position}$

Parameters: ρ_f = fluid density, ρ_p = particle density, μ = viscosity

Incompressible Navier-Stokes equations: (Boussinesq approximation, $\rho_p \gtrsim \rho_f$)

$$\rho_f \frac{\partial \mathbf{u}}{\partial t} + \rho_f \mathbf{u} \cdot \nabla \mathbf{u} = \mu \nabla^2 \mathbf{u} - \nabla p + \mathbf{f}_{IB} + \mathbf{f}_G$$
$$\nabla \cdot \mathbf{u} = \mathbf{0}$$

IB evolution equation:

$$\frac{\partial \mathbf{X}}{\partial t} = \int_{\Omega} \mathbf{u}(\mathbf{x}, t) \, \delta(\mathbf{x} - \mathbf{X}(s, t)) \, d\mathbf{x}$$

IB elastic force:

$$\mathbf{f}_{IB}(\mathbf{x},t) = \int_{\Gamma^{w,p}} \mathbf{F}_{IB}(s,t) \,\delta(\mathbf{x} - \mathbf{X}(s,t)) \,ds \qquad \begin{array}{c} \text{(specify discrete} \\ \mathbf{F}_{IB} \text{ later}) \end{array}$$

Gravitational settling term:

$$\mathbf{f}_G(\mathbf{x},t) = -\begin{bmatrix} 0\\g \end{bmatrix} \int_{\Gamma^p} (\rho_p - \rho_f) \, \delta(\mathbf{x} - \mathbf{X}(s,t)) \, ds \text{ for all } s \in \mathbb{R}$$

Immersed boundary method

We apply a straightforward discretization of the IB problem using:

- centered finite differences in space,
- cosine approximation for delta function,
- ADI for diffusion and advection terms,
- explicit treatment of IB force and settling terms,
- split-step projection scheme, with an FFT solve for the pressure Poisson equation.

Details are in Ghosh & JS [arxiv:1304.0804, 2013].

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Discrete IB force for the walls

• The stationary walls are divided into N_w equally-spaced tether points with fixed locations

$$\mathbf{Y}^w_\ell = \left[(L_x \pm W)/2, \ \ell L_y/N_w
ight] \qquad ext{for } \ell = 1, 2, \dots, N_w$$

 Each wall IB point X_l(t) is connected to the corresponding tether point by a stiff spring with force density

$$\mathbf{F}_{\ell}^{w}(t) = \sigma_{w}(\mathbf{Y}_{\ell}^{w} - \mathbf{X}_{\ell}(t))$$

• The force integral approximation involves a length scaling factor:

$$\mathbf{f}_{i,j} = \sum_{\ell=1}^{N_{w}} \mathbf{F}_{\ell}^{w} \, \delta_{h}(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}) \, \frac{L_{y}}{N_{w}}$$

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Discrete IB force for the particle

- "Uniform" triangulation of particle with nodes $X_{\ell}(t)$ for $\ell = 1, 2, ..., N_{p}$.
- Following Alpkvist & Klapper (2007), edges generate spring forces with

$$\begin{split} \mathbf{F}_{\ell}^{p} &= \sigma_{P} \sum_{\substack{m=1\\ \mathbb{I}_{\ell,m} \neq 0}}^{N_{p}} \mathbb{I}_{\ell,m} \frac{\mathbf{d}_{\ell,m}}{d_{\ell,m}} (d_{\ell,m}(0) - d_{\ell,m} \\ \mathbf{d}_{\ell,m}(t) &= \mathbf{X}_{\ell}(t) - \mathbf{X}_{m}(t) \\ d_{\ell,m} &= |\mathbf{d}_{\ell,m}| \\ \mathbb{I}_{\ell,m} &= [0/1 \text{ incidence matrix }] \end{split}$$

• Force integral is scaled by an area factor:

$$\mathbf{f}_{i,j} = \sum_{\ell=1}^{N_p} \mathbf{F}_{\ell}^p \, \delta_h(\mathbf{x}_{i,j} - \mathbf{X}_{\ell}) \underbrace{\frac{\pi D^2}{4N_p}}_{\bigtriangleup \text{ area}}$$

[Hopkins & Fauci, 2002]

Particle triangulation with $N_p = 2015$ nodes.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ ・ 日 ・

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Outline

Gravitational settling

- Analytical solutions
- Experimental results
- Numerical simulations
- Immersed boundaries with mass
 - Mathematical formulation
 - Immersed boundary method

Simulations of settling cylinders

- Single particle
- Two particles and draft-kiss-tumble dynamics

Conclusions

イロト 不得 とくまとうましょう

For small $\Delta \rho = \rho_p - \rho_f$, the settling velocity V_s approaches Faxén's (1946) result as the channel length L_y increases:

イロト 不得下 イヨト イヨト 二日

mmersed boundaries with mass

Simulations of settling cylinders 0 = 0 = 0 = 0

Conclusions

Single particle: Varying particle size

Wall-corrected \widetilde{V}_s formulas are only valid for small k = W/D.

Our simulations demonstrate physically reasonable behaviour as $k \rightarrow 1$.

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Single particle: Released off-center

- At Reynolds number Re = 4.9, a single particle released off-center migrates toward the centerline.
- Hydrodynamic forces between the particle and the walls are in balance.

Simulations of two particles				
00000	00000	0000000		
Gravitational settling	Immersed boundaries with mass	Simulations of settling cylinders	Conclusions	

Consider two initial configurations, centered and off-center, with particles separated by a distance 2D:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Two particles at low Re: Drafting and kissing

At low Reynolds number (Re = 3), the particles approach each other (draft) and nearly touch (kiss):

イロト 不得下 イヨト イヨト 二日

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Two particles at Re = 80: DKT behaviour

At higher Reynolds number (Re = 80), the particles undergo a tumbling motion after drafting and kissing:

イロト イポト イヨト イヨト 二日

Immersed boundaries with mass 00000 Simulations of settling cylinders

Conclusions

Two particles at Re = 80: DKT behaviour (cont'd)

Results match qualitatively with FEM simulations of Feng, Hu & Joseph (1994).

[Video]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● ● ● ● ●

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Two particles at Re = 47, off-center

More interesting behaviour arises at an intermediate Reynolds number (Re = 47) for two particles released off-center:

[Video]

3

(日)

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Outline

Gravitational settling

- Analytical solutions
- Experimental results
- Numerical simulations
- Immersed boundaries with mass
 - Mathematical formulation
 - Immersed boundary method

Simulations of settling cylinders

- Single particle
- Two particles and draft-kiss-tumble dynamics

4 Conclusions

イロト イポト イヨト イヨト 二日

Closing remarks

- We developed a 2D immersed boundary method that handles gravitational settling in the presence of walls.
- Computed settling velocities match with experiments.
- More complicated two-particle dynamics are consistent with simulations of Feng, Hu & Joseph (1994).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ●

Gravitational	settling

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

Current and future work

- Study settling of deformable, non-spherical particles.
- Investigate applications to:
 - biofilm floc deformation,
 - flexible fiber suspensions,
 - jellyfish swimming dynamics.
- Simulate large numbers of particles using Wiens' parallel IB algorithm. [Wiens & JS, submitted to *J. Comput. Phys.*, arXiv:1305.3976, 2013]

mmersed boundaries with mass

Simulations of settling cylinders

Thank-you!

http://www.math.sfu.ca/~stockie

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Immersed boundaries with mass

Simulations of settling cylinders

References I

Erik Alpkvist and Isaac Klapper.

Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction.

Water Science and Technology, 55:265-273, 2007.

Wim-Paul Breugem.

A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. *Journal of Computational Physics*, 231(13):4469–4498, 2012.

Robert H. Davis and Andreas Acrivos. Sedimentation of noncolloidal particles at low Reynolds numbers.

Annual Review of Fluid Mechanics, 17:91-118, 1985.

Olov Hilding Faxén.

Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes. Proceedings of the Royal Swedish Academy of Sciences, 187:1–13, 1946.

James Feng, Howard H. Hu, and Daniel D. Joseph. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. Journal of Fluid Mechanics, 261:95–134, 1994.

settling

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

References II

- Sudeshna Ghosh and John M. Stockie. Numerical simulations of particle sedimentation using the immersed boundary method. *Journal of Computational Physics*, May 2013. submitted, arXiv:1304.0804.
- Élisabeth Guazzelli and Jeffrey F. Morris.
 A Physical Introduction to Suspension Dynamics.
 Cambridge Texts in Applied Mathematics. Cambridge University Press, 2012.

Matthew M. Hopkins and Lisa J. Fauci. A computational model of the collective fluid dynamics of motile microorganisms. *Journal of Fluid Mechanics*, 455:149–174, 2002.

Markus Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209:448–476, 2005.

Jin Wang and Anita Layton.

Numerical simulations of fiber sedimentation in Navier-Stokes flow. *Communications in Computational Physics*, 5(1):61–83, 2009.

Zeli Wang, Jianren Fan, and Kun Luo.

Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles.

International Journal of Multiphase Flow, 34:283-302, 2008.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○○○

Immersed boundaries with mass

Simulations of settling cylinders

Conclusions

References III

Jeffrey K. Wiens and John M. Stockie.

An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. *Journal of Computational Physics*, May 2013. submitted, arXiv:1305.3976.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ □ - のへで