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Abstract

High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue
that uses a beam of ultrasound in order to generate heat within a small volume. A common
challenge in application of this technique is that heterogeneity of the biological medium can
defocus the ultrasound beam. In this study, the problem of refocusing the beam is reduced to the
Bayesian inverse problem of estimating the acoustic aberration due to the biological tissue from
acoustic radiative force imaging data. The solution to this problem is a posterior probability
density on the aberration which is sampled using a Metropolis-within-Gibbs algorithm. The
framework is tested using both a synthetic and experimental dataset. This new approach has
the ability to obtain a good estimate of the aberrations from a small dataset, as little as 32
sonication tests, which can lead to significant speedup in the treatment process. Furthermore,
our approach compatible with a wide range of sonication tests and so it can be applied with
other energy-based measurement techniques in the literature.
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1 Introduction

High intensity focused ultrasound (HIFU) treatment is a non-invasive method for treatment of
diseased tissue. The treatment uses a focused beam of ultrasound waves that converge onto a focal
point. The resulting absorption of ultrasound generates heat which in turn can ablate the targeted
tissue. The method has shown clinical success in treatment of uterine fibroids [14, 19, 37], prostate
cancer [10], liver tumours [20, 42], brain disorders [13, 21, 27] and other medical conditions [26].
However, application of this method for treatment of brain tissue remains a challenge. Strong
aberrations due to the skull bone, specifically the shift in the phase of the acoustic signal, defocus
the beam and result in a loss of acoustic pressure. One approach for resolving this problem is
to estimate the introduced acoustic aberrations. If the estimate is accurate enough then one can
compensate the phase of the acoustic signals (at the transducer) and refocus the beam behind the
skull bone.

One approach for estimating the aberrations is to use Magnetic Resonance (MR) imaging [17] or
Computed Tomography (CT) [3, 30] in order to obtain a three dimensional model of the patient’s
skull and use this information in a computer model to estimate the tissue aberration and find the
needed phase shift in order to refocus the beam. However, this approach is limited by both the
computational cost of the model and the accuracy of the estimates for the acoustic properties of
the tissues.

An alternative approach is the so called energy-based focusing techniques of [16, 25]. Here,
Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) is used to obtain measurements
of the intensity of the acoustic field at the focal point. MR-ARFI uses low-duty cycle HIFU pulses
that generate tissue displacement in the order of microns at the focal point of the beam. The small
displacement is measured with MRI using gradient pulses that encode the tissue displacement in
the phase information of an MR image [7, 32]. Using ARFI, displacement maps are generated and
can be used to verify and correct the degree of focusing of HIFU beam [31]. The energy-based
focusing techniques in [16, 25] use a dataset of displacement maps that is generated by imposing
specific excitation patterns at the ultrasound transducer. Columns of a Hadamard matrix are used
for generating the excitation patterns in [16] while [24] uses Zernink polynomials. Afterwards, the
resulting displacement maps are used to estimate both the acoustic field of the transducer and the
aberrations induced by the ultrasound propagation medium. The main drawback of this technique
is the need for a large number of sonication tests which requires a long acquisition time for the
MRI data. Recently, it was argued in [29] that energy-based techniques can be cast as a penalized
least-squares problem which enables one to use more general excitation patterns. They showed that
using randomized calibration sequences can reduce the number of sonication tests significantly.

This article demonstrates the feasibility of using a new Bayesian method to estimate the acoustic
aberrations with a small number of sonication tests. The central idea is to cast this problem within
the framework of Bayesian inverse problems. The Bayesian perspective provides a general frame-
work for estimation of parameters that model the aberrations from a finite set of measurements.
Appropriate models are chosen to explain the data, the measurement noise and prior knowledge of
the parameters. Afterwards, an entire probability distribution on the parameters is at hand rather
than finding a single point estimator. The Bayesian formulation can be viewed as a generalization
of the least-squares formulation of [29] (minimizers of penalized least-squares functionals are often
equivalent to maximizers of the density of an underlying posterior distribution when the parameters
are finite dimensional [22]). This allows for stable estimation of the aberrations with very noisy
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data and few sonication tests. Furthermore, this approach provides an estimate of the true value
of the parameters as well as the associated uncertainties in that estimate. An introduction to the
Bayesian perspective for solution of inverse problems and many of the techniques that are used in
this article can be found in the monographs [4, 22, 39] and the article [38] as well as the references
therein. The Bayesian approach to inverse problems has been successfully applied in various areas
of medical imaging such as electrical impedance tomography [23], optical diffuse tomography [2] and
dynamic X-ray tomography [33] as well as other fields such as astronomy [12, 35] and geoscience
[11, 18, 39].

In this article, a far-field approximation to the three dimensional acoustic equation is used as
a forward model that can be evaluated efficiently. Then, the effect of the tissue is modelled as
an infinitely thin aberrator in front of the transducer, following [29]. Afterwards, a hierarchical
smoothness prior is constructed that reflects the prior knowledge that the aberration parameters
tend to change smoothly between nearby elements on the transducer, i.e. the properties of the
tissue do not change dramatically between the elements. Combining this prior knowledge with the
forward model and the data, results in a posterior distribution which is viewed as the solution to
the inverse problem. A Metropolis-within-Gibbs (MwG) sampler [28, 36] is used for exploring this
distribution and obtaining several statistics such as the posterior mean and standard deviation of
the aberrations as well as independent samples. Finally, we consider the posterior mean to be a
good point-wise estimator of the parameters.

The remainder of this article is organized as follows. Section 2 is dedicated to the mathematical
theory and the setup of the problem. A brief introduction to the far-field approximation of the
acoustic equation is presented which is followed by the setup of the forward model that explains
the MR-ARFI data. Next, the formulation of the Bayesian inverse problem is discussed where the
likelihood and prior distributions are constructed. At the end of this section a MwG algorithm
for sampling the posterior distribution is proposed. Section 3 concerns the setup of the test for
synthetic and experimental conditions that were performed to verify the efficiency of the method.
The results are then presented in Section 4 which is followed by a discussion of the mathematical
framework and the results in Section 5.

1.1 Notation

Throughout this article lower case and Greek bold letters denote vectors and upper case bold letters
denote matrices. Given a matrix A we use A∗ to denote its adjoint. Finally, given m ∈ RN and
a positive definite matrix ΣΣΣ ∈ RN×N , we use N (m,ΣΣΣ) to denote a Gaussian random variable with
mean m and covariance matrix ΣΣΣ.

2 Mathematical background and theory

2.1 Forward problem

A far-field approximation to the acoustic field of a single piezoelectric ultrasound emitter is obtained
under the assumption that each ultrasound emitter is infinitesimally small and emits a radially
symmetric acoustic wave of amplitude p0 [Pa] and frequency ω [Hz]. Then the pressure field p(x)
[Pa] at a location x [m], generated by a piezoelectric emitter at location e [m] (see Figure 1) is given
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Figure 1: (a) Schematics of the high intensity focused ultrasound setup. The transducer is sub-
merged in an oil tank and generates an acoustic field which is directed at a phantom. The resulting
displacements are measured using an MR-coil inside an MRI machine. (b) The coordinate system
of the transducer that is used in equations (1)–(3) for computing the acoustic field.

by

p(x; e) = zf(x; e) where z = p0 exp(iωt) and f(x; e) =
1

|x− e|
exp

(
i
ω

c0
|x− e|

)
. (1)

Here c0 [m/s] is the speed of sound and f(x; e) is referred to as the free-field of the emitter [29].
Interaction of the acoustic waves with the tissue results in dissipation of energy and a shift in the
phase as a result of friction (micro-scale displacements) and scattering [40]. The acoustic pressure
p̃(x) in the presence of the tissue can be modelled as

p̃(x; e) = µp(x; e) where µ = ζ exp(iφt). (2)

Here, ζ is the amplitude coefficient related to the attenuation of the medium and φ is the shift in
phase. The acoustic field of the entire emitter can be obtained by integrating (1) over ds.

A physical transducer can be a phase array consisting of a large number of piezoelectric emitters.
Let N denote the number of physical piezoelectric emitters (N = 256 in the case of the Philips
Sonalleve V1 system (Philips, Healthcare, Vantaa, Finland) that is used in the experiments of
Section 3.2) and let z ∈ CN denote the sonication pattern at the transducer which is the vector
containing the phase and amplitude of the acoustic waves transmitted by each emitter. Also, a ∈ CN
is defined as the vector of aberrations pertaining to each element (the µ variable in (2)). Finally,
define the field of view to be the displacement data of a region of

√
M ×

√
M voxels around the

focal point which is extracted from MR-ARFI images (
√
M = 19 in Section 4 for the synthetic test

and
√
M = 7 for the physical experiment). Let p̃ ∈ CM denote the measured values of the pressure

at each voxel in presence of aberrations concatenated into a long vector. Then

p̃ = F̃ diag(z̃)a, (3)
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where diag(z̃) is the diagonal matrix created from the entries of z̃ and F̃ ∈ CM×N is referred to
as the free-field matrix [29] which is the mapping of the pressure in the absence of aberrations.
This model relies on the assumption that tissue aberrations can be modelled as an infinitesimally
thin aberrator in front of the transducer [29]. The measured displacement in MR-ARFI images
is proportional to the total intensity of the signal which is equal to the square of the modulus of
pressure [32]. The constant of proportionality is generally unknown but it can be estimated in a
calibration step as discussed in Section 3.2.1. Throughout the remainder of this article the constant
of proportionality is accounted for in the free-field matrix. To this end, let d̃ ∈ RM be the vector
of displacements at each voxel. Then

d̃ = diag(p̃)p̃∗ (4)

where p̃∗ denotes the element wise complex conjugate of p̃. In practice, a finite number of J
sonication tests are performed where vectors z̃j for j = 1, · · · , J are prescribed as input at the
transducer and give rise to MR-ARFI images. Each image can be summarized as a vector of
displacements d̃j . These measurements constitute a dataset that is used to estimate the aberrations
a. Then, a model is needed in order to relate a to the entire displacement dataset. Define the
matrices

Z :=


diag(z̃1)
diag(z̃2)

...
diag(z̃J)

 ∈ CJN×N , F := IJ×J ⊗ F̃ ∈ CJM×JN ,

p :=


p̃1

p̃2
...

p̃J

 ∈ CJM , d :=


d̃1

d̃2
...

d̃J

 ∈ RJM ,

(5)

where IJ×J is the J × J identity matrix and ⊗ denotes the usual Kronecker product. Then the
forward model can be written as

d = diag(p)p∗ where p = FZa. (6)

2.1.1 Relaxation to a continuous field.

Figure 2 shows examples of phase shift and attenuation obtained with hydrophone measurements
for a newborn skull using the Philips Sonalleve V1 system [8]. A schematic of the setup is depicted
in Figure 2(a) and each image (Figures 2(b-d)) shows the measured phase shift and attenuation
per transducer element mapped on a 2D projection of the transducer for a different orientation of
the skull. The aberrations appear to change smoothly between the elements due to the presence of
a soft spot in the skull sample. This suggests that a continuous function is a good model for the
aberrations.

The acoustic elements on the emitter are arranged on a segment of a sphere (see Figure 1).
Project the location of the elements on the xy-plane and assume that the pair {x̄, ȳ} are vectors
of the normalized x and y coordinates of the elements so that all of the points fit within the unit
disk in R2. Furthermore, let [−1, 1]2 denote the centred unit square in 2D and consider a function
a : [−1, 1]2 → C that is continuous. Next, define the continuous linear operator

S : C([−1, 1]2)→ CN (S(a; x̄, ȳ))j := a(x̄j , ȳj),
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for a ∈ C([−1, 1]2) and j = 1, · · · , N . Combining this with (6) defines the forward model for a
continuous aberration function:

d = G(a), G : C([−1, 1]2)→ RJM G(a) := diag(FZS(a))(FZS(a))∗, (7)

where the dependence of S on the coordinate vectors is suppressed because the entries are fixed
parameters that only depend on the geometry of the device.

(a)

Phase shift (deg)

-20

0

20
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90

100

110

(b)

Figure 2: (a) The setup for hydrophone measurements. A hydrophone is placed inside the cavity
of a skull sample and is used to capture pressure signals generated by the activation of individual
transducer elements. The change in phase and amplitude are calculated by comparing these signals
to measurements where the skull is removed. (b) Projection of the phase shift and amplitude mea-
sured on a newborn skull for each of the piezoelectric emitters [8]. The aberration changes smoothly
between the elements, which motivates the assumption that the aberrations can be modelled as a
continuous function. Values of amplitude higher than 100% are due to our normalization so that
the average of the amplitude coefficient over the emitters is 100%.

2.2 Inverse problem

We recall Bayes’ rule which can be written (informally) as

πpost(a|dobs) ∝ πlikelihood(dobs|a)πprior(a) (8)

where πprior is the prior probability distribution, reflecting prior knowledge about the parameter a,
πlikelihood is the likelihood distribution, indicating the probability of an observed dataset assuming
that the parameter a was known, and πpost is the posterior distribution which is the updated
distribution on a given both the data and the prior. In order to avoid the delicacy of setting up
the Bayesian inverse problem on the function space we only consider the discretized version of
the problem where the probability distributions have well-defined Lebesgue densities and refer the
reader to [38] for a detailed discussion on this subject.

2.2.1 Likelihood distribution πlikelihood

The forward model in (7) does not incorporate measurement errors and therefore is not a complete
model of the observed data. Assume that the error between the prediction of the forward model and
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the observed data, denoted by dobs, can be modelled as an independent Gaussian random variable.
Then

dobs = G(a) + ηηη where ηηη ∼ N (0,ΣΣΣ), (9)

where ηηη is the measurement error and ΣΣΣ is a positive definite matrix representing the covariance of
the error. The random variable ηηη has a density with respect to the Lebesgue measure in RJM

πηηη(x) = (2π)−
JM

2 |Σ|−
1
2 exp

(
−1

2
x∗ΣΣΣ−1x

)
. (10)

The conditional distribution of the observed data for a fixed a, which is simply the likelihood, is
given as

πlikelihood(dobs|a) = πηηη(dobs − G(a)) =
1

β
exp(−Φ(a; dobs)), (11)

where

Φ(a; dobs) :=
1

2
(G(a)− dobs)

∗ΣΣΣ−1 (G(a)− dobs) (12)

is referred to as the likelihood potential and β := (2π)−JM/2|ΣΣΣ|−1/2 is the normalizing constant so
that πlikelihood is a proper probability distribution.

2.2.2 Hierarchical prior distribution πprior

Recall that the function a was defined on the unit square [−1, 1]2. Now suppose that the box is
discretized using a uniform grid of size h and define the matrix (A)jk := a(−1+(j−1)h,−1+(k−1)h)
for j, k = 1, 2, · · · ,

√
G and

√
G = 2/h + 1, which is the usual finite difference discretization of a

(see Figure 3(a)). Now, take ah ∈ CG to be the vector that is obtained by concatenating the entries
of A column by column and define the matrices

L̃ :=
1

h2


2 −2 0 · · · · · · 0
−1 2 −1 · · · · · · 0
...

...
...

0 · · · · · · −1 2 −1
0 · · · · · · −2 2

 ∈ R
√
G×
√
G and L := L̃⊗ L̃ ∈ RG×G. (13)

The hierarchical prior distribution is constructed by first introducing the random variables

u ∼ N (0,P−1), v ∼ N (0,P−1), α1 ∼ N (0, σ2
1), α2 ∼ N (0, σ2

2) (14)

where P := h(IG×G−γL)2 and σ1 and σ2 are fixed. Then the prior on the aberration is represented
via the random variable

ah ∼ πprior, ah = ah(θθθ) := diag(ū + α2
1u) exp(i(α2

2v)), θθθ :=
[
α1 α2 u∗ v∗

]
. (15)

Here, ū is the prior mean of the amplification coefficient which is introduced separately since it
is fixed, the exponential function is applied element by element and θθθ is introduced to simplify
notation in the next section.

The P−1 covariance operator in (14) is a finite difference discretization of the biharmonic op-
erator (I − γ∆)−2 with homogeneous Neumann boundary conditions. Here, ∆ is the Laplacian
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in 2D. The finite difference matrix is scaled by a factor h so that draws from the prior have the
proper white noise scaling in the continuum limit as h → 0. The parameter γ controls the size of
the features in the samples. Figure 3(b) shows a few samples of N (0,P−1) for different values of γ
discretized on a 50× 50 grid (i.e. G = 502).

We refer to α1 and α2 as hyperparameters. They control the variance of the samples, indicating
prior knowledge of the range of variations of the phase shift or attenuation. Introducing the hyper-
parameters as multipliers is crucial to making sure that the sampling algorithm in the next section
is well defined in the continuum limit [1].

It is known that in the continuum limit, draws from the Gaussian distributions in (14) are
almost surely Lipschitz continuous [38, Lemma 6.25]. Therefore, (15) serves as a good model for
the aberrators of Figure 2. Since the samples are continuous, a straight forward linear interpolation
can be used to obtain point values of the samples at the location of the elements. Therefore, the S
operator of (7) is easily approximated with an interpolation matrix S.
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Figure 3: (a) Schematic of the underlying field a discretized on a uniform grid of size h. The value
of the field is interpolated up to each element of the transducer using a simple interpolation matrix.
(b) Examples of draws from the Gaussian distribution N (0,P−1) for various values of γ on a 50×50
grid. Smaller values of γ result in samples with smaller features and larger amplitudes.

2.3 Sampling the posterior distribution πpost

The posterior distribution πpost is, in essence, the solution to the inverse problem. However, repre-
senting this distribution is infeasible in practice since it may not have a closed form. Therefore, one
often tries to extract different statistics of this distribution or simply obtain independent samples
from it.

Equations (11) and (15) identify πpost via (8) up to a normalizing constant. Computing this
constant is often infeasible. However, Markov Chain Monte Carlo (MCMC) methods can still
be used to generate samples from πpost without knowledge of this normalizing constant [36]. In
this article, the preconditioned Crank-Nicolson (pCN) and Metropolis-Adjusted Langevin (MALA)
algorithms of [9] are used in a Metropolis within Gibbs (MwG) sampler to generate samples from
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πpost. Here, the MALA algorithm is used to sample from u and α1 and pCN is used to sample from
v and α2. The reason for this choice is the fact that the forward map (7) is not differentiable with
respect to the phase and so the pCN algorithm is utilized to sample in this direction. The resulting
algorithm can be summarized as follows:

Metropolis within Gibbs (MwG) sampler

1. Set k = 0 and choose θθθ(0) by picking u(0), v(0), α
(0)
1 , α

(0)
2 randomly from the prior distribution

and choose δ1 ∈ [0,∞) and δ2 ∈ [0, 1).

2. (MALA) Update u and α1:

2.1. Propose θθθ(k+1/4) using

v(k+1/4) = v(k), w1 ∼ N (0,P−1),

u(k+1/4) =
2− δ1

2 + δ1
u(k) − 2δ1

2 + δ1
P−1∇uΦ

(
a

(k)
h ; dobs

)
+

√
8δ1

2 + δ1
w1,

α
(k+1/4)
2 = α

(k)
2 , ξ1 ∼ N (0, σ2

1),

α
(k+1/4)
1 =

2− δ1

2 + δ1
α

(k)
1 −

2δ1c
2
1

2 + δ1
∇α1Φ

(
a

(k)
h ; dobs

)
+

√
8δ1

2 + δ1
ξ1.

2.2. Set θθθ(k+1/2) = θθθ(k+1/4) with probability κ(θθθ(k);θθθ(k+1/4)).

2.3. Otherwise set θθθ(k+1/2) = θθθ(k).

3. (pCN) Update v and α2:

3.1. Propose θθθ(k+3/4) using

u(k+3/4) = u(k+1/2), w2 ∼ N (0,P−1),

v(k+3/4) =
√

1− δ2
2v(k+1/2) + w2,

α
(k+3/4)
1 = α

(k+1/2)
1 , ξ2 ∼ N (0, σ2

2),

α
(k+3/4)
2 =

√
1− δ2

2α
(k+3/4)
2 + ξ2.

3.2. Set θθθ(k+1) = θθθ(k+3/4) with probability τ(θθθ(k+1/2);θθθ(k+3/4)).

3.3. Otherwise set θθθ(k+1) = θθθ(k+1/2).

4. Set k → k + 1 and return to step 2.

The acceptance probability in step 2.2 is defined as

κ(θθθ; θ̃θθ) := min
{

1, exp
(
ρ(θθθ; θ̃θθ)− ρ(θ̃θθ;θθθ)

)}
(16)
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where

ρ(θθθ; θ̃θθ) := Φ(θθθ; dobs) +
1

2

[
α̃1 − α1

h2(ũ− u)

]∗ [∇α1Φ(θθθ; dobs)
∇uΦ(θθθ; dobs)

]
+
δ

4

[
α̃1 + α1

h2(ũ + u)

]∗ [∇α1Φ(θθθ; dobs)
∇uΦ(θθθ; dobs)

]
+
δ

4

[
∇α1Φ(θθθ; dobs)
∇uΦ(θθθ; dobs)

]∗ [
σ2

1 0
0 P−1

] [
∇α1Φ(θθθ; dobs)
∇uΦ(θθθ; dobs)

]
.

(17)

The acceptance probability in step 3.2 is

τ(θθθ; θ̃θθ) := min
{

1, exp
(

Φ(θθθ; dobs)− Φ(θ̃θθ; dobs)
)}

. (18)

Derivation of the acceptance probabilities is outside the scope of this article and the reader is
referred to [9] for details.

Letting a
(k)
h := ah(θθθ(k)), the above algorithm will generate a Markov chain that has the πpost as

its invariant distribution [36]. This means that the samples can be used to compute the expected
value of functions of the aberrations with respect to πpost. Suppose that the expected value of a
function f is of interest, then∫

f(a)πpost(a|dobs)da ≈
1

k

k∑
`=1

f
(
a

(`)
h

)
. (19)

The functions of interest for practical applications are the posterior mean aPM, covariance Cov(a)
and standard deviation std(a) of the aberration for each element:

aPM ≈
1

k

k∑
`=1

Sa
(`)
h ,

Cov(a) ≈ 1

k

k∑
`=1

(Sa
(`)
h − aPM )(Sa

(`)
h − aPM )∗,

std(a)i ≈ (diag(Cov(a))i)
1/2 for i = 1, 2, · · · , N.

(20)

Recall that S is the discrete approximation of the point-wise evaluation operator S in (7) as discussed
in Section 2.2.2.

A key detail in implementation of the MwG algorithm is computing the derivative of the like-
lihood potential in step 2.1. This gradient can be calculated by solving an adjoint problem. Let
G := FZS diag(exp(iα2

2v)) and recall that the pressure field can be written as

p = FZS diag(ū + α2
1u) exp(i(α2

2v)). (21)

Then, straightforward calculations show that

∇α1G(θθθ) = 2α1diag(p)G∗u, ∇uG(θθθ) = 2α2
1Re [diag(p)G∗] . (22)

Combining this with (12) gives[
∇α1Φ(θθθ; dobs)
∇uΦ(θθθ; dobs)

]
=

[
∇α1G(θθθ)∗

∇uG(θθθ)∗

]
Σ−1(G(θθθ)− dobs). (23)

Therefore, every step of the MALA update costs roughly twice as much as the pCN update but
MALA is more efficient in exploring the posterior.
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3 Methods

In this section we describe the details of two experiments that were performed to test our framework
for estimation of the acoustic aberrations. The first test uses a synthetic dataset of the displacement
map which is generated by the same model as the forward model of Section 2.1. In the second test
we use a physical dataset that was obtained using a Philips Sonalleve V1 device.

3.1 Test with synthetic displacement map

The first test was performed using a synthetic dataset generated with the target aberrator in
Figure 2(b). The goal here was to test the algorithm in a more relaxed setting where there was no
discrepancy between the forward model and the model for the data.

Generating the synthetic dataset involves many details including the geometry of the transducer
and the location of the focal point that are besides the main point of this article. To keep the
discussion short, we only present a summary of the methodology for performing the synthetic
experiments. The first step in generating the artificial dataset was to identify the free-field matrix
of the transducer F̃ using (1) and the location of the elements and the MR-ARFI voxels; The k-th
column of F̃ is simply the free-field corresponding to the k-th ultrasound emitter. Afterwards, the
matrix F is constructed using (5). The next step was to construct the design matrix Z which
is identified by the z̃j vectors. This matrix contains the prescribed values of the amplitude and
phase of the acoustic waves at the transducer. A design matrix was utilized in this example where
the virtual elements of [16] were used to group nearby piezoelectric emitters. Let H256 denote the
256 × 256 Hadamard matrix [16, Eq. 8] with columns h1 to h256. Then z̃j = h1 + exp(iπ6 )hj for
j = 2, · · · , 16.

A noisy version of the design vectors was considered with

z̃noisy
j := z̃j + εεε1 exp

(
i
π

4
εεε2

)
where εεε1, εεε2 ∼ N (0, (0.05)2 · I256×256). (24)

This added an extra layer of noise that is not accounted for in the formulation of the inverse problem.
The standard deviation of the noise in the phase was taken to be 0.05 as a reasonable estimate of
the errors in imposing the sonication patterns in practical settings. Putting these vectors together
gave a noisy design matrix Znoisy and the synthetic dataset was generated using

dart
obs = FZnoisyaart + ηηη where ηηη ∼ σart

obs · N (0, (0.2)2 · I256×256) (25)

and σart
obs is the standard deviation of FZnoisyaart. The standard deviation of the measurement noise

was taken to be 0.2 which implied a signal to noise ratio of 5. This choice was made to replicate data
that is highly noisy. Figure 4 shows examples of the generated noisy data along with the prescribed
phase and amplitudes of the elements.

A total of 16 sonication tests were performed in this example, i.e. the design matrix had 16
columns. In order to solve the inverse problem, a coarse 8 × 8 mesh (i.e. h = 1/4) was used to
discretize the aberration field a. It was assumed that the noise covariance ΣΣΣ = (0.15·σart

obs)
2 ·IJM×JM .

The prior mean was taken to be ū = 1, the prior wave number γ = 1/5 and the hyperparameter
prior variances were σ1 = σ2 = 2. The step sizes in the MCMC algorithm were δ1 = 4 × 10−5

and δ2 = 5× 10−3 resulting in an average acceptance probability of 0.32 across the two Metropolis
Hastings updates.
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Figure 4: A few examples of artificial experiments, indicating the prescribed noisy phase and am-
plitude (the z̃noisy

j vectors) along with the displacement map (the resulting MR image) of the focal

point (subsets of dart
obs) scaled by the standard deviation of the images. The displacement maps

show the focal point before refocusing.

3.2 Test with MR-ARFI displacement map

A test was done using the displacement maps obtained from MR-ARFI data which was acquired us-
ing a Philips Sonalleve V1 ultrasound system (Philips Healthcare, Vantaa, Finland) and an Achieva
3T MRI machine (Philips, Best, Netherlands). A phased array transducer consisting of 256 elements
was used with a focal length of 12 cm and aperture of 13 cm. The transducer was operating at 1.2
MHz generating ultrasound pulses of 1 ms ranging from 0 to 300 acoustic Watts. The transducer
was submerged in an oil tank (as illustrated in Figure 1) and the acoustic field was targeted at a 4
cm phantom which mimics muscle tissue (CIRS, Norfolk, VA, USA). The displacement due to the
ultrasound pulses was measured using a dedicated MR receiver coil of 4 cm inner diameter. The
displacements were measured using MR-ARFI sequences based on a RF-spoiled gradient-recalled
Echo-Planar Imaging (EPI) sequence with Repetition Time (TR) of 42 ms, Echo Time (TE) of
30 ms, flip angle of 20 degrees, EPI factor of 9, MRI resolution of 64 × 64 pixels, bi-polar motion
encoding gradients of 1 ms in duration and amplitude of 30 mT/m. Images were obtained every
0.26 seconds from a single slice that was orthogonal to the path of the beam with a field of view of
180× 180 mm2 and voxels of size 0.7× 0.7× 4 mm3.

At first, a set of measurements was taken without an aberrator. This dataset is used for esti-
mating the free-field matrix of the transducer and so it is referred to as the calibration dataset. To
obtain this dataset the phase stepping technique of [16, 25] was used with 16 virtual elements (the
first 16 columns of the Hadamard matrix) with ten steps in phase for each virtual element. Thus,
this dataset consists of 160 sonication patterns. A cosine function was then fit to the displacement
of each voxel during the phase stepping in order to retrieve the phase and estimate the free-field
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matrix of each element. A subset of this dataset is used in the calibration step below to further
improve the estimate of the free-field matrix.

Afterwards, a second set of measurements was taken in the presence of the aberrator of Figure
2(a) consisting of 32 sonication patterns. This dataset is referred to as the reconstruction dataset.
The input phase and amplitude of the 256 elements were modified to imitate the effect of the target
aberrator instead of using a physical aberrator in front of the beam. That is, the aberrator was added
to the prescribed excitation patterns during each sonication test. This approach is advantageous
because the values of the aberration parameters are known and so we can easily assess the quality
of the estimates. Programming of the HIFU system and collection of MR images were performed
using the toolboxes MatHIFU and MatMRI [43]. Here, the design matrix Z was constructed from
the vectors z̃j = 1

2(h1 + hj) for j = 1, · · · , 16 and z̃j = 1
2(h1 + exp(iπ3 ))hj) for j = 17, · · · , 32. All

tests were performed with a field of view of 7 × 7 voxels, i.e.
√
M = 7. Only a small portion of

the images are used from each frame since signal to noise ratio drops rapidly for voxels that are
far from the focal point. Each measurement was repeated ten times and then averaged in order to
reduce the noise.

The noise covariance in the formulation of the inverse problem was taken to be ΣΣΣ = (0.2 ·
σobs)

2 · IJM×JM where σobs is the standard deviation of the reconstruction dataset. Recall that
here, M = 49 (number of voxels) and J = 16 (number of images). As before, an 8×8 grid was used
for discretization of the aberration field a. The prior mean was taken to be ū = 1 and the prior
wave number γ = 1/5. The prior variances on the hyperparameters were σ1 = 0.5 and σ2 = 0.5 and
the MCMC step sizes were δ1 = 1.1× 10−5 and δ2 = 1.5× 10−3 resulting in an average acceptance
probability of 0.54 across the two Metropolis Hastings updates.

3.2.1 Calibration of the free-field matrix

The free-field matrix of the transducer was computed using the phase stepping technique of [16,
25] but the estimated field is often not accurate enough to give a satisfactory estimate of the
aberrations. This issue is amplified when measurements are noisy and the number of sonication
tests is significantly smaller than the number of elements on the transducer. Furthermore, the MR-
ARFI data consists of measurements of displacement while the forward model of Section 2.1 is valid
for acoustic intensity. Although acoustic intensity is expected to be proportional to displacement
[32], the constant of proportionality is unknown.

These discrepancies will manifest as an apparent aberrator in front of the beam. For example,
running the algorithm on the calibration dataset would still estimate a significant value for the
aberrations. In practice this aberrator must be estimated in a calibration step before computing the
actual aberrator using the reconstruction dataset. This will also automatically estimate the constant
of proportionality between intensity and displacement. Here, the posterior mean of this inherent
aberrator, denoted by acalibration, is computed over the first 32 measurements of the calibration
dataset. Once this vector is available, the calibration can be performed by simply replacing the
matrix S by

Scalibrated = diag(acalibration)S. (26)
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3.3 Assessing the quality of the refocusing

After assuming that the posterior mean aPM is taken to be the best estimator of the true aberration
a, take φφφPM and φφφ to be their corresponding phase shifts. Consider the vectors

e1 := diag[F̃ exp(i(φφφ−φφφPM))] F̃ exp(i(φφφ−φφφPM)),

e2 := diag[F̃ exp(iφφφ)] F̃ exp(iφφφ),

e3 := diag[F̃1] F̃1.

Now the expected improvement functional EI and the expected recovery functional ER for the
posterior mean are defined as

EI(aPM) :=

(
1− ‖e3‖∞ − ‖e1‖∞
‖e3‖∞ − ‖e2‖∞

)
× 100, ER(aPM) :=

(
‖e1‖∞ − ‖e2‖∞

‖e3‖∞

)
× 100.

EI measures the percentage of lost intensity that is recovered while ER measures how the maximum
intensity of the refocused beam compares to the the maximum intensity of a perfectly focused
beam. These measures are used in the next section in order to further assess the performance of
the estimates for the three tests that were discussed above.

4 Results

4.1 Test with synthetic displacement map

A summary of Bayesian posterior statistics using the synthetic dataset is presented in Figure 5.
Posterior mean and standard deviations are computed using 5× 105 samples with a burn-in period
of 3 × 103 samples (i.e. the first 3 × 103 samples were discarded since the Markov chain had not
yet converged at that point). The posterior mean (Figure 5(b)) is taken to be a good estimator
of the actual value of the parameters. This is supported by Figure 5(c) which is the point-wise
absolute difference between the posterior mean and the target aberrator. Here the maximum error
in the phase is 21 degrees while the average error (among the elements) is 4.5 degrees. As for
the attenuation, the maximum error is 45 percent and the average error is 14 percent. Compare
these values to Figure 5(d) which depicts the standard deviation of the aberration parameters and
can be taken as a measure of uncertainty in the approximations. The standard deviation of the
aberrations is close the the average point wise absolute error. Therefore, the standard deviation
is a good measure of the accuracy of aPM. Furthermore, Figure 5(f) compares the prediction of
the data using aPM to the actual data set on a few frames of the MR-ARFI data. This shows a
good agreement between the prediction and the data and further certifies the choice of aPM as a
point-wise estimator of the target. Finally, for the expected improvement EI(aPM) ≈ 71% and
ER(aPM) ≈ 5%. Therefore, using aPM to refocus the beam recovers 71% of the lost intensity.
However, this only improves maximum intensity by 5% which is due to the fact that the aberrator
of Figure 5(a) is very weak and the defocused beam is already at 93% intensity.

In the case of the hyperparameters, one can integrate out the rest of the parameters and directly
estimate the marginal posterior distribution as in Figure 5(e). These results indicate a drop of
two orders of magnitude in the standard deviation of the hyperparameters, compared with the
prior standard deviation, indicating that the value of the hyperparameters are computed with high
confidence.
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In addition to the above statistics, one can also look at independent samples from πpost as
depicted in Figure 6. These samples are generated by choosing individual samples from the Markov
chain that are far enough apart. The distance between the samples in Figure 6 was chosen large
enough so that the integrated autocorrelation function of the chain was below 10−3. In this case
the distance was taken to be 105 steps based on the worst integrated autocorrelation function in
Figure 9(a). The independent samples can be taken as examples of aberrators that are likely to
have generated the dataset and provide further insight regarding πpost. It is clear that the samples
have very similar features in comparison to the mean. For example, there are no discontinuities
or multi-modal behavior. This further supports the choice of the posterior mean aPM as a point
estimator for the true value of the parameters.

4.2 Test with MR-ARFI displacement map

Figures 8 to 10 show a similar summary of the results for the test with MR-ARFI displacement map
as was shown for the test with synthetic displacement maps. Here the results were computed using
5 × 105 samples from the Markov chain with a burn-in period of 3 × 105. Figure 7(b) shows the
posterior mean aPM which is once again taken to be a good estimator of the aberration parameters.
Figure 7(c) depicts the point-wise absolute error between aPM and the target. Here, the maximum
error in the phase is 45 degrees and the average error across the elements is 19 degrees. The
maximum error in the amplitude is 30% and the averaged error is 14%. The errors here are notably
larger as compared to the test with the synthetic displacement map, especially in the case of the
attenuation. This is most likely due to large discrepancies between the forward model and the
measured MR-ARFI data. Nevertheless, the overall shape of the aberrator and range of phase
shifts are captured even with such a small dataset.

Figure 7(d) shows an estimate of the standard deviation of the aberrations under πpost indicating
a possible error of plus or minus 12 degrees. It should be noted that this error is still smaller than
the true point-wise error and the algorithm underestimate the true uncertainty of the solution.
Figure 7(e) shows the posterior marginal on the hyperparameters. As before, the posterior standard
deviation on the hyperparameters has been reduced significantly as compared to that of the prior
distribution which is a sign that these parameters are well identified by the data. To check whether
the prediction of aPM matches the data, a few frames of the MR-ARFI images are compared to the
prediction at the posterior mean in Figure 7(f). The matching between the data and the prediction
was adequate at the focal point but deteriorates away from it. Specifically, the prediction obtained
the correct range of variations of each frame and the right location for the point of maximum
intensity.

For this dataset EI(aPM) ≈ 42% which predicts a good recovery of the intensity. However,
expected recovery ER(aPM) ≈ 3% which is smaller in comparison to the synthetic test above. This
is expected since the estimate of the aberrator is no as accurate as before due to discrepancies
between the model and the physical data.

Finally, a few independent samples from πpost are presented in Figure 8. The samples are 105

steps apart in order to ensure their independence. This choice was based on the slowest decaying
integrated autocorrelation function in Figure 9(b). Once again, comparing the samples to the
posterior mean indicates that the samples are close to the posterior mean and so aPM is a reasonable
point estimator for the parameter values.
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Figure 5: A summary of Bayesian posterior statistics using the synthetic dataset. (a) The target
aberrator used for generating the data. (b) Posterior mean (PM) of the aberration parameters
along with (c) the point-wise difference between the posterior mean and the target aberrator. (d)
The standard deviation (std) of the posterior samples which is indicative of the level of uncertainty.
(e) Estimated marginal posterior distributions on the hyperparameters. (f) A few examples of the
synthetic displacement map at the focal point compared with the prediction of the posterior mean
of the aberrator.
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Figure 6: A few samples from πpost on the aberration parameters. The samples are 105 steps apart
in the Markov chain so that they can be treated as independent.

5 Discussion

5.1 Mathematical framework

The most notable feature of the forward problem in (6) is that d is a non-linear function of the
aberration a. This is an attribute of the MR-ARFI data which makes the inverse problem more
challenging to solve. In particular, this means that one-shot methods for computing the minimizers
of regularized least squares functionals (such as the common Tikhonov regularization) are no longer
applicable. In this case one can use numerical optimization algorithms such as Newton’s method
or the L-BFGS algorithm [41, 34] to find a minimizer but this choice requires a modification of the
formulation to get around the non-differentiability of the forward map with respect to the phase.
Also, the optimization framework does not provide an estimate of the uncertainty on the parameters
and hyperparameters nor does it generate samples from πpost.

The presented formulation of the forward and inverse problems together offer complete freedom
in the choice of the number of sonications tests J , the size of the MRI images M , the size of the
parameter space for the aberrations G and the number of elements N . In practice, it is preferable
to take J to be as small as possible to reduce the time required to collect the MRI data. It is
also desirable to choose G to be small in order to reduce the computational cost of the algorithms.
Taking M to be large means that each MRI image will have more information. However, the signal
to noise ratio drops rapidly for voxels that are far from the focal point. This is the main reason
why the dataset in the MR-ARFI experiments uses a much smaller field of view compared with the
artificial example. Then the choice of each one of these parameters is a delicate task that requires
further study in future.

5.2 Performance of the MCMC algorithm

The pCN algorithm is a modification of the random walk Metropolis Hastings algorithm that is
well defined on a function space [9]. It tends to generate samples that are highly correlated and so
it explores the posterior distribution slowly. However, the pCN update does not require derivative
information and therefore can be used to sample from non-differentiable densities. This also means
that each step of pCN is relatively inexpensive. The MALA algorithm utilizes an optimal proposal
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Figure 7: A summary of Bayesian posterior statistics using the experimental MR-ARFI dataset. (a)
The target aberrator imposed on the transducer. (b) The posterior mean (aPM) and (c) point-wise
difference between the posterior mean and the target aberrator. (d) The standard deviation of the
posterior. (e) The marginal distribution of the hyperparameters estimated using the Markov chain.
(f) A comparison between a few frames of the MR-ARFI displacement map and the prediction of
the forward model at the posterior mean.
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Figure 8: Four samples from the Markov chain after the burn-in period with the experimental
MR-ARFI dataset. The samples are 105 steps apart so that they can be treated as independent.

step that results in less correlated samples [36, 9] which makes the algorithm better at exploring the
posterior distribution πpost but each step of the algorithm has a higher computational cost. This
cost becomes significant when a large dataset is at hand, because this increases the cost of gradient
computations.

The difference between the two steps of the algorithm is apparent in Figure 9(a) where the inte-
grated autocorrelation functions and trace plots are presented for the likelihood potential Φ and the
two hyperparameters α1 and α2 in the test with synthetic dataset. The integrated autocorrelation
of α2 decays slower as compared to that of α1. This is because samples from the latter are generated
using the MALA updates. The α2 chain is slow because in this case the data is fairly informative in
the direction of phase, meaning that the posterior distribution πpost is dominated by the likelihood
rather than the prior distribution. Looking at the trace plots in Figure 9 , it is interesting that the
Φ chain demonstrates better mixing in comparison to the chains for α1 and α2.

Looking at Figure 9(b) we notice that the algorithm is behaving quite differently for the physical
dataset. The most obvious difference is in the chain for α1 which is highly uncorrelated. The main
reason behind this behavior is that the phase stepping technique [16, 25] that is used to retrieve
the displacement maps re-scales the MR-ARFI data and loses the information on the attenuation.
In other words, the data is not informative in the direction of attenuation and so the marginal
posterior on α1 is very similar to the prior. As for α2 we notice that the autocorrelation function is
decaying slightly faster in comparison to Figure 9(a) and the trace plot also indicates better mixing.

The results of this article were obtained using an implementation of the MwG algorithm for
estimation of the aberrator in MATLAB on a personal laptop (MacBook Pro with a 3GHz Intel
Core i7 processor and 8 GB or memory) in less than two hours. This processing time may not be
ideal for practical settings but it can be effectively reduced by implementation of the algorithm in
C/C++ and applying techniques such as parallel tempering and population MCMC [28] to further
reduce the required sample size needed to compute the expectations.

19



0 5 10

x 10
4

0

0.5

1

lag

Φ
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8

x 10
5

8.63

8.632

8.634

8.636

8.638

iteration
Φ

0 5 10

x 10
4

0

0.5

1

lag

α
1
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8

x 10
5

−0.45

−0.4

−0.35

−0.3

−0.25

iteration

α
1

0 5 10

x 10
4

0

0.5

1

lag

α
2
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8

x 10
5

0.55

0.6

0.65

0.7

iteration

α
2

(a)

0 5 10

x 10
4

0

0.5

1

lag

Φ
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8

x 10
5

10.3765

10.377

10.3775

iteration

Φ

0 5 10

x 10
4

0

0.5

1

lag

α
1
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8

x 10
5

−2

0

2
x 10

−3

iteration

α
1

0 5 10

x 10
4

0

0.5

1

lag

α
2
 a

u
to

co
rr

el
at

io
n

3 4 5 6 7 8 9 10

x 10
5

−1

−0.8

−0.6

iteration

α
2

(b)

Figure 9: Autocorrelation and trace plots of the likelihood potential and hyperparameters using (a)
the synthetic dataset and (b) the experimental MR-ARFI displacement map.

5.3 Quality of the estimates with synthetic and physical datasets

In Section 4.1 the results with a synthetic dataset were presented. This example is viewed as an
idealized setting where there is little discrepancy between the process for generation of the data
and the forward model. The results showed that the reconstructions were adequate even in the
presence of large errors, the posterior mean aPM of the phase (Figure 5(b)) was very close to the
actual value of the aberrations (the average point-wise error of the phase estimate was 4.5 degrees
which amounts to 15% relative error). Furthermore, the estimated standard deviation appeared
to be a good estimate of the expected errors in the reconstruction. However, in the case of the
attenuation, the posterior mean aPM was not as accurate as the phase shift even in this idealized
setting (compare Figure 5(a) and (b)) . This was due to the fact that the displacement data was
not sensitive to relatively small changes in the attenuation.

A more severe case of the issue with the estimation of the attenuation was shown with the
experimental dataset with MR-ARFI displacement maps. In this case, the discrepancy between
the model and the physical data as well as the normalizing step of the phase stepping technique
of [16, 25] made it impossible to estimate the attenuation. Consequently, the resulting posterior
distribution πpost on the attenuation (Figure 7(b)) was essentially the prior with a different variance.
Nonetheless, estimation of the attenuation from experimental data remains a challenge within our
framework. However, this is not a significant drawback as the attenuations have a minor effect on
the focusing of the beam compared with the phase shift.

It should be noted that estimating the free-field matrix and the calibration step can both be done
at a different time before performing experimenting with the presence of an aberrator. Then, the
processing time for the 160 sonication patterns of the calibration dataset are not a major restriction
during a real in vivo experiment or future clinic treatment. The primary objective is to reduce the
size of the reconstruction dataset as much as possible.

The computed free-field matrix of the transducer and the calibration step have a significant
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impact on the quality of the reconstructions. In the test with experimental MR-ARFI displacement
map of Section 4.2 the free-field was estimated using 160 sonication tests with ten steps in phase for
each virtual elements. Using subsets of this data resulted in a less accurate free-field matrix which
in turn resulted in very different reconstructions. Then one might prefer to use a large dataset
in order to obtain an accurate estimate of the free-field matrix which can be used on a smaller
reconstruction dataset later on.

5.4 Future research

The framework presented in this article can be extended in multiple directions in order to improve
the quality of the reconstructions which, in turn, will lead to better focusing of the beam. Obtaining
an accurate estimate of the empirical free-field with the minimum number of sonication tests is a
crucial task. The estimates of the aberrations become more sensitive to the free-field matrix as the
dataset becomes smaller. Therefore, a good estimate of the free-field matrix is needed in order to
further reduce the number sonication tests that are performed under in vivo or clinic conditions.
In [29] the authors argue that the free-field matrix is often low rank or at least it has fast decaying
singular values. This suggests that ideas from the Compressive Sensing and Matrix Completion
literature on recovery of low rank matrices [15] are applicable here. This approach has been applied
successfully for solution of the phase retrieval problem [5, 6] which is closely related to the problem
at hand.

Another promising direction for future research is improving the sampling algorithm. MCMC
algorithms often have a difficult time traversing high dimensional distributions. In such cases,
strategies such as population or adaptive MCMC or parallel tempering [28] can be used to improve
the statistical performance of the chain. Alternatively, one can also improve the algorithm by
changing the forward model so that it is differentiable in the phase. This would allow the use of
the MALA update on the entire posterior which would greatly improve the performance.

On the topic of MR-ARFI experiments, one can explore multiple directions for improving the
quality of the dataset. An interesting question is the interplay between voxel size, measurement
noise and acquisition duration. Smaller voxels give a better estimate of the free-field matrix and
the aberration but they are associated with more noise. This, in turn, requires smaller phase steps
and longer acquisition time or perhaps more averaging steps per sonication test. Therefore, finding
the optimal parameters for generating the dataset remains a challenge in practice.
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