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SUMMARY

The transport of three gas species, O2, H2O and N2, through the cathode of a proton exchange membrane (PEM)

fuel cell is studied numerically. The diffusion of the individual species is modeled via the Maxwell-Stefan equa-

tions, coupled with appropriate conservation equations. Two mechanisms are assumed for the internal energy

sources in the system: a volumetric heat source due to the electrical current flowing through the cathode; and heat

flow toward the cathode at cathode-membrane interface due to the exothermicchemical reaction at this interface,

in which water is generated. The governing equations of the unsteady fluidmotion are written in fully conservative

form, and consist of the following: (i) three equations for the mass conservation of the species; (ii) the momentum

equation for the mixture, which is approximated using Darcy’s Law for flow inporous media; and (iii) an energy

equation, written in a form that has enthalpy as the dependent variable.

Keywords: PEM fuel cells; Maxwell-Stefan equations; Finite volume method;Porous media; Non-reacting

mixtures

1 INTRODUCTION

Zero emission power generation has always been the ideal goal of people in the power generation community. One

approach to achieve this goal is via proton exchange membrane (PEM) fuel cells, which in principle combine oxy-

gen and hydrogen gas in a reaction that generates electrical current, producing only water as a byproduct. A PEM

fuel cell consists of two electrodes, the anode (hydrogen supply source) and the cathode (oxygen supply source),

between which is sandwiched a polymer membrane, usually consisting of Nafion R©. The interfaces between the

electrodes and membrane are impregnated with a platinum catalyst, as depicted inFig. 1.
∗Corresponding author, Post Doctoral Fellow, Department of Mechanical Engineering, Fax: ++1 (702) 974 9307, M.Kermani@unb.ca
†Assistant Professor, Department of Mathematics and Statistics.
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Approximate position of Fig. 1.

A great deal of recent research has appeared in the literature on modeling of transport processes in PEM fuel

cells. The vast majority of work (for example Gurau et al. (1998), Singh et al. (1999) and Yi and Nguyen (1999))

has focused on mass transport and it is only more recently that more completemodels including heat transport and

condensation have appeared (see He et al. (2000), Rowe and Li (2001) and Wang et al. (2001)).

The present work is part of an ongoing effort to carefully model individual elements of the PEM fuel cell, with

a particular focus on simulation of the flow of gas in the porous electrodes. The transport of two species in both

anode and cathode was studied by Promislow and Stockie (2001), and this work was extended in Stockie et al.

(2003) to handle three species, with(1, 2, 3) = (H2, H2O, CO2) in the anode and(1, 2, 3) = (O2, H2O, N2) in

the cathode. These two previous papers assumed isothermal conditions prevailed in the flow domain, whereas an

extension of the model to temperature-dependent flows recently performed by Bradean et al. (2001), in which

the two-species diffusion was governed by Fick’s Law and temperature was used as the dependent variable in the

energy equation.

In this paper, we present a model for gas transport in the cathode that issimilar to that developed by Bradean

et al. (2001), except that the full Maxwell-Stefan equations are used for diffusion and enthalpy is used as the

independent variable in the energy equation. Our motivation for using enthalpy is that it is a more appropriate

quantity for capturing the physics of condensation, which will play an important role in future modeling efforts.

First, we validate the numerical model against several isothermal and temperature-dependent test cases reported in

the literature. Then, the temperature-dependent algorithm is applied to a three-species flow. In the present work,

there is no liquid water, but regions of possible condensation can be identified by considering locations where the

partial pressure of H2O hypothetically exceeds the steam saturation pressure at the mixture temperature.

2 MATHEMATICAL MODELING

2.1 Governing Equations

The governing equations for unsteady flow of a gas mixture composed of three species,(1, 2, 3) = O2, H2O and N2,

are described here. Three equations for the mass conservation of the species are required, along with momentum

and energy equations for the mixture. The momentum equation is approximated by Darcy’s Law for flow in porous

media, and the energy equation is written in terms of enthalpy in order to simplify future extension of this work to

include water condensation.

The conservation equation for the mixture mass can be written as:

∂ρ

∂t
+ ∇ ·

[

ρ~V
]

= 0, (1)
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whereρ and~V are the mixture density and velocity. For species 1 and 2, the conservation equations are:

∂C1

∂t
+ ∇ ·

N1
︷ ︸︸ ︷
[

C1
~V + ~J1

]

= 0, (2)

∂C2

∂t
+ ∇ ·

[

C2
~V + ~J2

]

︸ ︷︷ ︸

N2

= 0, (3)

whereC1 andC2 indicate species molar concentration, andN1 andN2 represent the total species fluxes (advec-

tive + diffusive). It is important to note that the molar diffusive fluxes~J1 and ~J2 are measured relative to the

mass-averaged velocity~V .

A simplified form of the momentum equation, Darcy’s Law for porous media, is assumed to hold in the porous

electrode:

~V = −
K

εµ
∇P, (4)

whereµ is the mixture viscosity, andK (permeability) andε (porosity) are characteristics of the porous media.

The energy equation can be written in terms of total enthalpy,H = h + V 2

2
as:

∂

∂t
( ρH − P ) + ∇ ·

[

ρ~V H
]

= −∇ · ~q + q̇s (5)

where we are operating under low speed conditions in which the work of shear stress is ignored. The flux term~q

arises from two effects, conductive heat flux and diffusive enthalpyfluxes for the multi-species gas mixture, and so

can be written as

~q = −κ∇T +
3∑

i=1

hi
~ji = −κ∇T +

3∑

i=1

h̄i
~Ji. (6)

The specific enthalpy of speciesi is denoted byhi, and the mass diffusion flux relative to the mass-averaged

velocity by~ji = ρi(V̄i− ~V ), whereV̄i is the velocity of speciesi, ~V (as noted before) is the mass-averaged mixture

velocity, and hence(V̄i − ~V ), relative velocity of the speciesi w.r.t. the mixture velocity, is the diffusion velocity

of speciesi. The second form of the diffusive enthalpy term in Eqn. (6) can be derived by making use of the

definitionsh̄i = Mihi for the molar specific enthalpy and~Ji = Ci(V̄i − ~V ) for the molar diffusive flux relative to

the mass-averaged velocity. In Eqn. (5),q̇s is a volumetric heat source arising from ohmic heat generation

q̇s =
i2

σ
(7)

wherei is the electrical current density in the electrode andσ is the electrical conductivity.

For flow in fuel cells, speeds are relatively low and so the kinetic energy isseveral orders of magnitude smaller

than the static enthalpy term. Therefore,H = h + V 2/2 ≈ h, where

h =
h̄

M
=

∑
3

i=1 Yi h̄i
∑

3

i=1 Yi Mi

, (8)

with M being the mixture molecular weight andYi the species mole fraction determined by

Y1 =
C1

C
, Y2 =

C2

C
, Y3 = 1 − Y1 − Y2. (9)
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Assuming that all species obey the perfect gas law, in which specific heatscan be taken constant near the

operating temperature, we then have

h =

[
Y1C̄p1 + Y2C̄p2 + Y3C̄p3

]
T

Y1M1 + Y2M2 + Y3M3

≡ C̄pav
T/M (10)

Numerical experiments show that the contribution of the second term in Eqn. (6), the diffusive enthalpy flux of the

species, is negligible. Ignoring this term, the energy equation for low speedcases reduces to:

∂

∂t
(ρh − P ) + ∇ ·

[

ρ~V h
]

= ∇ · (κ∇T ) +
i2

σ
(11)

To close the system of equations, we assume that the mixture obeys the ideal gas law

P = CR0T, (12)

whereR0 is the universal gas constant. The mixture and species concentrations are related via

ρ =
3∑

k=1

ρk = C1M1 + C2M2 + M3C3, (13)

whereC3 = [C − C1 − C2] or

C = [ρ + (M3 − M1)C1 + (M3 − M2) C2]/M3. (14)

The auxiliary equations needed to determine the diffusive fluxes,~J1 and ~J2, are explained in the next section.

2.2 Diffusive Fluxes

The diffusive fluxes,~Jk, are often derived in a simplified form based on Fick’s law, which is strictly valid only

for mixtures containing two species (see Taylor and Krishna (1993)). A more appropriate model for multi-species

diffusion is obtained using the Maxwell-Stefan equations:
[ ~J∗

1

~J∗
2

]

= −C

[
D11 D12

D21 D22

]

︸ ︷︷ ︸

D

[
∇ (C1/C)

∇ (C2/C)

]

, (15)

where C is the mixture concentration, D is the diffusivity matrix of Maxwell-Stefan, and~J∗
k represents the molar

diffusive fluxes relative to the mole-averaged velocity. Each componentof the D matrix depends on the binary

diffusivity (i.e. ∆12, ∆13, or ∆23), via the relationships

D11 = ∆13 (Y1∆23 + (1 − Y1)∆12) /S,

D12 = Y1∆23 (∆13 − ∆12) /S,

D21 = Y2∆13 (∆23 − ∆12) /S,

D22 = ∆23 (Y2∆13 + (1 − Y2)∆12) /S, (16)

where

S = Y1∆23 + Y2∆13 + Y3∆12. (17)
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The diffusive fluxes based on mole- and mass-averaged velocities, i.e.~J∗
i and ~Ji, are connected via the following

relationship (see Taylor and Krishna (1993)):
[ ~J1

~J2

]

= S

[ ~J∗
1

~J∗
2

]

≡

[
s11 s12

s21 s22

] [ ~J∗
1

~J∗
2

]

, (18)

where the components of the conversion matrixS are

skl = δkl −
CkMl

ρ

(

1 −
M3

Ml

)

, k, l = 1, 2, (19)

whereδ is Kronecker delta function, i.e. fork = l, δkl = 1, andk 6= l, δkl = 0.

Combining Eqns. (15) and (18) yields:
[ ~J1

~J2

]

= −

[
a b

c d

] [
∇ (C1/C)

∇ (C2/C)

]

, (20)

where

a = C [s11D11 + s12D21]

b = C [s11D12 + s12D22]

c = C [s21D11 + s22D21]

d = C [s21D12 + s22D22] . (21)

The final diffusivity matrixD is scaled by a factor ofε1.5 ≈ 0.636, known as a Bruggeman correction, in order to

take into account the resistance to diffusion due to the porous medium.

2.3 Discretization of Governing Equations

Obtaining velocity from the Darcy’s Law,

~V = −
K

εµ
︸︷︷︸

B0

∇P ≡ −B0∇P (22)

and substituting into Eqns. (1), (2), (3) and (11) yields:

∂ρ

∂t
= ∇ · ( ρB0 ∇P ) , (23)

∂C1

∂t
= ∇ ·

[

C1B0∇P − ~J1

]

, (24)

∂C2

∂t
= ∇ ·

[

C2B0∇P − ~J2

]

, (25)

∂

∂t
(ρh − P ) = ∇ · (ρB0h∇P ) + ∇ · (κ∇T ) +

i2

σ
. (26)

The above equations are discretized using a cell-vertex finite volume approach, in which all flow parameters

are stored at cell vertices. This approach allows us to locate nodes on theboundaries of the computational domain.

In the description that follows, we represent a typical temporal derivative term by∂Q/∂t, and spatial derivatives

by ∂F/∂x, whereF is of the formF = A(∂B/∂x) in all cases. Time derivatives are integrated using a first
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order explicit scheme, while spatial derivatives are discretized via second order centered differences, suitable for

the diffusion terms:
(

∂F

∂x

)

j,k

=
1

∆x
[FE − FW ] , (27)

whereFE , andFW are the numerical fluxes at the East (E) and West (W) faces of a control volume surrounding

node (j,k).FE andFW are determined from

FE =
1

2∆x

[

A
j+1,k

+ A
j,k

] [

B
j+1,k

− B
j,k

]

, (28)

FW =
1

2∆x

[

A
j,k

+ A
j−1,k

] [

B
j,k

− B
j−1,k

]

, (29)

and similarly for they-derivative terms. As an example, the discretized form of Eqn. 23 could be written as:

Q
n+1

(j,k)
− Q

n

(j,k)

∆t
=

1

∆x
[FE − FW ] +

1

∆y
[GN − GS ] (30)

whereQ ≡ ρ ,

FE =

[

ρ B0

∂P

∂x

]

E

, and

GN =

[

ρ B0

∂P

∂y

]

N

. (31)

Similar form for the discretization of Eqns. 24–26 could be used. For the current explicit computation, a globally

constant time step for temporal integrations were used. Stability requirements limitsthe explicit time step to be

small enough allowing to capture the physics of transient flow and observeflow acceleration as the solution evolves

toward steady-state. The intermediate solutions would only be physically correct, if a physically correct initial

condition is provided to the solver.

2.4 Boundary Conditions

For the following discussion of boundary conditions, refer to Fig. 1.

• At boundary locations (I), the wall is assumed to be impermeable. That is,Jy
1

= Jy
2

= 0, andv = 0,

whereJy
k andv represent diffusive flux and velocity components in vertical direction. The heat flux con-

ducted through this boundary is determined by an equivalent convectiveheat flux from the coolant, written

as−κ(∂T/∂y) = KW
T (TW − T ), whereKW

T is an equivalent convective heat transfer coefficient between

the electrode and coolant, andTW is the coolant temperature.

• At open channel boundary (II), the gas pressure is set equal to thechannel pressure,P = P̄ . The diffusive

fluxes at this boundary are assumed to obey an analogue of Newton’s cooling law in heat transfer, i.e.Jy
k =

rk
0(C̄k − Ck), for k = 1, 2, whererk

0 is the convective mass transfer coefficient for speciesk. The energy

equation at this boundary is approximated by−κ (∂T/∂y) = KC
T (T̄ −T ), whereKC

T is the convective heat

transfer coefficient in the channel and̄T is the channel temperature.
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• At the catalyst boundary (III), species 1 (Oxygen) is assumed to obeythe mass flux conditionJy
1

= rH(C1−

C∞), whererH is the convective mass transfer coefficient, andC∞ is the concentration at the membrane,

usually taken equal to zero. Water vapor (species 2) is generated at thisboundary at the rate of two moles of

water for each mole of oxygen that crosses the cathode-catalyst boundary; hence,Ny
2

= −2Ny
1

. The inert

gas component, species 3 (N2), cannot penetrate the membrane which is impermeable to gas, and soNy
3

= 0.

A heat flux arises at this boundary due to the heat of reaction, and hence κ(∂T/∂y) = 2Ny
1
hr, wherehr is

the enthalpy of formation of water in gas form.

• At side boundaries (IV), periodic boundary conditions are specified.

3 RESULTS AND DISCUSSIONS

3.1 Numerical Validation

In this section, we present three validating test cases in a fuel cell cathode. This is followed by a full three-species

non-isothermal computation in Section 3.2.

3.1.1 Three-species isothermal computation

The first validating test case performed relates to isothermal flow of a threespecies(1, 2, 3) = (O2, H2O, N2)

mixture in the cathode, governed by Eqns. (23) – (25). The computationaldomain is depicted in Fig. 2.

Comparisons are extremely difficult to do because of the lack of experimental data in the literature. So we have

compared to previous published numerical results instead. An isothermal computation reported by Stockie et al.

(2003) is used for the comparison purposes, in which the governing equations were discretized using a method of

lines, resulted to a system of ordinary differential equations and integrated implicitly using the stiff ODE solver of

DASSL.

This computation domain is performed based on the parameters: permeabilityK = 10−8 cm2, porosity

ε = 0.74, viscosityµ = 2.24 × 10−4 g/(cm.s), binary diffusivity coefficients∆12 = 0.124, ∆13 = 0.104 and

∆23 = 0.123 cm2/s, channel pressurēP = 1.0×106 dyne/cm2, species mole fractions in the channelY1 = 0.21,

Y2 = 0.10 andY3 = 0.69, channel temperaturēT = 346.15oK, and mass transfer coefficientsr1
0 = r2

0 = 10 cm/s

andrH = 0.8 cm/s.

Approximate position of Fig. 2.

Approximate position of Fig. 3.

Approximate position of Fig. 4.

7



Figures 3 and 4 display the results of the present computation at steady-state for oxygen and water fluxes at the

catalyst layer (i.e., the top boundary). The difference in molar fluxes at the peaks or valleys differ by at most 7.1%.

The agreement in mole fractions is considerably better, lying within about 1%.

Approximate position of Fig. 5.

In the present computation, neither phase change nor condensation is modeled. However, the regions in which

condensation are likely to occur can still be estimated as follows. Condensation occurs at the dew point, where the

partial pressure of water vapor,Pv, reaches the saturation pressure at the mixture temperature, i.e.Pv/Psat(T ) → 1.

With this in mind, we obtain relative humidity,Φ = Pv/Psat(T ), where the saturation pressure,Psat , is determined

from Appendix A, at the mixture temperature.Φ < 1 represents dry regions, and whileΦ cannot exceed 1 in an

actual condensation problem, we identify regions in which condensation is occurring byΦ ≥ 1 in the present dry

computations. It is estimated that regions ofΦ ≥ 1 in isothermal computation cannot provide a reliable knowledge

on the locus of wet regions. However,Φ ≥ 1 regions in non-isothermal computation (in which energy equation

is also solved) can provide quite useful information on the locus of wet regions, and it is estimated these regions

can well match with those in a two-phase modeling. This is especially true if equilibrium thermodynamic model

is used in a two-phase flow computation, in which moisture onsets as soon as thesaturation line is crossed. But in

order to evaluate the quantity of generated moisture a non-isothermal dry flow computation is not sufficient and a

two-phase flow modeling is required.

Under usual fuel cell operating conditions, liquid water is known to be generated, but the exact location where

condensation occurs is unknown. If water condenses on or near the catalyst layer (where the product H2O enters

the cathode), then pockets of water may collect which could potentially narrow the channels through which oxygen

gas is supplied to the catalyst. In turn, these pockets of water could restrictor interrupt the supply of oxygen to the

catalyst and thereby degrade fuel cell performance. As a result, management of liquid water is of prime importance

in fuel cells, and identifying the locusΦ = 1 is a first step in locating potential problem situations.

Figure 5 shows the condensation pockets predicted by the isothermal simulation, which occur at the catalyst

boundary. Clearly, the supply of reactant gases are not cut off in thiscase, but there is a potential for performance

degradation if excessive water is generated in these pockets, which could cause regions of the catalyst to be starved

of oxygen.
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3.1.2 Two-species non-isothermal computation

In the present validating test case, we consider the full set of governing equations, including the energy equation,

Eqn. (26). This section deals with a non-isothermal computation of two-species flow (i.e. O2, H2O) in the cathode,

corresponding to an example considered by Bradean et al. (2001). Intheir computation, the governing equations

were written in steady form, and a pressure-based scheme of Patankar (1980) was employed to iterate on the

solution until convergence is obtained. Furthermore, a single-channel geometry was studied (see Fig. 6). It should

also be noted that in their computations, the two-species mixture was assumed to obey Fick’s Law; our model, on

the other hand, has three gas species modeled by the Maxwell-Stefan, andso we have set the concentration of the

third species, N2, to zero in the channel for comparison purposes.

The problem parameters used in this case are as follows: permeabilityK = 10−8 cm2, porosityε = 0.74,

viscosityµ = 2.24 × 10−4 g/(cm.s), effective diffusivityD = 0.08 cm2/s (obtained based on binary diffusivity

values of∆12 = 0.124, ∆13 = 0.104, and∆23 = 0.123 cm2/s), effective thermal conductivityκ = 4. ×

105 erg/(s cm oK), specific heat of the mixtureCp = 2. × 107 erg/(g oK), channel pressurēP = 1.1 ×

106 dyne/cm2, mass fraction of O2 ρ
O2

/ρ = 0.71 (instead of mass fraction an equivalent mole fraction values

of Y1 = 0.58, Y2 = 0.42, andY3 = 0 are used), channel and coolant temperaturesT̄ = TW = 353.15oK,

channel mass transfer coefficientr1
0 = 800 cm/s, channel convective heat transfer coefficientKC

T = 1.5 ×

104 erg/(s cm2 oK), equivalent convective heat transfer coefficient in graphiteKW
T = 1.1×107 erg/(s cm2 oK),

heat of reactionhr = 1.36 × 1012 erg/mol, mass transfer coefficient at the catalystrH = 0.3 cm/s, andq̇s = 0.

Approximate position of Fig. 6.

Approximate position of Fig. 7.

Approximate position of Fig. 8.

The numerical results for this example are displayed in Figs. 7 and 8. The computed temperatures agree to

within approximately0.6oK (out of a full range of≈ 360oK). The sources for this slight disagreement (0.16%

difference) could be associated to the use of Fickian law in the two-speciesmodeling by Bradean et al. (2001).

This is as opposed to the present modeling, in which Maxwell-Stefan has been used. It is noted that in the present

computation the mole fraction of the inert gas (Nitrogen), i.e.Y3, in the channel has been set to zero in order to

match the test case of Bradean et al. (2001), however, an infinitesimal non-zero value are calculated as a part of

solution forY3 throughout the computational domain. The location of the possible condensation region, as depicted

in Fig. 8, also matches very well with the results reported by Bradean et al. (2001).
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3.1.3 Three-species isothermal; another validating case

As the last validation for the present computation, comparisons will be made withthe computation of Um et al.

(2000). Figure 9 shows the schematic of cathode and channel in Um et al.(2000) computation. As shown in this

figure three-species flow enters the channel at the station (i) and exits at(e). The comparisons will be made at the

cross-sectionS − S, which is located at the mid-length of the channel, i.e.X = L/2.

The computation is performed based on the data provided by Um et al. (2000). At station (i), on dry basis air

molar analysis is 21% oxygen and 79% nitrogen, where relative humidity ofΦ =100% is specified. The specified

channel pressure is 5 atm (= 5.066 bar), and the computation is performedisothermally atT = 353oK(80oC).

To further match the cases, the following parameters are used for permeability K = 1.76 × 10−7 cm2, and

porosityε = 0.4. The rest of parameters are taken similar to that of Section 3.1.1.

For comparison purpose, the profile of oxygen mole fraction in the cross-sectionS − S are presented (see

Figs. 9 and 10). It should be noted that in the present one-dimensional computation, the values ofY1 = 0.171,

andY2 = 0.0935 have been specified for the channel values of mole fraction. As shown inFig. 10 the agreement

between the test cases are good. The root mean square (RMS) of the difference between the computations have

been calculated, giving a value of within 4% difference between the present computation and that of Um et al.

(2000). As a further validation, the general trends are consistent with those predicted by the one-dimensional

model of Bernardi and Verbrugge (1991).

Approximate position of Fig. 9.

Approximate position of Fig. 10.

3.2 Three-Species Non-Isothermal Computation

In this section, we present simulations of a full three-species non-isothermal flow, and compare the results to an

equivalent isothermal calculation. The problem parameters used in this non-isothermal case are:κ = 0.677 ×

105erg/(cm s oK), C̄pO2
, C̄pH2O

, C̄pN2
respectively =2.97 × 108, 3.39 × 108, and2.91 × 108 erg/(mol.oK),

KC
T = 1.5 × 105 erg/(s cm2 oK), KW

T = 1.1 × 107 erg/(s cm2 oK), TW = 346.15oK, hr = 2.418 ×

1012 erg/mol, i = 1.0 amp/cm2, andσ = 7.273 × 10−5 amp2 s/(erg cm). The rest of parameters were similar

to the test case of Section 3.1.1.
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Approximate position of Fig. 11.

Approximate position of Fig. 12.

TheΦ = 1 contour in Fig. 11 shows that the electrode remains almost totally dry except for a small pocket

of condensation that appears at the bottom boundary above the landing area (the solid wall region separating the

two channels). This prediction runs contrary to the results from the isothermal case, in which condensing pockets

appear along the top boundary (see Figs. 5 and 11). This significant change in the location of the condensing

regions highlights the importance of solving the energy equation along with the other transport equations.

The two sets of results are compared in Fig. 12 along horizontal cross-sections at both the upper and lower

boundaries. Figures 12-a, and b show the distribution of the relative humidity, Φ, along the top and bottom bound-

aries, whereΦ = Pv/Psat andPsat is given by Eqn. (32). Uniform temperature in the isothermal case corresponds

to a constant value of saturation pressure. In the non-isothermal case,the temperature field is significantly ele-

vated via two sources: (i) heat source terms, arising fromq̇s in the energy equation; and (ii) the heat of reaction

at the catalyst boundary which enters the electrode from the top boundary. The heat of reaction requires that the

temperature at the catalyst boundary be the highest along any horizontalcross-section, as evidenced in Fig. 12-f.

Furthermore, a maximum temperature variation of about 8.0oK was obtained along the vertical cross-section at

mid-channel (x = 0.25 cm). While this temperature variation seems somewhat large in view of the0.5 mm thick-

ness of the electrode, a milder temperature variation could be obtained, for example, by choosing a material with

higher thermal conductivity. A test case has been performed usingκ = 4 × 105 erg/(cm s oK) (about 6 times

larger thermal conductivity) and a temperature variation of less than 1.0oK was obtained across the electrode.

We can also use the results of Fig. 12 to explain why the condensing regionsmigrate from the upper catalyst

boundary to the bottom boundary. In Fig. 12-f, the temperature variation along the vertical cross-sectionx =

0.5 cm is approximately 5.0oK, which translates into a rise of∆Psat = 6.21×104 dyne/cm2 (about 17% of local

saturation pressure). This∆Psat is the main reason thatΦ decreases as we move upward through the electrode

above the landing area. It is noted that the main variation inΦ is due toPsat , because of the similarity between

mole fraction (Y2) and mixture pressure (P ) between the isothermal and non-isothermal cases (see Figs. 12-c, d, i,

and j).

4 CONCLUSION

A mathematical model is presented for simulating isothermal flow of three gas species (O2, H2O and N2) in the

cathode of a proton exchange membrane fuel cell. The three transport equations for the three species are augmented

by an energy equation in order to determine the temperature variations in the electrode. Regions of possible

condensation are obtained using this model by monitoring the over-saturatedregions. We demonstrate that only

slight variations in temperature throughout the domain (of about 5.0oK) can significantly change the location of

11



regions of condensing gas.

Over-saturated regions (Φ ≥ 1) in isothermal computations cannot provide a reliable knowledge of the location

of liquid water. However, regions whereΦ ≥ 1 in non-isothermal computations (in which energy equation is also

solved) can provide useful information about the wet regions. This is especially true if the equilibrium thermo-

dynamic model is used in a two-phase flow computation, in which condensation occurs as soon as the saturation

line is crossed. In order to measure the amount of moisture generated, a more sophisticated model, which includes

phase change, is required. We plan to incorporate this change in the future using an equilibrium thermodynamic

model.

The energy equation is written in terms of enthalpy or could be written in terms of internal energy (rather than

temperature) as the dependent variable, which will be an important issue in future studies that focus on careful

modeling of condensation.
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APPENDIX A

The saturation pressure for steam, within a temperature range ofT = [40, 160]oC, is determined from the following

polynomial of degree 5 in terms ofdyne/cm2:

Psat(T ) = a T 5 + b T 4 + c T 3 + d T 2 + e T + f, (32)

where

a = 7.79E − 6, b = +1.06E − 2, c = −9.84E − 1

d = 1.13E + 2, e = −3.43E + 3, f = +6.60E + 4

Thermodynamic data is taken from steam thermodynamic tables of the text by Moran and Shapiro (2000) and fitted

using a fifth-order, least squares polynomial approximation.
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Figure Captions

1. Figure 1: A schematic picture of a proton exchange membrane (PEM) fuel cell.

2. Figure 2: Computational domain, consisting of a 2D slice through the cathode over a pair of flow channels.

3. Figure 3: Comparison of molar fluxes at the catalyst boundary (the top boundary) for species(1, 2) =

(O2, H2O).

4. Figure 4: Comparison of computed mole fractions at the catalyst boundary (the top boundary) for species

(1, 2, 3) = (O2, H2O, N2).

5. Figure 5: Regions of possible condensation predicted by the model, assuming isothermal conditions.

6. Figure 6: Fuel cell used by Bradean et al. (2001).

7. Figure 7: Comparison of temperature distribution at the catalyst boundary (the top boundary) with the results

of Bradean et al. (2001).

8. Figure 8: Region of possible condensation predicted by the present two-species non-isothermal computation

with one channel.

9. Figure 9: Cathode and channel schematics in Um et al. (2000) computation.

10. Figure 10: Comparison of oxygen mole fraction (Y1) across the porous media of cathode, at the cross-section

S − S of the previous figure.

11. Figure 11: Region of possible condensation predicted by the present three-species non-isothermal computa-

tion with two channel.

12. Figure 12: Comparison of three-species isothermal (left) and non-isothermal (right) computations.
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Figure 1: A schematic picture of a proton exchange membrane (PEM) fuel cell.
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