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AbstractThe motion of exible �bres suspended in an incompressible uid is of interest to researchers in a widevariety of �elds, including reinforced composite materials, biotechnology and the pulp and paper industry. Inthis work, we concentrate on the application to pulp �bres and demonstrate how the complex hydrodynamicinteraction between a exible �bre and the surrounding uid can be simulated using the immersed boundarymethod. The computations involve a single �bre suspended in a two{dimensional shear ow at moderateReynolds number. Previous experimental work di�erentiates the observed �bre motions into a well{de�nedset of \orbit classes," which are reproduced in our simulations for �bres with varying exibility. The computed�bre orientation angle distributions are compared to classical theoretical results, and shown to exhibit askewness which is not captured by either the linear theory or other recent numerical computations thatignore the �bre{uid interaction. These simulations set the stage for further work in modeling ows withmultiple �bres in three dimensions, for the purpose of improving the papermaking process.
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Simulating the Motion of Flexible Pulp Fibres Using the ImmersedBoundary MethodJohn M. Stockie� and Sheldon I. Greeny�Department of Mathematics and Statistics, Simon Fraser University, Burnaby,British Columbia, Canada, V5A 1S6;yDepartment of Mechanical Engineering, University of British Columbia,Vancouver, British Columbia, Canada, V6T 1Z4[Last revision: April 27,1998]1 IntroductionA thorough understanding of the behaviour of pulp �bres in suspension is extremely important to the pulpand paper industry in many stages of the papermaking process. The output of mechanical pulp re�ners isa suspension of �bres of varying length and exibility. Moderately exible �bres are more desirable thanrigid ones because they have larger relative bonding area and thus form paper with higher tensile strengthand better printability [8] (inexible �bres can be sent through a secondary re�ner for enhancement of theirexibility). Hence, it is important to separate �bres based on their exibility in order to produce high qualitypaper. One method of performing this separation is to suspend the �bres in the shear ow generated by apressure screen. A knowledge of the hydrodynamic behaviour of �bres with di�ering length and exibilityis essential to understanding the separation process.A considerable amount of theoretical work has been done on modeling �bres, since �bre suspensionsappear in many applications other than papermaking. Much of the theory centers around the motion ofrigid cylindrical rods immersed in low Reynolds number or Stokes ows. Attempts have been made to add asmall degree of exibility, but these results are usually fairly limited in their application. Accordingly, muchof the work on exible �bres has been experimental, though more recently several numerical simulationshave been undertaken.The main purpose in this paper is to demonstrate that the complex interaction between a �bre and uidcan be handled using the immersed boundary method. This method was originally developed by Peskin [21]to simulate the ow of blood in the heart. It has since been applied to a diverse range of other applicationsinvolving swimming microorganisms [9], aggregation of blood platelets [10], bio�lms [5], particle suspen-sions [11, 30] and plasma simulations [18]. The immersed boundary framework extends very naturally tohandle exible �bres in suspension, and we will show that the full range of observed planar �bre motions isreproduced in two-dimensional simulations.The immersed boundary method's main advantages are its simplicity and geometric exibility, whichaccount in large part for its widespread use. It is a mixed Eulerian{Lagrangian scheme that combines thee�ciency inherent in using a �xed Cartesian grid to compute the uid motion, along with the ease of trackingthe immersed boundary at a set of moving Lagrangian points. The key idea in this method is to replacethe uid{material interface with appropriate contributions to a force density term in the Navier{Stokesequations. The internal boundaries are thereby eliminated and a simple �nite di�erence scheme can be usedto solve the uid equations, with the inuence of the immersed boundary relegated to an inhomogeneous4



forcing term that is distributed onto uid points that lie near the interface. The interface is modeled verysimply using a data structure composed of \spring{like" links between adjacent points, which facilitates thehandling of immersed boundaries of nearly arbitrary shape, size and con�guration.We begin in the next section with an overview of the theoretical and experimental work that has beendone on exible pulp �bres, as well as more recent attempts to simulate their motion in computations.The mathematical framework used to model immersed �bres and the corresponding numerical method aredescribed in Sections 3 and 4. We then present a series of pulp �bre simulations in Section 5, and drawcomparisons with previous experiments and computations.2 Background: Pulp Fibres2.1 Theory and experimentsAs early as 1922, Je�ery studied the motion of a single rigid, neutrally{buoyant, elliptical particle in ahomogeneous Stokes ow [17]. He proved that the center of the particle follows streamlines, and that whensubjected to a Couette ow, it rotates about its center according to'(t) = tan�1 �re tan� Gretr2e + 1�� ; (1)where ' is the angle that the major axis of the ellipse makes with the vertical, G is the shear rate, and reis the ratio of the lengths of the major and minor axes of the ellipsoid (refer to Fig. 1). Two things can be
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zFigure 1: Je�ery's ellipsoidal particle immersed in a linear shear ow.deduced from this formula: �rst, the particle has a non{uniform angular velocity which is largest when theparticle's major axis is at right angles to the ow direction (' = 0�), and drops to a minimum at ' = 90�;and second, the period of motion is a constant, given byT = 2�G �re + 1re� ; (2)5



which is approximately T � 2�re=G for long, thin ellipsoids (when re � 1).Wood pulp is not composed of these idealised ellipsoids however, but rather hollow, cylindrical �bresof length 0.1 to 0.3 cm with aspect ratios ranging from 60 to 400. Anczurowski & Mason [1] showed thatJe�ery's equation (2) could be used to describe the motion of rigid, cylindrical �bres by replacing re withan equivalent ellipsoidal axis ratio r�e , which is chosen by matching periods from experiments. Cox [4] foundexpressions for the force and torque on particles of various shapes in response to shear ow. He also derivedan approximate formula for the equivalent aspect ratio for particles of various shapes, which compares verywell with experiments.While Je�ery's equation is a good approximation for rigid �bres, experiments establish that it cannot beapplied to �bres that experience signi�cant bending [19]. As a consequence, much of the work on exible�bres has focused on experimental observations of the periods and types of motion. Forgacs et al. [15]observed, in experiments involving very dilute suspensions (with concentrations less than 0.01%), that �bresare essentially isolated and particle interactions can be neglected. When subjected to laminar shear, �brestend to orient themselves in the direction of the shear ow, and when in motion they either rotate in verywell{de�ned orbits, or bend in some predictable fashion. Experiments by Mason and co{workers [2, 19]identi�ed a wide range of �bre behaviours, which they separated into distinct orbit classes based on theexibility of the �bre. We have summarised the orbits which are two{dimensional in nature in Table I, sincethese are the only motions that can be simulated by our 2D �bre model (there are several other types oforbit involving non{planar motions, such as spinning in the axial direction, that we haven't included here).Orbit ClassI Rigid rotation �! decreasingsti�nessincreasinglength&shearrate �!
II Springy rotationIIIa Loop or S turnIIIb Snake turnIV Complex rotationTable I: Orbit classes for exible �bres immersed in a 2D shear ow (adapted from [15, p. 124]).Rigid �bres (class I) rotate as solid cylinders, with angular velocity that reaches a maximum when the�bre is aligned at right angles to the direction of the shear ow. Flexible �bres have several possible modes6



of rotation, the simplest of which is called a springy rotation (class II), where the �bre still revolves butdeforms into the shape of an arc during the spin. In the loop or S{turn (IIIa) and snake turn (IIIb), the�bre is deformed into a more intricate curved intermediate shape, after which it straightens out once again(the S{turn is rarely observed in experiments except for very carefully chosen initial con�gurations and a�bre with a high degree of symmetry [2]). The �nal class IV orbit corresponds to a �bre that performs asnake{like turn but never straightens out, continuing to loop over itself; this is called a complex rotation.Forgacs et al. [15] used measurements of �bre exibility to show that the various orbit classes occurred fordi�erent �bre sti�ness values, with the sti�ness decreasing as one moves down in the table. Di�erences alsoarise in orbital motion of �bres when the shear rate and �bre length are varied, keeping the other physicalparameters the same [14]. Fibre motion is thus a function of shear rate, bending sti�ness and �bre length.2.2 Computational approachesThe motion of exible �bres in response to a shear ow can be quite intricate, and the analytical resultscannot capture the full range of complexity of observed orbits. Furthermore, due to the small size of the�bres and the di�cult and time{consuming process of accumulating accurate ow measurements, there areconsiderable restrictions placed on the information that can be culled from experiments. Hence, numericalsimulations present an ideal opportunity to gain a deeper understanding of exible �bre motion by studyingthe �ne structure of uid and �bre behaviour.There have been several recent e�orts to simulate �bre motion numerically. Yamamoto & Matsuoka [33]approximate a �bre as a chain of bonded spheres that are free to stretch, bend and twist relative to eachother. In this model, there is no hydrodynamic coupling between uid and �bre: the uid undergoes agiven linear shear, and the motion of the �bre is determined by solving a set of dynamic equations witha given applied uid force. Links between the spherical elements are governed by three sti�ness constants(for stretching, bending and twisting motions) whose values depend on the radii of the spheres and Young'smodulus for the material. This work has since been extended to simulate large systems of particles [34] andalso incorporates forces of attraction and repulsion between individual �bres.Wherrett et al. [32] implemented a slightly modi�ed version of the Yamamoto{Matsuoka model, whichuses cylindrical elements instead of spheres. The stretching and bending sti�nesses are modi�ed to includethe aspect ratio of the elements, and the simulations are two{dimensional so that torsional motions areignored. They derive a dimensionless bending number, which is used to relate the changes in computedperiods of revolution to �bre exibility. The work of Ross & Klingenberg [26] made use of another similarmechanical model, consisting of linked prolate spheroids. They eliminate axial stretching by linking theelements with ball and socket joints | real �bres do not stretch appreciably, even in highly sheared ows,and so this aspect of their model seems particularly advantageous.Another class of method that has proven to be particularly well-suited for simulating many ows withcomplex geometry is the boundary element method. Ingber & Mondy [16] use this approach to study themotion of cylindrical particles in a Stokes ow, including the interactions with other particles and the channelwalls.In all of the work just mentioned, the inuence of the �bres on the uid has been neglected. Anotherapproach has been to model �bres as simple rigid rods and concentrate instead on the hydrodynamic couplingbetween the �bres and the uid. A rheological model for non{dilute �bre suspensions was used in [24] and [25]to compute changes in the velocity �eld and relative viscosity of the uid due to the presence of many �bres.However, this approach captures only the averaged properties of a large number of suspended particles,whereas the focus of our work is simulating the motion of individual �bres.From the previous discussion, there is an obvious gap in the computational work on pulp �bres; namely,in the simulation of the hydrodynamic interaction between individual pulp �bres with the surroundinguid. There is good agreement between theory and experiment for rigid �bres, and so it is unlikely thathydrodynamic coupling has a signi�cant e�ect in this case. However, the same cannot be said of exible�bres, and it is here that the immersed boundary approach can make a substantial contribution.7



3 Mathematical DescriptionImmersed �bres are exible, force{bearing �laments, submerged within an incompressible uid, that are as-sumed to be neutrally buoyant, massless, and to occupy zero volume. Three{dimensional immersed surfaces(such as the heart model of [22]) are composed of an interwoven mesh of such �bres. The typical assump-tions made in analytical and numerical investigations of pulp �bres are that the uid is Newtonian andincompressible, and that the �bres are massless and neutrally{buoyant. Furthermore, the ow conditionsunder which individual �bres are considered typically correspond to very low Reynolds numbers (typical�bre Reynolds numbers occurring in papermaking, based on the �bre diameter and slip velocity, are in therange 5{50 in a headbox slice, and 2{10 in a twin wire former gap). Aspect ratios are very large, so that�bres are nearly one{dimensional structures. Taken together, these are precisely the assumptions made forimmersed �bres, and so this model seems particularly well{suited to the representation of exible pulp �bres.Under these conditions, the �bres themselves are incompressible, and the uid{�bre system can be regardedas a composite, viscoelastic material. The main advantage to this model is that the uid and �bre can bedescribed by a single velocity �eld, for which we now derive the equations of motion.We consider a rectangular uid domain, 
, with dimensions Lx�Ly, that is �lled with an incompressible,viscous uid, as pictured in Fig. 3. The top and bottom walls are moved with constant velocity U in oppositedirections, resulting in a shear ow with shearing rate G = 2U=Ly. The boundary conditions are chosen tobe periodic in the x{direction. Suspended within the uid is a �bre, which can be described by a continuouscurve �.The motion of the uid{�bre composite is governed by the incompressible Navier{Stokes equations�@u@t = ��u � ru+ ��u�rp+ F ; (3)r � u = 0; (4)where u(x; t) = (u(x; t); v(x; t)) is the uid velocity, p(x; t) the pressure, F (x; t) is the external force, and� and � are the constant uid density and viscosity. Let x = X(s; t) represent the position of the �bre,where s is a parameterisation of � in some reference con�guration (typically, s is taken to be the arclengthof the �bre in an unstressed state, though as the �bre evolves in time s will not necessarily be a measure ofarclength).Gravitational e�ects can be assumed negligible because the �bre is neutrally buoyant, which implies thatthe external force F arises solely from the action of the elastic �bre. The force is zero everywhere except onthe �bre, and so the uid body force F is a distribution and can be written compactly as the convolution ofa �bre force density, f(s; t), with a delta function:F (x; t) = Z� f(s; t) � �(x�X(s; t)) ds; (5)where �(x) = �(x) � �(y) is the product of two Dirac delta functions. The immersed �bre is required to moveat the same velocity as neighbouring uid particles, and so we write@X@t = u(X(s; t); t);= Z
 u(x; t) � �(x �X(s; t)) dx; (6)where this second delta-function form of (6) is used to great advantage in the immersed boundary method,which we describe in the next section.The �nal component needed to close the system of equations (3){(6) is an expression for the force perunit length, f(s; t), along the �bre. In the immersed boundary method, the �bre is tracked at a discrete setof Nb points, X`, for ` = 1; 2; : : : ; Nb, which move in time. The force density at any point is a function ofthe �bre con�guration, which for wood pulp must take into account the resistance of the individual �bres to8
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Figure 3: The periodic channel domain for the pulp �bre simulations, with shearing motion induced bymoving top and bottom walls. 9



stretching/compression and bending. We take an approach that follows that used for immersed boundarycomputations of swimmingmarine worms [9], wherein the force is modeled by means of a set of force{bearing\links" between nearby points on the �bre. The �bre force density at a given point, f`, is written as thegradient of a potential function E (: : : ;X`;X`+1; : : : ):f` = � @E@X ` : (7a)Contributions to the force arising from stretching{resistant links between successive �bre points can beconsidered as arising from the potentialEs = 12 Nb�1X̀=0 �s (kX`+1 �X`k � ro)2 ; (7b)where �s is the stretching sti�ness, and ro is the resting length of the link joining each pair of points. Eachterm in the sum represents a spring{like link between two neighbouring points on the �bre. This can be seenby di�erentiating the sum at X`, which leads to two contributions to the force density in (7a) of the form�s (kX`+1 �X`k � ro) (X`+1 �X`)kX`+1 �X`k ;the second involving points X` and X`�1. Written in this manner, the force is clearly like that of a springobeying Hooke's law, with resting length ro and sti�ness �s, directed along the vector joiningX` and X`+1.Fig. 4(a) pictures a link of this type and the forces arising at each of the two points involved.The bending{resistant links, on the other hand, can be incorporated using a force that drives the anglebetween successive triplets of points to a given equilibrium angle �0. An energy function that accomplishesthis is the following Eb = 12 Nb�1X̀=1 �b �ẑ � (X` �X`�1) � (X`+1 �X`) � r2o sin �o�2 ; (7c)where ẑ = (0; 0; 1), and r2o sin �o is related to the equilibrium curvature of the �bre (it is actually the quantitysin �o=ro that has the interpretation of curvature { see [9, p. 90-92] for a full discussion). To model a straightrod, we select �o = 0 for each link. The term enclosed in square brackets in Eq. (7c) may be rewritten askX` �X`�1k � kX`+1 �X`k sin � � r2o sin �o;which is approximately r2o(� � �o) when the �bre is close to equilibrium; hence, this contribution to theenergy function serves to drive the angle between neighbouring pairs of links to �o.The energy function describing a exible �bre is now given byE = Es + Eb: (7d)The stretching and bending forces given in (7b) and (7c) are very similar to that used in the mechanical pulp�bre models mentioned earlier in Section 2.2. The main di�erence here is that in the immersed boundarymodel, the �bre force actually inuences the ow of the surrounding uid.4 Numerical MethodThe immersed boundary method (discussed briey in the Introduction) is a mixed Eulerian{Lagrangian�nite di�erence scheme for computing the motion of immersed �bres. The uid variables are de�ned ona �xed, Eulerian, Nx � Ny grid of points, with positions xi;j = (xi; yj) = (ih; jh), for i = 1; : : : ; Nx andj = 1; : : : ; Ny. The values of Nx and Ny are chosen so that the mesh spacing h = LxNx = LyNy is equal in both10
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directions. The uid domain is periodic in the x{direction, so that the points x0 and xNx are identi�ed witheach other. The �bre position, on the other hand, is a Lagrangian quantity which is discretised as a set ofNb moving points, so that the parameter s is taken at discrete locations s` = ` �hb, where hb = LfNb and Lf isthe length of the �bre. Both uid and �bre quantities are sampled at equally{spaced times tn = n �k, wherek is the time step. Fig. 5 depicts a typical uid{�bre grid.
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delta function given by (8a) and (8b):Fni;j = NbX̀=1 f ǹ � �h(xi;j �X ǹ) � hb:Step 3: Solve the Navier{Stokes equations (3){(4) for the velocity at the next time step, un+1i;j , usingChorin's projection scheme [3]. This method is a three{step process in which:1. convection and di�usion are applied implicitly to obtain an \intermediate" velocity;2. a Poisson equation is solved for the pressure; and3. the pressure is used to update the intermediate velocity so that it is divergence{free.Step 4: The resulting uid velocity, un+1i;j , is interpolated onto neighbouring �bre points and the �bre isevolved in time: Xn+1` = Xǹ + k �Xi;j un+1i;j � �(xi;j �X ǹ) � h2:Repeat: n 7! n+ 1.The algorithm is described in full detail in [23].If we restrict the dimensions of the domain so that Nx is an integer power of 2, then a Fast FourierTransform (FFT) algorithm may be applied to solve the pressure Poisson equation in Step 3. The channeldomain is periodic in x and so an FFT is performed in the x{direction only, in contrast with most otherimmersed boundary computations in which the uid domain is taken to be doubly{periodic. After trans-forming the equations, there remains a banded linear system to be solved for the transformed variables inthe y{direction. The pressure is then found by transforming back to real variables by an inverse FFT. Theboundary conditions on velocity and pressure are periodic in the x{direction and the velocities along thetop and bottom walls are prescribed so as to give the required shear rate. The di�erence stencil for thepressure at points on or adjacent to the channel walls is modi�ed using Chorin's projection scheme, whichis described in detail along with the channel FFT solver in [28, Appendix].5 Computational ResultsOur main purpose in this paper is to demonstrate that the immersed boundary method is a useful tool forsimulating the motion of pulp �bres. To this end, we present comparisons with experimental and theoreticalresults | both qualitative and quantitative | to illustrate that the computed results capture the importantphysics of pulp �bre motion. Before presenting the simulations, we give a brief summary of the physicalparameters relevant to pulp �bre motion, and their typical values.5.1 Physical parametersExperiments are often performed on synthetic �bres made of rayon or dacron, immersed in highly viscousuids such as corn syrup or castor oil [14]. Representative values of parameters in experiments are listed inTable II, with references to the literature where appropriate. While the physical parameters correspondingto some experiments di�er signi�cantly from those for actual pulp �bres, the observed behaviour is verysimilar. Therefore, we will perform simulations on parameters for both situations whenever possible in orderto cover as wide a range of physics as we can, within the stability constraints set by the numerical scheme.The range of parameters under consideration here correspond to ows with relatively high viscosity andmoderate shear rates, so that the Reynolds numbers lie in the range Re . 50 . Although the immersedboundary method is well-known to su�er from severe time step restrictions at high Reynolds numbers [20],this range of Re is well within what is consider normal in immersed boundary computations.13



Our computational test chamber was taken to be a rectangle of dimensions 2 cm � 12 cm, within whichwas suspended a �bre of length 0:1 � 0:2 cm. We concentrate mainly on the e�ects of shear rate (whichhas typically been the variable quantity in experiments) and bending sti�ness, since both can be changedeasily without modifying the computational domain. The problem was discretised with a mesh spacing ofh = 164 cm (i.e., 128�32 uid grid points) and either 40 or 80 �bre points, depending on whether the �bre is0.1 or 0.2 cm long. The mesh spacing and domain size were chosen so as to minimise the e�ect of boundarieson the solution, while at the same time keeping computational cost to a minimum. We performed a seriesof tests with various channel aspect ratios to show that for h = 164 , the domain could be taken as smallas 2� 12 without appreciably changing the qualitative behaviour of the computed solution, where the �brelength ranged from 0.1 to 0:2 cm.The time step k required for stability lies in the range 2:0� 5:0� 10�5. The bending stress parameter�b has the same interpretation as Young's modulus E; this quantity is chosen so that when scaled by anappropriate moment of area, I, the resulting product E � I lies in the range 0.001{1.0 g cm3=s2. There is nophysical equivalent for the stretching sti�ness �s, since pulp �bres do not stretch appreciably; consequently,we chose a value large enough (typically from 5,000{10,000 g=cm � s2) so that the �bre length was held towithin 2% of its initial value throughout most simulations.It will prove particularly useful for us in our comparison of computations with experiments to considera non{dimensional parameter, which is a measure of �bre exibility. We mentioned in Section 2.1 that thedeformation of an individual �bre is a function of the �bre length and sti�ness, and the uid shear rate.Using a dimensional analysis argument, it is possible to show [28] that the ow-induced bending of a exible�bre is governed by a single, dimensionless parameter� = �GL3EI ; (9)which depends on these three quantities in addition to the uid viscosity. The derivation of � depends onthe drag coe�cient, which has markedly di�erent behaviour at low and high Reynolds number. As a result,Eq. (9) is derived assuming low Re or creeping ows, which are typical of the �bres under consideration here(although alternate expressions are given in [28] for the cases of high Re and three-dimensional ows). It isinteresting to note that the �bre aspect ratio does not appear in the parameter �, which is a consequence ofthe fact that �bre thickness does not play a role in the behaviour of �bres in two dimensional ows. In 3D,on the other hand, the dimensional analysis leads to a exibility parameter � having an additional factor ofD, the �bre diameter (see [28]), and hence it is natural to expect that a three-dimensional model will haveto include the e�ect of �bre aspect ratio.The parameter (9) has appeared before as a dimensionless shear rate in [26], and its reciprocal as abending number in [32]. The latter work utilised the bending number to compare qualitative behaviour of�bres, and we will draw a similar comparison for the situation where hydrodynamic interactions betweenuid and �bre are included. The quantity � will be used in the pulp �bre simulations in the next section toseparate between the various regimes of �bre motion.5.2 SimulationsWe begin by comparing the qualitative behaviour of solutions for four choices of bending sti�ness thatreproduce the orbit classes pictured earlier in Table I. Time sequences from the simulations are given inFig. 6 for EI lying between 0:006 and 0:5. The other parameters were chosen to be G = 10, L = 0:1, andk = 5� 10�5, except for the �rst set of images where the stretching sti�ness restricted the time step to halfthat size. The �bre was initially given a small curvature and inclined at a slight angle to the ow, so thatthe various orbits would develop within a reasonable amount of time.By comparing the images up to time t = 0:09 s, we can see that the exible �bres complete their�rst half{rotation in a signi�cantly shorter time than the rigid �bre. This behaviour has been observed inexperiments [2]. Something which is not apparent from these images is that after completing the loop, the�bres in the �rst three orbits spend a great deal of time near the horizontal. This is consistent with thetheoretical orbits for rigid �bres given by Je�ery's equation (1); plots of the orientation angle (the angle14



Time EI = 0:5, � = 0:16 EI = 0:2, � = 0:4 EI = 0:04, � = 2 EI = 0:006, � = 13(rigid rotation) (springy rotation) (snake turn) (complex rotation)t=0:01st=0:03st=0:05s t=0:07st=0:09st=0:15s Figure 6: Time sequences of orbits at times 0.01, 0.03, 0.05, 0.07, 0.09 and 0.15.15



between the vertical and the straight line joining the endpoints of the �bre) versus time look very similar tothat pictured in Fig. 2 for rigid ellipsoids. The fourth �bre never straightens out, and hence its classi�cationas a \complex rotation" | the period of rotation is signi�cantly smaller and the �bre begins another turnvery shortly after t = 0:15 s. The other �bres eventually pass through ' = 90� as well, and begin a secondloop that is essentially identical to the �rst, with the period of rotation decreasing as the �bre sti�nessdecreases.We can draw a more quantitative comparison with the theoretical predictions in terms of the amount oftime the �bre spends at each angle '. We ran another series of computations with bending sti�ness �xedat EI = 0:01 and the shear rate taken between 50 and 80, for which all �bres underwent snake turns. Theorientation angle was measured relative to the line joining the endpoints of the �bre, and we computed fora period of time comprising at least four complete rotations. The probability distribution of ', which wasestimated from the computed results, is plotted in Fig. 7 at open points. Given a set of observed orientationangles 'n at discrete times tn for n = 1; 2; : : :;M , then the probability that ' lies between the two angles'o and 'o +� (with � chosen \small enough" for plotting purposes), was estimated using the formulaProb(' 2 ['o; 'o +�]) � # f'n 2 ['o; 'o +�]gMFig. 7 also contains the corresponding distributions of ' from Eq. (1), plotted as solid curves. Thesetheoretical predictions are computed in a similar manner by choosing an equivalent ellipsoidal axis ratio, r�e,that corresponds to the average period observed for each of the computed orbits.
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80Distribution 'Figure 7: Distribution of time spent at various angles throughout the motion of a �bre undergoingspringy rotation. The shear rate is varied from 50 to 80. The solid curves with points represent thecomputed orientation angles. The dotted curves are the corresponding theoretical predictions fromJe�ery's equation (1) (the axis ratio is not de�ned for our linear �bre, and so we have chosen an r�ethat gives a Je�ery period equal to the average period in our simulations for each value of G).From the computational results, it is clear that the �bre spends the majority of its time near the hori-zontal, which is consistent with the theory. Disregarding the slight o�set of the curve near the peak, boththe size and shape of the computed distribution is comparable to the prediction from Je�ery's equation.However, unlike the theoretical and computational results for rigid �bres, and simulations of exible�bres that ignore hydrodynamic interactions (such as [33, Fig. 10]), the distribution is not symmetric about16



' = 90�. Rather, there is a tendency for the �bre to remain at an angle slightly above the horizontalplane. This asymmetry can be measured by the fraction of the area under the distribution curve that liesto the left of the ' = 90� line, which is 0.70, 0.65 or 0.54, corresponding to whether the ow has shear rateG = 50, 70 or 80 respectively. We claim that the departure from the value of 0.50 for a Je�ery orbit isdue to the interaction between �bre and uid, which is not included in either previous computations or theanalytical formulae. Though the �bre remains approximately at when stalled in the stream{wise direction,it undergoes small exing motions that cause the streamlines to curve slightly upward into the upper halfof the channel before the �bre reaches ' = 90� (see Fig. 8). This appears to be enough to cause the slightskewness in angle distribution observed here, and is something that we observe in all simulations over a widerange of parameter values.
Figure 8: Flow streamlines for a �bre stalled at an angle ' > 0. The streamlines are deformed near the�bre, and there are narrow zones of recirculation to the front and rear. Note that even though theinstantaneous streamlines cross the �bre, no uid ows passes through since the �bre is moving withthe uid.This skewness in the '{distribution has been observed in both experiments [29] and numerical simula-tions [31] involving semi-dilute suspensions | an e�ect that becomes more pronounced as the concentrationof �bres is increased. In [12], a theoretical model for handling �bre{�bre interactions is developed, and theauthors suggest that the anisotropy is due to normal stresses in steady shear ow that have also been ob-served in experiments. Our numerical simulations demonstrate that a similar phenomenon also occurs whenthe inuence of an individual �bre on the surrounding uid is taken into account, something which to ourknowledge has not been considered before. Due to the periodic boundary conditions applied on the channelends, we are actually computing the behaviour of a periodic array of �bres. Increasing the channel lengthby a factor of two (keeping the �bre length constant) has no noticeable e�ect on the qualitative behaviourof the �bre orbits, and so we expect the results to be nearly identical for single �bres as well.We have also performed a grid re�nement study to demonstrate that the orbital motions just describedare insensitive to the choice of spatial mesh. This is particularly important in our computations, since theinterpolation functions for the �bre force lends an arti�cial \thickness" to the �bre. In long-time integrations,the spatial errors in the scheme accumulate to such a degree that a convergence study based on the uidvelocity or �bre position would not yield any meaningful information. However, the qualitative features of�bre orbits, such as the orientation angle distribution or �bre shape can be easily compared. When thenumber of uid grid points is taken to be N = 64, 128 or 256 (and Nb is correspondingly doubled), the�bre orbits and streamline patterns shown in Figs. 6 and Fig. 8 remain essentially the same. Even for longersimulations over a large number of �bre orbits, the qualitative features of the solution, such as the orientationangle distribution, are unchanged. Fig. 9 depicts the distribution curve for the G = 80 simulation picturedearlier in Fig. 7, from which it is clear that there is no signi�cant change in the time spent at various angleswhen the grid is re�ned by a factor of two. The skewness measures for the three cases are 0.54, 0.58 and0.57 as N increases from 64 to 256. Similar results are also observed for the other values of shear rate.17



Parameter Values Units References� (density) 1.0 g=cm3� (viscosity) 10{90 (castor oil/corn syrup) g=cm � s [13], [14]0.01 (water)G (shear rate) 1{100 (experiment) s�1 [13], [14]EI (bending sti�ness) 0:001� 0:07 (paper pulp) g cm3=s2 [7], [8], [27]0:6 (nylon)Lf (�bre length) 0:1� 0:3 cm [7], [32], [13]rc (aspect ratio) 10{60 (natural) | [32]40{400 (synthetic) [13],[14]Re (Reynolds number) 0.01{50 |Table II: Parameter values used in pulp �bre simulations.
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Owing to the large amount of experimental data available in the literature, it is a fairly easy task tocompare our computations with observations of actual �bres, particularly with the aid of the non-dimensionalparameter �. To this end, we have run a large number of simulations with varying �bre length, bendingsti�ness, shear rate and viscosity. The resulting orbit classi�cations have been plotted in Fig. 10 in terms ofthe non{dimensional exibility measure � and the bending sti�ness EI. Each computed orbit was classi�ed
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IVEI �Figure 10: Comparison of the orbit class with bending sti�ness and �. The �bre length, shear rateand viscosity are also varied, which accounts for the spread of the data from a straight line. Thecomputed orbits are plotted with open points; experiments from [14, Table III] are plotted as solidpoints for comparison.as belonging to either class I, II, IIIb or IV, using a di�erent shape of open point for each (class IIIa wasnever observed in computations). Our criterion for judging the orbit class was based on the exterior angle,�, between the tangent lines at the endpoints of the �bre (see Fig. 11):I: If 175� < � < 180�, then the �bre was considered rigid.II: For 90� < � < 175�, the ends of the �bre always deformed in unison to induce a springy rotation.IIIb: When � < 90�, the ends of the �bre tended to move independently of each other, leading to a snaketurn. This independence of the motion of �bre ends was the same criterion used in [14] to identifysnake turns, although the observation that the division occurred at an angle of approximately 90� wasnot.IV: When the �bre never straightened out, the orbit was classi�ed as a complex rotation.There is a clear division of the orbit classes, which have been drawn as vertical lines at values of � � 0:25,1.0 and 8. This is very strong evidence of our premise that � is a useful measure of �bre exibility.To push the comparison even further, we have included on the same set of axes a sequence of solidpoints which were taken from experiments by Forgacs & Mason [14], performed with dacron and rayon�laments suspended in corn syrup or castor oil. In order to ensure that the scaling between experimentaland computational results is the same, we have adjusted the parameter � based on a single experimentaldata point (circled in Fig. 10), which was classi�ed as lying on the borderline between a springy rotation19



and a snake turn: the value of � was set to equal 1.0 for this experiment, and all other experimental pointswere scaled by the same factor. The line � = 0:25 captures the division of experimental values betweenrigid and springy orbits very sharply, and so it appears that the computational model predicts quite well thequalitative behaviour of �bre orbits observed in experiments.These results verify that the immersed boundary method can indeed be used to simulate the motion ofexible �bres at low Reynolds number. The qualitative behaviour of �bre orbits is very similar to what isobserved in experiments, both in terms of the orbit classi�cation and the distribution of angular displacementthroughout the orbital period.6 ConclusionsIn this work, we have introduced a new application of the immersed boundary method to simulating the owof pulp �bres in two dimensions. This work is of particular interest to the papermaking industry, as it is oneof the �rst attempts to compute the hydrodynamic coupling between a exible �bre and an incompressibleuid. We demonstrate that the method reproduces the tumblingmotions of �bres observed experimentally inshear ows for reasonable physical parameters. Comparisons of the �bre orientation angle distribution withtheoretical predictions and experimental observations are also in very close agreement. We also show thatthe immersed boundary model is able to capture the inuence of the �bre on the uid, which is manifestedas a tendency for pulp �bres suspended in a horizontal shear ow to remain inclined at angles slightly abovethe shear direction { a phenomenon not seen either in other simulations or theory that ignores the uid{�breinteraction. As a consequence, the immersed boundary method consequently shows considerable promise asa qualitative tool in pulp �bre modeling.While we have restricted ourselves to two{dimensional simulations of isolated pulp �bres and comparisonsto planar �bre motions, the immersed boundary method also has great potential for future applications inmany other aspects of �bre motion. We have so far ignored several other orbit classes that are fundamentallythree-dimensional, and other important 3D e�ects such as the ability of uid to ow easily around the sidesof a thread-like �bre. We plan to extend our method to 3D in the near future, using a \bundle" of interwovenimmersed �bres to represent a exible �bre with �nite thickness. This is essential in 3D ows, where the�bre aspect ratio plays an important role.We also plan to include the e�ects of interactions between individual �bres in semi{dilute pulp suspen-sions where aggregation of �bres, or occulation, is an important factor. By including both �bre{�bre and�bre{uid forces, we hope to be able to go further in accurately predicting the motion of �bres in suspen-sion. Extensive immersed boundary computations of multi{particle systems have already been performedby Peskin & Fogelson [11], who remarked that they could perform simulations of 1000 or so particles intwo dimensions, with the advantage of the immersed boundary method being that the computational workincreases only linearly with the number of particles. These authors incorporate particle{particle interactionsusing appropriate modi�cations to the force in the uid equations, which we plan to conform with the physicsof pulp �bre interaction using the previous work on aggregation of slender particles [6, 34]. By incorporatingthe third dimension, and inter-particle forces, we can signi�cantly increase the range of ow phenomena thatcan be investigated using the immersed boundary method in the papermaking process.Our pulp �bre simulations to this point have neglected �bre inertia, which plays a signi�cant role insome situations, such as separation of �bres in a hydrocyclone. Massive particles can be accounted for in theimmersed boundary model by including a variable density in the momentum equations, as described in [23].Each �bre contributes a singular mass distribution to the uid of the form�(x; t) = �o + Z�m(s) � �(x �X(s; t)) ds;where m(s) is the additional mass per unit length of the �bre (which can be negative), and �o is the constantuid density in the absence of the �bres. A variable density precludes the use of an FFT solver for thepressure, and so this extension will require development of an alternate fast uid solver.20
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