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Abstract We present a cost-effective method for model calibration and solution of source inversion prob-
lems in atmospheric dispersion modelling. We use Gaussian process emulations of atmospheric dispersion
models within a Bayesian framework for solution of inverse problems. The model and source parameters
are treated as unknowns and we obtain point estimates and approximation of uncertainties for sources
while simultaneously calibrating the forward model. The method is validated in the context of an industrial
case study involving emissions from a smelting operation for which cumulative monthly measurements of
zinc particulate depositions are available.
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1 Introduction

As a result of growing concerns over anthropogenic impacts on the environment and the resulting cli-
mate changes, studies of atmospheric dispersion models have proliferated over recent years. Mathematical
models for atmospheric pollutant dispersion provide approximations to the actual physical processes driv-
ing dispersion of particulates and other substances within the atmosphere [2, 20]. A common challenge
in dispersion modelling is to maintain accuracy since many models suffer from sizable errors and large
uncertainties in parameters. In some cases, these inaccuracies can be addressed by increasing the model
complexity to account for physical processes that have been neglected, in the hope that the resulting
more complex model yields correspondingly higher accuracy and more realistic simulations. However, in
many practical applications, such extensions lead to no significant improvement in the solution because
the model errors are far outweighed by the uncertainty in values of the model parameters. This difficulty is
further exacerbated by the fact that many models contain a large number of unknown model parameters.
Some of these parameters have a clear physical basis, such as diffusion coefficients, particulate density and
settling velocities, whereas others are mathematical (or fitting) parameters such as the Monin-Obukhov
length, atmospheric stability classes, or terrain roughness length.

Direct measurements of many physical and mathematical parameters are often problematic or even
infeasible; for example, eddy diffusion coefficients are typically difficult to estimate in practice [34]. One
is therefore often forced to deal with significant uncertainties in the true value of model parameters, even
when complex models are employed that under ideal circumstances could potentially simulate results very
accurately. Because large errors in model parameters can severely contaminate simulations, it is therefore
essential when simulating atmospheric dispersion scenarios to simultaneously understand and control the

J.G. Garćıa
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parameter uncertainty. Sources of uncertainty are diverse and can be classified roughly into one of three
types [29]:

– Data uncertainty: when the empirical measurements or model parameter values are inaccurate;
– Model uncertainty: where the model does not capture all physical processes of interest; or
– Stochastic uncertainty: relating to the inherent unpredictability or randomness in physical processes,

such as atmospheric turbulence.

In this work we focus primarily on dealing with the first case of data uncertainty appearing in the context
of atmospheric source inversion problems.

Despite the difficulty of obtaining accurate simulations, there is a growing need to develop more ac-
curate and computationally efficient models for practical atmospheric dispersion applications [19]. The
necessity for computational efficiency comes from the fact that models for atmospheric transport are usu-
ally expressed as systems of partial differential equations that are computationally expensive to solve at
the typical resolutions required, which is a particular limitation for real-time applications. Efficiency is of
even greater importance in the context of source inversion problems, since a single solution of the inverse
problem may require a large number of evaluations of the forward dispersion model. One of the goals
of this work is therefore to demonstrate how to use computationally demanding forward models to solve
atmospheric source inversion problems in an efficient manner.

1.1 Atmospheric dispersion modelling

We model the dispersion of pollutants in the atmosphere using the advection-diffusion partial differential
equation (PDE)

∂C(x, t)

∂t
+∇ · (v̄C(x, t) + D∇C(x, t)) = f(x, t), (1)

where C(x, t) denotes the concentration of pollutant at location x = (x, y, z) ∈ R3, t is time, v̄ is the wind
velocity field, D is the diffusivity tensor, and f(x, t) is a pollutant source term. We focus on the case of a
finite collection of n point sources each having an emission rate that is constant in time, which allows f
to be written as

f(x, t) =
n∑
j=1

qjδ(x− xj), (2)

where q = (q1, q2, . . . , qn)T ∈ Rn represent emission rates and δ(x− xj) is the Dirac delta function for the
point source centered at location xj . The wind velocity field v̄ and diffusivity tensor D are often difficult
to measure and so are replaced using simpler mathematical approximations that depend upon empirical
parameters describing the variation of v̄ and D with time and space. Common examples of such parameters
include roughness length, Monin-Obukhov length and Pasquill stability class [34]. We combine all empirical
parameters together into a vector θ = (θk) ∈ Rm, and then denote the linear operator ∇ · (v + D∇) on the
left hand side of (1) by L(θ) to make explicit the dependence of the operator on the parameter vector θ,
noting that the dependence of L on θ can still be nonlinear. Then we rewrite (1) as

∂C(x, t)

∂t
+ L(θ)C(x, t) =

n∑
j=1

qjδ(x− xj). (3)

The task of finding the concentration C(x, t) given q and θ, supplemented by suitable boundary and initial
conditions, is referred to as the forward problem in the context of atmospheric pollutant transport.

1.2 Atmospheric source inversion

The goal of atmospheric source inversion is to estimate the source term f(x, t) on the right hand side of
(1) from indirect measurements of the concentration C(x, t). We consider equation (3) with a set of given
point sources at known locations, but with unknown constant emission rates. Our aim is then to estimate
the emission rates qj from indirect measurements of C(x, t). To this end, the source inversion problem is
the reverse of the forward problem (3) and is thus an inverse problem.

We assume that measurements of concentration can be treated in terms of the action of bounded
linear operators on C. For example, a common measurement in particulate dispersion studies is the total
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accumulated deposition of pollutants in a region R ⊂ R2 of the ground surface after some time T has
elapsed. Such a measurement can be written as∫

R

∫ T

0

C(x, y, 0, t)vset dt dx dy,

where vset is the vertical settling velocity at the ground surface for the pollutant of interest. The class of all
possible linear measurements is large and includes many commonly used methods in practice ranging from
short time average measurements such as Xact ambient metal monitors [4] and Andersen high-volume air
samplers [40], as well as averaged long-time measurements accumulated in dustfall jars.

Suppose now that field measurements of C are taken at d locations in space and collected in a vector
w ∈ Rd. Since the measurements are linear, we can write

w = A(θ) q, (4)

where A(θ) is a d × n matrix that represents the solution map of the PDE (3) and depends nonlinearly
on the model parameters θ. Source inversion requires finding q given w, and it is well known that this
problem is ill-posed in the sense of Hadamard [6, 13]; that is, small variations in the inputs (w) result in
large variations in the solution (q). This is the case even if the true value of θ is known exactly.

A variety of different approaches have been proposed in the literature to solve source inversion prob-
lems [10, 30]. Lin and Chang [21] used an air trajectory statistical approach to estimate the strength of
different sources of volatile organic compounds of anthropogenic origin. Stockie and Lushi [22] used a
Gaussian plume approximation to the governing PDEs to estimate ground-level deposition of zinc from a
lead-zinc smelter, using linear least-squares to perform the source inversion. Skiba [35] solved the adjoint
equation for the advection-diffusion equation and used penalized least-squares to invert the sources.

All of the methods just mentioned yield point estimates for the source strengths but provide no direct
measure of uncertainty in the estimated parameters. This drawback is overcome by the use of probabilistic
methods such as the Bayesian approach for solving inverse problems. Such methods provide a robust
setting for solving the inverse problem and quantifying the uncertainties associated with the solution.
Sohn et al. [37] developed an algorithm to obtain estimates and uncertainties for the location and strength
of pollutant sources in buildings using data obtained from a COMIS simulation. Hosseini and Stockie [11]
used a Gaussian plume model combined with experimental data to estimate and quantify the uncertainty of
airborne fugitive emissions. In a follow-up publication [12], the same authors coupled a Bayesian approach
with a finite volume solver to estimate and quantify the strength of airborne contaminants from a fixed
number of point sources at known locations. Keats et al. [17] obtained probability distributions for source
strengths and locations using data from the standard “Muck Urban Setting Test” experiment.

The central contribution of this work is in proposing a method that deals with the calibration param-
eters θ as unknowns. We infer θ along with the vector of source strengths q, which results in a nonlinear
inverse problem that is solved within the Bayesian framework. The problem of estimating the true value
of the parameters θ is referred to as model calibration. Traditionally, the process of tuning parameters in
atmospheric dispersion models is done empirically using Pasquill stability classes [34, 41] that are often
chosen heuristically. Instead, we automatically estimate these parameters using the information contained
in the measured data w.

The remainder of this paper is organized as follows. In Section 2 we discuss the use of Gaussian
process regression to emulate computationally expensive models. In Section 3 we introduce our Bayesian
framework for simultaneous calibration of the model and solution to the source inversion problem. In
Section 4 we apply the results of the previous sections to an industrial case study involving air-borne
particulate emissions from a lead-zinc smelter in Trail, British Columbia, Canada.

2 Emulation of atmospheric dispersion models

Equation (3) captures the linear relationship between source strengths q ∈ Rn and concentration C(x, t).
Under the further assumption that the data w ∈ Rd also depends linearly on concentration C(x, t), we can
write the map q 7→ w in the linear form (4), although we note that in general, A(θ) ∈ Rd×n may depend
nonlinearly on θ ∈ Rm. Therefore, the map (q,θ) 7→ w can be split into two parts: for fixed values of θ the
map (·,θ) 7→ w is linear, whereas for a fixed q the mapping (q, ·) 7→ w is nonlinear. We will exploit this
structure in the design of our source inversion algorithm, using the fact that the linear map (·,θ) 7→ q can
be dealt with efficiently, but that we will need to approximate the nonlinear map (q, ·) 7→ w.

To this end, we approximate the matrix

A(θ) = [aij(θ)] ∈ Rd×n, (5)
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with another matrix

A(θ) = [aij(θ)] ∈ Rd×n,

where each entry aij : Rm 7→ R of A is approximated by the map aij : Rm 7→ R. For this purpose, we make
use of the Gaussian process (GP) emulators of [18]. Emulation with GPs is a well-established method in
dynamic computer experiments and machine learning and we refer the reader to [3, 18, 26, 31] and the
references within for an introduction to this subject. Here, we outline our method for approximating A
and will not discuss the theory of GP emulators with the exception of a few crucial definitions and results.

Definition 1 A Gaussian process (GP) on Rm is a collection of real-valued random variables {g(x)}x∈Rm ,
any finite collection of which have a joint Gaussian distribution.

We denote a GP using the notation

g ∼ GP(ḡ, κ),

where the mean of the GP is

ḡ(θ) = E g(θ) ∀θ ∈ Rm,

and κ is a positive semi-definite kernel with

κ(θ,θ′) = E (g(θ)− ḡ(θ))(g(θ′)− ḡ(θ′)) ∀θ,θ′ ∈ Rm.

We are primarily interested in isotropic kernels that satisfy

κ(θ,θ′) = κ(|θ − θ′|),

from which it follows that if ḡ is continuous and κ is continuous at zero, then the GP is also mean square
continuous [31].

Let {θk}Kk=1 be a collection of design points in the parameter space Rm for some fixed K > 0, and let
{ej}nj=1 be the unit coordinate basis vectors in Rn. Then for each index pair (i, j) define a GP

gij ∼ GP(ḡij , κij),

subject to the constraint

gij(θk) = aij(θk) = (A(θk)ej)i for k = 1, . . . ,K.

That is, each gij interpolates the aij at points {θk}Kk=1. We can now identify gij using well-known identities
for conditioning of Gaussian random variables [31, Sec. 2.2]. Let Θ := (θ1, . . . ,θK)T and define the following
matrices and vectors

Gij(Θ,Θ) ∈ RK×K , [Gij(Θ,Θ)]k` := κij(θk,θ`),

Gij(θ, Θ) ∈ R1×K , [Gij(θ, Θ)]` := κij(θ,θ`),

Gij(Θ,θ) ∈ RK×1, [Gij(Θ,θ)]k := κij(θk,θ),

gij ∈ RK×1, [gij ]k = aij(θk),

for k, ` = 1, . . . ,K. Then we have

gij(θ) ∼ GP(ḡij(θ), σij(θ)),

where
ḡij(θ) = Gij(θ, Θ)Gij(Θ,Θ)−1gij ,

σij(θ) = κij(θ,θ)−Gij(θ, Θ)
[
Gij(Θ,Θ)−1

]
Gij(Θ,θ),

for all θ ∈ Rm. Since the mean ḡij interpolates the data aij(θk), it is also a good candidate for approxi-
mating aij , and so we take

aij(θ) = ḡij(θ) ∀θ ∈ Rm.

The advantage of using this approach for interpolation is that it is possible to assess the uncertainty and
quality of the emulator via the covariance operator σ(θ).

The variance at a point θi is given by the term σii(θ) and is strongly influenced by the spatial dis-
tribution of the points {θk}Kk=1 [14]. Thus, in order to emulate A(θ), it is crucial to choose the points
θk in such a way that the uncertainty of the emulator is minimized. A popular method for choosing the
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design points is known as a space-filling design [14], instances of which include the maximum entropy
design [33], uniform design [7], and Latin Hypercube design (LHD) [24]. Following Jones et al. [15] we
use a combination of the LHD and maximin designs, which is introduced in [14] and shown to outperform
most space-filling design methods for Gaussian process interpolation.

We now briefly outline our space-filling design procedure. The main idea in the LHD is to distribute
design points such that low-dimensional projections of the points do not overlap. One issue with LHD is
that it does not have desirable space-filling properties and so leads to large uncertainties in the emulator in
high dimensions. Thus, LHD is often used as an initial condition for other space-filling design methodologies
and so here we complement the LHD with an approximate maximin design [14].

The idea behind the maximin design is as follows. Let T ⊂ Rn be the subset of parameter space in
which we wish to construct our design points and consider all subsets S of T with finite (fixed) cardinality,
say |S| = k. A maximin design So is a set of points that satisfies

max
S⊂T, |S|=k

min
s,s′∈S

d(s, s′) = min
s,s′∈So

d(s, s′), (6)

where d is the Euclidean metric. The optimization problem in equation (6) is not easily solvable, which is
why we resort to metaheuristic optimization procedures. In particular, we use the particle swarm algorithm
[1], initiated with an LHD. We then apply a number of iterations of particle swarm that is chosen depending
on our available computational budget. In Figure 3 we show an example of the final design after 10,000
steps of a particle swarm algorithm.

3 The Bayesian inversion framework

We now turn to the source inversion problem, where the Bayesian approach combines the data w together
with prior knowledge to give a posterior probability distribution on the source strengths q and calibration
parameters θ. Following Bayes’ rule, the posterior distribution of (θ,q) is given by

Ppost(θ,q|w) =
Plike(w|θ,q)Pprior(θ,q)

Z(w)
, (7)

where Plike(w|θ,q) is the likelihood probability of w given both θ and q, which represents the probability of
observing w given fixed values q and θ. The probability distribution Pprior(θ,q) is called the prior probability

that expresses prior knowledge of the possible values of q and θ, before observing any experimental data.
Finally, Z(w) is a constant that normalizes the posterior probability so that it integrates to one, leading
to the requirement that

Z(w) =

∫
Plike(w|θ,q)Pprior(θ,q) dθ dq. (8)

We next assume that the linearity requirement (4) holds for physical measurements up to some additive
Gaussian measurement noise, so that

w = A(θ)q + ε with ε ∼ N (0, Σ). (9)

Here, ε is a normally distributed random vector with mean zero and covariance Σ ∈ Rd×d, which is
assumed positive-definite. The measurement noise ε models the deviations in the measurements w due
to missing physics and uncertainty in measurements. Under this assumption, it can be readily shown
that [16, Sec. 3.2.1]

Plike(w|θ,q) =
1

(2πdetΣ)
1
2

exp

(
−1

2

∥∥∥Σ−1/2(A(θ)q−w)
∥∥∥2) . (10)

The choice of the prior distribution depends on previous knowledge about the model parameters and
so is problem specific. For atmospheric dispersion models, the parameter θ often depends on atmospheric
conditions, whereas the emission rates in the vector q depend on the physical processes that generated the
emissions. Consequently, it is reasonable to assume a priori that q and θ are statistically independent, so
that

Pprior(θ,q) = Pprior(θ)Pprior(q). (11)

In most cases, one chooses a prior for q that imposes a positivity constraint on the emission rates, whereas
priors on θ typically reflect acceptable ranges of calibration parameters. Beyond these assumptions, the
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choice of the prior density for θ and q must be made on a case by case basis. In Section 4, we present a
particular prior distribution for (θ,q) in the context of an industrial case study.

A key step in our source inversion approach is approximating the posterior probability Ppost through
an approximation for the map A. Let A be the GP emulator for A as outlined in Section 2, then we can
approximate the likelihood Plike in (10) using

P̂like(w|θ,q) =
1

(2πdetΣ)
1
2

exp

(
−1

2

∥∥∥Σ−1/2(A(θ)q−w)
∥∥∥2) . (12)

Substituting this expression into Bayes’ rule (7) yields the approximate posterior

P̂post(θ,q|w) =
P̂like(w|θ,q)Pprior(θ,q)

Ẑ(w)
, (13)

where the constant Ẑ is defined similar to (8). If the map A approximates A closely, then we expect P̂post

to be close to Ppost. We refer the reader to [38] and references therein for a detailed analysis of the errors
introduced through GP emulation of forward maps in Bayesian inverse problems.

With P̂post in hand we may now compute point value estimators for the parameters θ and source
strengths q. Common choices of point estimates are [16]:

Maximum a posteriori: (θ,q)MAP = argmax
θ,q

P̂post(w|θ,q), (14)

Conditional mean: (θ,q)CM =

∫
(θ,q) P̂post(θ,q|w) dθ dq, (15)

Maximum likelihood: (θ,q)ML = argmax
θ,q

P̂post(θ,q|w). (16)

The uncertainty in the choice of point estimate (θ∗,q∗) can be assessed by computing the covariance
matrix ∫ (

(θ,q)− (θ∗,q∗)
)
⊗
(
(θ,q)− (θ∗,q∗)

)
P̂post(θ,q|w) dθ dq.

The above estimators may of course also be computed using the true posterior Ppost, but if P̂post is close
to Ppost in an appropriate sense (such as the total variation metric) then one expects the point estimators

under P̂post to approximate their counterparts under Ppost [38].
In general, the integrals involved in computing point estimates or covariances are not analytically

tractable and so it is necessary to resort to numerical methods for their estimation. Since these are high-
dimensional integrals, quadrature-based approaches are unsuitable, thus it is necessary to use Markov
chain Monte Carlo (MCMC) integration techniques. In this paper we use the adaptive MCMC algorithm
of [9], which is outlined below in Algorithm 1. Specific values of the algorithmic parameters (β1, γ1, γ2,
γ3) that are tailored to our case study are provided later in Section 4.3.

4 An industrial case study

In this section we apply the Bayesian framework outlined earlier to the study of dispersion of airborne
zinc particles from four point sources located within the area surrounding a lead-zinc smelter in Trail,
British Columbia, Canada. Our ultimate goal is to estimate the contribution that each source makes
to the total zinc released into the atmosphere by the smelting operation. We have access to monthly
cumulative measurements of zinc particulate depositions at nine separate locations as well as horizontal
wind field velocity data at a meteorological station located near the sources. We also have access to
engineering estimates of the yearly-averaged emission rates obtained from independent engineering studies
based on process control arguments. An aerial photograph of the industrial site, showing the locations
of all sources and measurement devices, is provided in Figure 1. The sources are labelled q1 to q4, and
deposition measurements are designated R1 to R9. This same emission scenario has been studied using a
linear least squares approach based on a Gaussian plume approximation [22], and also by performing a
finite volume discretization of the governing equation (3) [12].

We apply the atmospheric dispersion model (3), as adapted in [12] for this specific zinc smelter site
with n = 4 sources:

∂C(x, t)

∂t
+ L(p, z0, zi, L, zcut)C(x, t) =

4∑
j=1

qjδ(x− xj). (17)
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Algorithm 1 Adaptive Metropolis-Hastings Algorithm.

1: Choose (θ1,q1) ∈ Rd in the support of Ppost(θ,q|w) and fixed parameters β ∈ (0, 1), γ1, γ2, γ3 ∈ (0,∞),
N ∈ N.

2: for j = 2 : N do

3: if j ≤ 2d then

4: Draw u from N
(
(θj ,qj),

γ1
d Id×d

)
.

5: else

6: Estimate the empirical covariance matrix Σj using {(θk,qk)}jk=1.
7: Draw u from (1− β)N

(
(θj ,qj),

γ2
d Σj

)
+ βN

(
(θj ,qj),

γ3
d Id×d

)
.

8: end if

9: Propose (θ̃j , q̃j) = (θj−1,qj−1) + u.

10: Compute δ = min

(
1,

P̂post(θj ,qj |w)

P̂post(θj−1,qj−1|w)

)
.

11: Draw w from U([0, 1]).
12: if w < δ then

13: (θj ,qj) = (θ̃j , q̃j) (Accept the move)
14: else

15: (θj ,qj) = (θj−1,qj−1) (Reject the move)
16: end if

17: end for

Fig. 1: Aerial photograph of the lead-zinc smelter in Trail, BC, Canada. The square points labelled ’qn’
represent the locations of the four zinc sources, while the circular points ’Ri’ denote the nine measurement
devices.

The differential operator L depends non-linearly on five parameters as we shall explain next. The parameter
p comes from the assumption of a power-law distribution in the vertical component of the wind profile v;
that is, if z denotes the height above ground level (x, y, 0), then the two horizontal velocity components vx
and vy are assumed to be function of z and t only and satisfy

‖(vx(z, t), vy(z, t))‖2 = vr(t)
(
z

zr

)p
,

where vr(t) is the wind speed at some reference height zr. The exponent p depends on factors such as
surface roughness and atmospheric stability class. For more details about the power law model for the
wind velocity the reader is referred to [34]. The other four parameters are related to the entries in the
diagonal diffusivity matrix D = diag(D11, D22, D33) in equation (3). Following [34], the vertical diffusion
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coefficient satisfies to a good approximation

D33 =
κv∗z

φ(z/L)
, (18)

where κ is the von Karman constant whose value can be set to 0.4 in practical scenarios. The function φ

in the denominator is taken to be a piecewise continuous function

φ
(
z

L

)
=

{
1 + 4.7 zL , if z

L ≥ 0,

(1− 15 zL )−
1
2 , if z

L < 0,

where L is called the Monin-Obukhov length. The parameter v∗ is known as the friction velocity and is
represented by

v∗(t) =
κvr(t)

ln( zrz0 )
,

where vr(t) is the wind velocity at some reference height. The variable z0 is called the roughness length

and depends on both terrain and surface type. The remaining horizontal diffusion coefficients satisfy
D11 = D22 and are assumed to be independent of height z. A correlation that is commonly employed for
these parameters is [34]

D11 = D22 ≈
v∗z

3
4

i (−κL)−
1
3

10
,

where the parameter zi is called the mixing layer height.
The governing PDE (17) is complemented with boundary conditions defined over the space-time domain

R2 × [0,∞)× (0, T ) for some fixed T ∈ R. For this purpose, we impose the following conditions at infinity

c(x, t)→ 0 as ‖x‖ → ∞,

along with a flux (or Robin) boundary condition at the ground surface(
vsetc+D33

∂c

∂z

)∣∣∣∣
z=0

= vdepc
∣∣
z=0

, (19)

where vset = 0.0027 m/s is the settling velocity of zinc particles and vdep = 0.005 m/s is the corresponding
deposition velocity. Observe that at the bottom boundary z = 0, the vertical diffusivity satisfies D33(0) = 0
from (18) which leads to an inconsistency in the Robin boundary condition; therefore, we define a cut-off
length zcut ' 0 below which D33 is set to the non-zero constant value D33(zcut).

Equation (17) is solved numerically using the finite volume algorithm described [12]. The code takes
as input values of the wind speed vr(t), parameters p, z0, zi, L, zcut, and source strengths qj , and returns
as output the zinc concentration at any point (x, y, z) and time 0 < t < T . However, as mentioned earlier,
we do not have experimental measurements of concentration but rather total depositions at the nine sites
R1, . . . , R9 (see Figure 1). We model the depositions using the integral

w(x, y, T ) =

∫ T

0

c(x, y, 0, t) vset dt, (20)

where vset is the settling velocity of zinc particles given by Stokes’ law [34]. Since the nine deposition
measurements Ri were obtained from roughly cylindrical dustfall jar collectors, we can readily approximate
the total deposition over the time interval (0, T ] at site i = 1, . . . , 9 using

wi =

∫
jar

w(x, y, T ) dx dy ≈ w(xi, yi, T )∆A, (21)

where ∆A ≈ 0.0206 m2 is the cross-sectional area of each dustfall jar. We then collect the zinc deposition
measurements into a vector w = (wi)

T and from now on, we assume that the time interval T over which
particulates are allowed to accumulate in the dustfall jars is one month.

With the industrial case fully specified our source inversion framework can be implemented. We make
the following observations:

– The vector w is composed of d = 9 measurements, one from each jar, so that w ∈ R9.
– The number of model parameters is m = 5, which are represented by the vector θ = (p, z0, zi, L, zcut)

T .
– There are n = 4 sources stored in the vector q = (q1, q2, q3, q4)T .
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Each measurement in the vector w may then be viewed as a map

wi : R5 ×R4 → [0,∞).

In other words, the number wi(θ
∗,q∗) is the deposition at site Ri predicted by the finite volume solver

described in [12], given a particular choice of parameters θ∗ and source strengths q∗. In the framework of
Section 2 (namely, equations (4) and (5)) we write

wi(θ
∗,q∗) =

4∑
j=1

aij(θ
∗) q∗j , (22)

where each of the nonlinear functions aij(θ
∗) can be approximated using a GP emulator aij(θ

∗).

4.1 Sensitivity analysis

Before solving the source inversion problem, we first perform a sensitivity analysis in order to check whether
the dimensionality of the parameter space can be reduced. The goal of a sensitivity analysis is to assess
the relative importance of each of the variables in a model [32]. In this paper, the sensitivity measure we
employ is known as the Sobol total index [32,36,39] which captures the variance of the model outputs due
to changes in each of its inputs and is a measure of the relative importance of each input. More specifically,
the Sobol total index ranges from a lower limit of 0, denoting a variable that has no effect on the output,
to an upper limit of 1, indicating that all variability in the model is explained by the variable in hand.

We perform our sensitivity analysis using the R package sensitivity [28], which uses Gaussian processes
as surrogates for the function of interest. In order to account for the variability introduced by using different
isotropic kernels (see Definition 1), we calculate Sobol indices using the following choices of the kernel κ:

– Exponential: κ(|θ − θ′|) = r1 exp
(
− |θ

′−θ|
r2

)
,

– Squared exponential: κ(|θ − θ′|) = r1 exp
(
− |θ−θ

′|2
2r2

)
,

– Matérn 3
2 : κ(|θ − θ′|) = r1

(
1 +

√
3|θ−θ′|
r2

)
exp

(
−
√
3|θ−θ′|
r2

)
,

– Matérn 5
2 : κ(|θ − θ′|) = r1

(
1 +

√
5|θ−θ′|
r2

+ 5
3

(
|θ−θ′|
r2

)2)
exp

(
−
√
5|θ−θ′|
r2

)
.

In the above, r1, r2 ∈ R are tuning parameters. These kernels are commonly used in Gaussian process
regression and are readily implemented in the R packages sensitivity and DiceKriging. For other possible
choices of kernels see [31, Sec. 4]

The sensitivity indices computed using the four different kernels are summarized in the boxplots shown
in Figure 2. The size of each box represents the interquartile range (IQR). The lower bar attached to each
box is at the value

min

{
max(S), E3 +

3

2
IQR

}
,

and the upper bar is located at

max

{
min(S), E1 −

3

2
IQR

}
,

where S is the set of the four indices (corresponding to the four kernels) calculated for each wi for i ∈
{1, . . . , 9}, and E1 and E3 are the first and third quartiles of S respectively [23].

From these results it is clear that the variability in output of each map wi is captured in large part by
the two parameters p and z0. Although the sensitivity index for L is relatively small, we still retain this
parameter because it is known to be closely related to z0 [34, Chap. 19]. The remaining “unimportant”
parameters, zi and zcut, may then be fixed at suitable constant values (we used zi = 100 and zcut = 2,
following [12]). This reduces the dimensionality of the parameter space from 5 to 3 and allows us to redefine
our parameter vector as

θ := (p, z0, L).

We next identify the support of the prior distribution, which consists simply of the interval of allowable
values for each unknown parameter. Every emission rate must be a non-negative number, so that

qj ∈ [0,∞), for j = 1, 2, 3, 4.
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Fig. 2: The Sobol total indices of the model parameters θ for the maps wi defined in (22). Errors bars
indicate variation between estimated value of Sobol total indices using different kernels.

For the remaining parameters p, z0, L, we use the physically-motivated ranges listed in Table 1, which are
slightly larger than the suggested ranges typically cited in the literature (see e.g., [34, Ch. 19]) to allow
for more flexibility. Consequently, each map wi(θ,q) has a domain

dom(wi) = [0, 0.6]× [0, 3]× [−600, 0]× [0,∞)4.

With this information in hand, we are now in a position to create a space-filling design needed to construct
the GP emulator as explained in Section 2. Due to computational budget constraints, we choose 64 points
to construct our emulators. We display 2D projections of the corresponding maximin space-filling design
for the three relevant parameters in Figure 3.

Table 1: Physically reasonable ranges for the parameters p, z0, L.

Parameter (units) Symbol Range

Velocity exponent p [0, 0.6]

Roughness length (m) z0 [0, 3]

Monin-Obukhov length (m) L [− 600, 0]
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Fig. 3: Pairwise two-dimensional projections of the space-filling design with 64 points for emulating A.
Results were obtained by initializing the particle swarm algorithm using a LHD and iterating for 10,000
steps. The range of each parameter is normalized between 0 and 1 for easy visualization. The scatter plot
in the second row depicts z0 vs. p. The plots on the bottom row show L vs. p (left) and L vs. z0 (middle).

4.2 Construction and validation of the emulator

We now proceed as outlined in Section 2 to construct the emulator for maps aij using Gaussian processes
(GP). The 64 different combinations of parameters p, z0, L obtained from the space-filling design in the
previous section are used to train the GP. To create the GPs for each of the 36 maps aij(p, z0, L), we used
the R package DiceKriging [5]. Unlike the sensitivity analysis in the previous sections where four different
kernels were computed, the GPs here are constructed using only the isotropic squared exponential kernel.

The DiceKriging package chooses a maximum likelihood estimate for the tuning parameters r1, r2
for each map aij . To assess the quality of each emulator we perform a “leave one out” cross validation
(LOOCV) [25, Sec 1.4] on each of the nine sites R1, R2, . . . , R9 for the 64 design points shown in Figure 3;
that is, we run the finite volume solver 64 times and save the predicted deposition value for each sites,
yielding a total of 64 × 9 points or predictions from the finite volume solver. For each point “left out” in
the LOOCV, we plot in Figure 4 the deposition obtained from the finite volume solver versus the predicted
value from the corresponding trained GP. This figure shows that the output of the GP is closely matched
to the output of the finite volume solver at most design points, with the exception of a small number of
outliers.

4.3 Source inversion

The GP emulator may now be employed to estimate the emission rates q1, . . . , q4, for the actual physical
dataset which consists of dustfall jar measurements at the nine locations marked R1, . . . , R9 in Figure 1.
Our first task is to specify the prior distribution for θ and q. Following (11), we take the prior for p, z0, L
to be independent of the prior on q. Since we do not have any prior information about the values of the
parameters p, z0, L (other than an acceptable range), we choose a uniform distribution for each parameter

Pprior(p) ∝ 1[0,0.6](p), Pprior(z0) ∝ 1[0,3](z0), Pprior(L) ∝ 1[−600,0](L),
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Fig. 4: Comparison between deposition values predicted by the finite volume solver and the GP emulator
using LOOCV for each of the 64× 9 data points obtained from the finite volume solver.

where 1E is the indicator function for the interval set E. For the source strengths q, we have the engineering
estimates from previous independent studies shown in Table 2 which can be applied along with a non-
negativity constraint to construct a suitable prior. In particular, we propose the following prior for source
strengths based on a gamma distribution:

qj ∝ q
αj−1
j exp(−βjqj).

The quantities αj are called shape parameters, while the βj are rate parameters for the gamma distribution.
Values for αj and βj are derived from the engineering estimates q = (qeng,j) as the solution to the following
system of equations:

αj − 1

βj
= qeng,j,

qgamma(0.99, αj , βj) = 3qeng,j.

Here, qgamma is the quantile function, which is just the inverse of the cumulative distribution function of
the gamma density. Choosing αj and βj in this way guarantees that the mode of the prior distribution for
qj is located at the corresponding engineering estimate. Furthermore, 99% of the prior mass is concentrated
in the interval (0, 3qeng,j) for each qj [8, Sec. 2.2].

Table 2: Engineering estimates of the source strengths from previous independent studies.

Source Estimated emission rate [ton/yr]

qeng,1 35

qeng,2 80

qeng,3 5

qeng,4 5

Our next task is to specify the covariance matrix Σ for the measurement noise in (9). Because the
dustfall jars are well-separated, we assume that the measurement noise for each jar is independent from
the others and hence take

Σ = λI9×9, (23)

where λ > 0 is the variance of the measurement noise and I9×9 is the 9× 9 identity matrix. The variance
parameter λ is related to the signal-to-noise ratio (SNR) of the measurements and can be estimated by
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Fig. 5: Emulator for J(λ) in equation (24).

minimizing the functional

J(λ) =
1

2

∫ (∥∥∥Â(p, L, z0)q−w)
∥∥∥
2

+
∥∥q− qeng

∥∥
2

)
dPλpost, (24)

where qeng = [35, 80, 5, 5]T ton/yr, and the notation Pλpost is used to explicitly show the dependence of the
posterior measure Ppost on the parameter λ. The motivation for defining J(λ) in this way comes from the
problem of choosing λ to minimize the average value of the expression

(1− δ) ‖A(p, L, z0)q−w)‖2 + δ
∥∥q− qeng

∥∥
2

for δ ∈ [0, 1]. (25)

Depending on the value of δ, different weight can be given to the credibility of the atmospheric disper-
sion model compared to that of prior information about q. In particular, if δ = 1 then (25) reduces to∥∥q− qeng

∥∥
2

and λ is chosen to solely match the engineering estimates; on the other hand, taking δ = 0
leaves only the term ‖A(p, L, z0)q−w)‖2 which chooses λ solely based on minimizing the data misfit. We
choose δ = 1

2 , which is a compromise between the two extremes. After substituting into (25) and mini-
mizing the expected value with respect to the posterior measure, the expression J(λ) from (24) is easily
obtained.

Computing J(λ) analytically is not practically feasible and so we approximate it using a GP emulator,
minimizing the emulator instead. To obtain design points for the GP, we evaluate J for six different values
of λ using Markov Chain Monte Carlo integration, choosing only six points to keep the computational
cost within reasonable limits. The design points were chosen empirically by identifying locations where the
function J changes the most, and the resulting simulation is shown in Figure 5. The minimum value of
J(λ) is attained at λ ≈ 2.8×10−5, which is the value of λ we use in our source inversion framework for (23).
Note that optimization with emulators is an emerging area of research for which a detailed background
can be found in the paper [27] and references therein.

We now apply Algorithm 1 to generate samples from the posterior distribution, using the GP emulator
A(p, z0, L) to compute the likelihood ratio in Step 10 and parameter values listed in Table 3. When
estimating integrals, we discard the first half of the samples (up to 500,000) and retain only every tenth
iterate from there onwards to reduce correlation between consecutive samples. Therefore, a total of 50,000
samples is used to approximate each integral with respect to the posterior.

Marginal posterior histograms are displayed in Figure 6, from which we observe that marginals for the
emission rates qj are skewed and have well-defined modes. This is in line with our choice of a gamma prior,
and the mode for these marginals is a reasonable point estimate for each qj . To approximate the marginal
mode we fit a gamma distribution to the histograms and take the point estimate to be the mode of the
fitted distribution.

The situation is slightly different for the parameters p, z0, L. The histogram for p has no distinctive
maximum point indicating that the data is not informative for this parameter. For z0 and L, some values
are more distinctive than others but the distinction is still not sharp. To choose a point estimate for these
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Table 3: Value of parameters used in Algorithm 1 for generating samples from the posterior distribution.

N β γ1 γ2 γ3
106 0.05 0.01 (2.38)2 (0.1)2

cases, we first fit a density over the histograms and then take the resulting mode as the point estimate,
which is indicated in each case by a red dashed line in Figure 6.
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Fig. 6: Marginal posterior distribution for the three parameters p, z0, L (top) and the four emission rates
q1, q2, q3, q4 (bottom).

To quantify the uncertainty in each parameter, we employ a 68% Bayesian confidence interval which is
defined as follows: given a point estimate x∗ of a random variable X distributed with probability density ρ,
a 68% Bayesian confidence interval is the radius of the ball centered at x∗ containing 68% of the probability
mass for ρ. The corresponding confidence interval is listed for each parameter in Table 4. The estimates
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of the qj are clearly more informative, which is due to the linearity of the forward map and stronger prior
knowledge. The marginal modes and associated uncertainties for the qj are depicted graphically in Figure 7.
These results suggest that the engineering estimates for sources q1 and q2 are most likely overestimates,
whereas sources q3 and q4 are slightly underestimated. Furthermore, our estimates for sources q2, q3 and
q4 qualitatively agree with the results of previous studies in [22] (L&S) and [12] (H&S).

The results obtained in (L&S) were obtained using a Gaussian plume model and a least-squares based
inversion method. Therefore, discrepancies between our estimates and those of (L&S) are expected given
that we used a very different approach. On the other hand, (H&S) used the same PDE based forward map
as this study (although within a different Bayesian formulation) and so it is more informative to compare
our results to those of (H&S). We note two key differences between our results. First of all, there is a
notable difference between the estimates for q1. In [12], the parameters p, z0, L are fixed at 0.2, 0.05 and
−10, respectively. But these values depend strongly on environmental conditions, so a mis-assessment in
the environmental conditions might lead to sub-optimal predictions. It was conjectured in [12] that this
may be the underlying reason for the apparent overestimation of q1 in comparison to previous studies.
Furthermore, (H&S) obtained their estimates by marginalizing the posterior measure on qj only, whereas
we marginalize the posterior measure on the qj and the model parameters θ.

The second major difference is that our estimates have larger error bars in comparison to (H&S),
although we note that our error bars are large enough to cover most previous estimates. This is largely
due to differences in the parameter λ which have a direct effect on posterior variance. We chose λ by
minimizing J(λ) in (24) and achieved an SNR of 0.37. This means that the strength of the signal is quite
low compared to the noise of the measurements. In [12], λ is chosen to achieve an SNR of 10 which is why
the error bars for those results are much smaller. Furthermore, our method accounts for uncertainties in
the value of the model parameters θ while these are fixed in the approach of (H&S).

We further observe that our estimate of the total emission is consistent with previous studies, with the
exception of (H&S) which appears to have a higher estimate. This is mostly due to the over-estimation
of q1 which, as was mentioned before, is likely due to a lack of calibration in [12]. By allowing the model
parameters to be calibrated automatically we have obtained estimates that are consistent with two previous
studies that used very different methodologies, namely the engineering estimates and (L&S). This highlights
the importance of model calibration in atmospheric source inversion studies. Furthermore, our uncertainty
estimates are more realistic since we account for model parameter uncertainties and infer a better value
of the signal-to-noise ratio. Although our uncertainty estimate for the total emission is relatively large in
comparison to the estimate itself, this is due to the fact atmospheric source inversion problems are severely
ill-posed and sensitive to model parameters.

Table 4: Parameters and their estimates and uncertainties.

Parameter Point Estimate 68% Confidence Interval

p 0.3478 [0.1498, 0.5458]

z0 0.0811 [0, 1.5781]

L -379.45 [−195.86,−563.04]

Finally, we note that Gaussian process emulation is a crucial aspect of our inversion method that
renders it cost-effective. The main computational bottleneck in our framework is the evaluations of the
finite volume forward solver at the 64 design points used to construct the emulator. Given that the design
points are independent not only of each other but also the measurements, these computations can be
performed offline and in parallel. Every run of the finite volume code requires roughly two hours on a
personal computer, while the emulator can be evaluated in a fraction of a second. Therefore, the cost of
evaluating the emulator is negligible in comparison to the finite volume solver which enables us to perform
Monte Carlo integration in a reasonable time. Clearly, such a calculation would be prohibitive had we
employed the finite volume solver directly in the MCMC step.

In comparison to the previous approaches of [12] and [22] our total computational cost (including the
training of the emulator and design of experiment) is higher. For example, [22] uses a Gaussian plume
model which is much cheaper than the finite volume solver but comes at the cost of major simplifications
to the physics. On the other hand, [12] uses a finite volume forward solver of the original PDEs, which
is only evaluated four times. However, neither of these two approaches provides an automated calibration
procedure, and so we claim that the extra computations in our methodology are a small price to pay for
a richer solution structure with more realistic uncertainty estimates and rigorous model calibration.
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Fig. 7: Comparison between engineering estimates of the emission rates and our point estimates, along with
the associated uncertainty. The “Total” column indicates the sum of emission rates from all four sources.
Previous results from Lushi and Stockie [22] (L&S) and Hosseini and Stockie [12] (H&S) are included for
comparison purposes.

5 Conclusions

We have developed a new method for simultaneously calibrating atmospheric dispersion models and solv-
ing source inversion problems. Gaussian process emulators are used to speed up the evaluation of the
atmospheric dispersion model, which are then employed within a Bayesian framework to calibrate model
parameters and estimate source strengths at the same time. This allows for automatic tuning of unknown
model parameters rather than more heuristic approaches that are typically used in practice.

We demonstrated the effectiveness of our proposed method in an industrial case study concerning
emissions of zinc from a lead-zinc smelter in Trail, BC, Canada. Our results agree with those of previous
studies in the literature that are based on very different approaches. Hence, we conclude that the emulation
process is an accurate and efficient one that has the added advantage of greatly speeding up the calculations
by exploiting emulation.

Our proposed solution methodology is not restricted to atmospheric dispersion models governed by
partial differential equations. Indeed, our method can be adapted to any application where one in dealing
with a forward map that is linear in the primarily unknowns (such as the source strengths) but may depend
nonlinearly on the model parameters.
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