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Abstract. The gas diffusion layer in the electrode of a proton exchange membrane fuel cell is a highly porous
material which acts to distribute reactant gases uniformly to the active catalyst sites. We analyze the conservation
laws governing the multiphase flow of liquid, gas, and heat within the electrode. The model is comprised of five
nonlinear-degenerate parabolic differential equations strongly coupled through liquid-gas phase change. We identify
a scaling regime in which the model reduces to a free boundary problem for a moving two-phase interface. On
each side of the moving boundary the nonlinear system is well approximated by its linearization whose relaxation
times are much shorter than the front evolution. Using a quasi-steady reduction we obtain an explicit leading-order
evolution equation for the free surface in terms of the prescribed boundary conditions.
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1. Introduction. Polymer electrolyte membrane (PEM) fuel cells are unique energy conver-
sion devices, efficiently generating useful electric voltage from chemical reactants without com-
bustion. They have recently captured public attention for automotive applications for which they
promise high performance without the pollutants associated with combustion. The operation
of PEM fuel cells involves the convective transport of gases in flow field channels, convective-
diffusive transport through the gas diffusion layer (GDL), electro-chemical reaction in both the
anode (fuel/negative) and cathode (air/positive) catalyst layers, conduction of protons through
the polymer electrolyte membrane, conduction of electrons through the GDL and graphite plates,
and removal of product heat through the coolant channels, see Figure 1. The membrane’s conduc-
tivity improves significantly with hydration level, which in turn is sensitive to the relative humidity
of, and the presence of liquid water in, its environment. However, excessive production of liquid
water can flood the porous catalyst layer leading to a drop in power. Water management is the
balance between maintaining sufficient hydration levels in the membrane without flooding the gas
conducting regions, and it requires an understanding of when and where liquid water is produced
and how it is transported within the fuel cell.

There has been considerable attention given to the development of 2 and 3-D numerical models
to approximate the coupled two-phase mass and heat transport within unit cells, [4, 5, 6, 12, 13,
16, 22, 27, 28, 29]. These approaches have either treated the multiphase flow in a trivial way,
advecting the liquid as suspended droplets in the gas flow, or used isothermal models in which the
vapor and liquid are treated as a combined mixture, or have experienced convergence difficulties
for physically reasonable values of the parameters. The majority of the treatments are at steady-
state, and none have treated the transient evolution of the free surface between the two-phase and
dry regions in the hydrophobic GDL which arises from the degenerate nature of the liquid water
transport. A difficulty in treating the evolution of these surfaces is the dichotomy of time scales
present in the system. Even in the single phase regime, previous analysis, [20], has shown that the
convective and diffusive gas transport relaxes on time scales separated by 3-4 orders of magnitude.
The inclusion of the slow liquid transients stretches the time scale dichotomy from 10−6 seconds
for pressure relaxation to 102 − 103 seconds for motion of the free interface.
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2 K. PROMISLOW

A second difficulty in numerical computations is the length scale dichotomy. The large aspect
ratio of the fuel cell, roughly 1000 to 1 along the channel versus through the membrane electrode
assembly (MEA), renders the resolution of thin fronts within the through-plane direction of the
MEA a significant obstacle to numerical stability. Several authors, [2, 7, 10, 14], have exploited this
high aspect ratio, proposing so-called 1+1D models which couple 1D systems for the through-MEA
transport (z direction) to 1D along-the-channel convective transport (y direction) in the flow fields,
see Figure 1 (Right). The through-MEA models provide source terms for the convective channel
flow, consuming oxygen and producing water vapor as the gas flows from inlet to outlet. In turn,
the gas flow provides the boundary conditions for the through-MEA codes. Such models have
had success in determining the local current and voltage, and hence power generation, of the cell
however they have not incorporated multiphase aspects of water management due to its significant
computational complexity.

The analysis presented here affords an analytic description of the impact of multiphase flow
on fuel cell performance, greatly extending the accuracy and applicability of previous models
without significant increase in computational expense. Indeed, the inclusion of multiphase water
management in models of stacks of 50-200 unit cells used for automotive applications, [1], would
seem certain to require a reduction along these lines.
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Figure 1: (Left) A 3D view of a straight channel PEM fuel cell showing the membrane,
catalyst layers, gas diffusion layers (GDLs), and flow fields. The 1D slice of the cathode
GDL is indicated by a dotted line. (Right) An along-the-channel (y-z) slice indicating the
development of two-phase regions in the cathode GDL. When unhumified gases are used at
the air and fuel inlets, the inlet regions of the GDL are typically dry and two-phase regions
form down-stream where the gases are more humid.

We present a model of gas, liquid, and heat transport through a 1D slice of the GDL of a PEM
fuel cell. We prescribe the gas molar concentrations and temperature in the flow field channel, as
well as the flux of product water and heat in the catalyst layer. We develop a class of quasi-steady
solutions which describe the partition of product water into liquid and vapor fluxes in a boundary
layer at the cathode GDL-catalyst layer interface, which resolve the slow time scale evolution of
the two-phase free-boundary within the GDL and the heat and gas flux into the flow field channels,
and which predict the time scales and operating conditions needed to fill or empty the GDL of
liquid water.

We consider a 1D slice in which part of the GDL is dry and part is two-phase, as depicted
in Figure 1 (Right). We construct a class of solutions in which the liquid water in the two-phase
region is above the immobile volume fraction, β∗, and the gas phase is nearly saturated. Phase
change represents a singular perturbation to the system, as does the transition of the water volume
fraction, β, from mobile (β > β∗) to immobile (β < β∗) volume fractions. We have two distinct
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phase-change induced boundary layers, a fixed one at the catalyst layer-GDL interface arising from
the electrochemical reactions, and a free boundary separating the dry and two-phase regions of the
GDL. We do not resolve the fixed layer, rather the fluxes of heat and total water (liquid + vapor)
are prescribed on the catalyst side of the fixed boundary, and sufficient phase change is imposed
within the fixed layer to bring the water vapor flux into balance with the vapor flux carried by the
saturated two-phase gas, taking into account the impact of phase change on the heat flux.
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Figure 2: The variation in liquid water volume fraction β through the scaled free boundary
layer. Liquid volumes below β∗ are immobile. The evaporative layer has a width O(1/

√
H)

and evaporation rate of O(I
√

H) where H ≫ 1 is a rate constant for the phase change, Γ,
and I ≪ 1 is current density scaled by normalized diffusive flux. There is no phase change
in the dry regime, and the phase change in the two-phase regime, outside of the evaporative
layer, is O(I2). The liquid volume fraction jumps from β∗ to 0 across the sub-layer.

The free boundary layer has a sub-layer structure. In the evaporative layer from (z0
∗ , z

+
∗ ), see

Figure 2, the liquid water volume fraction is greater than the immobile volume fraction, the gas
phase is under-saturated, and the amount of phase change and the associated jump in fluxes are
determined. In the infinitesimal sublayer which has left and right limits z−∗ and z0

∗ respectively,
the water volume fraction reaches the immobile volume fraction and Rankine-Hugoniot conditions,
essentially conservation of mass across the interface, are enforced which ensure the dry phase and
two-phase solutions form a weak solution across the entire domain.

We nondimensionalize the transport equations, which reveals three major factors affording
simplification of the analysis. The current density represents a small molar flux, as a consequence
the conservation laws governing heat and gas transport can be treated as linear on either side of
the free boundary with little loss of accuracy. The capillary pressure dominates the gas pressure
yielding a liquid water distribution which is a linear function of a liquid water potential to good
approximation. The large separation of time scales for the relaxation of the heat, gas, and liquid
transport from the time scale of motion of the free boundary permits a quasi-steady approximation
in which the PDE dynamics are taken at steady-state, adiabatically driven by the slowly moving
free boundary.

The model we present applies to a wide range of PEM fuel cell operational regimes; there are
some caveats to its application. We assume the flux of gas and heat out of the catalyst layer scale
with the current density. This would not be the case, for example, with a dry anode feed and a wet
cathode feed, which would generate water transport independent of the current level. We assume
there is no lateral pressure gradient imposed in the x direction across the GDL, such as would
arise in interdigitated or serpentine flow fields: we consider straight flow fields. We assume the
channel gas is undersaturated but nearly saturated as outlined in (5.13) and that the gas phase is
undersaturated up to and into the free boundary. If the gas becomes oversaturated at the dry edge
of of the free boundary then the resultant condensation could form a region of immobile water,
0 < β < β∗. We preclude this case by restricting our results to those situations where the gas
phase undersaturation, Θ1

∗ given by (5.15), remains positive.
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The main result is summarized in Theorem 5.1. We construct a leading order approximation
to a family of sharp-interface, weak solutions of the governing system of conservation laws, along
the lines of [8]. The family describes the slow evolution of the free boundary at the two-phase
interface, and analytically connects the prescribed channel values and heat and water production
in the catalyst layer to both the production of liquid water in the catalyst layer and the fluxes of
heat and mass into the channel flow stream. In addition we show that to leading order the phase
change is localized at the fixed boundary layer at the catalyst-GDL interface and the free boundary.
The partitioning of product water into liquid and vapor is sensitive to the thermal conductivity of
the solid phase of the GDL. Increasing this coefficient by factors of 2-10 has a significant impact
on the water partitioning, and can reverse the direction of vapor phase flow, driving vapor from
the channel to the cathode catalyst layer, see (4.49) and following discussion.

The paper is organized as follows. In Section 2 we present the notation and a dimensional
version of the model, which is nondimensionalized in Section 3 and put into system form in (3.19).
The cathode boundary conditions which describe the product water partitioning are given in Sec-
tion 2.3. In Section 4 we rescale and linearize the governing system for the dry, two-phase, and
free boundary regimes. We present both fully time-dependent and quasi-steady reductions for
the dry and two-phase regimes. Within the limits of the quasi-steady reductions we derive explicit
leading-order solutions. We determine the jumps across both the resolved portion and the infinites-
imal sub-layer of the free boundary and obtain a differential equation for the motion of the free
boundary in terms of the product water partition and the gas phase undersaturation. In Section
5 we derive the sharp-interface reduction for the overall problem, using the quasi-steady solutions
and jumps across the free boundary to determine an expression for the gas-phase undersaturation.
This yields a closed differential equation for the free boundary motion.

2. Presentation of the Model.

2.1. Notation. The free boundary layer is demarcated by the points z−∗ , z0
∗, z

+
∗ , see Figure 2.

The evaporative boundary layer is the region (z0
∗ , z

+
∗ ), while the infinitesimal sublayer has left and

right limits z−∗ and z0
∗ . The jump of a quantity across the the resolved boundary layer is denoted

[[

N
]]

= N(z+
∗ ) − N(z0

∗),(2.1)

the jump across the sublayer is denoted

[[

N
]]

s
= N(z0

∗) − N(z−∗ ),(2.2)

while the jump across the whole free surface is denoted

[[

N
]]

f
= N(z+

∗ ) − N(z−∗ ).(2.3)

The j’th component of a vector ~V is denoted ~Vj . The subscripts z̃ and z denote differentiation with
respect to that variable. Except for the scaling parameters t∗, I∗, and T∗ the sub- or super-script
∗ denotes a quantity evaluated at the two-phase boundary point z∗. The superscript t after a
row-vector indicates transpose. The projections πd, πw : R5 7→ R4 are given by πd(x1, . . . x5) =
(x1, x2, x3, x4)

t and πw(x1, . . . , x5) = (x1, x2, x3, x5)
t. The positive z direction is from channel to

membrane, positive fluxes are channel to membrane.

2.2. The GDL Model. The dimensional unknowns are the molar concentrations of oxygen,
water vapor, and nitrogen, denoted by C̃o, C̃v, and C̃n, the liquid water volume fraction β, and
the temperature T̃ . The total (convective plus diffusive) flux of species α is denoted Nα. The
variables represent averages over the pore-scale structure of the liquid-gas-solid domains. The gas
phase occupies the fraction 1− β of the void space, which is ǫ = 0.74 of the total volume fraction.
Conservation of mass and energy is expressed through the following PDEs which are coupled not
only through the constitutive relations for the fluxes but also through the condensation, Γ̃, which
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appears as a source or sink term.

ǫ
∂
(

(1 − β)C̃o

)

∂t
+ (Ño)z̃ = 0,(2.4)

ǫ
∂
(

(1 − β)C̃v

)

∂t
+ (Ñv)z̃ = −Γ̃,(2.5)

ǫ
∂
(

(1 − β)C̃n

)

∂t
+ (Ñn)z̃ = 0,(2.6)

ǫ
∂ (Clβ)

∂t
+ (Ñl)z̃ = Γ̃,(2.7)

∂(ρcT̃ )

∂t
+ (ÑT )z̃ = hvΓ̃.(2.8)

The total flux of gas species α is the sum of the convective and diffusive fluxes

Ñα = UgC̃α − DC̃

(

C̃α

C̃

)

z̃

.(2.9)

As a convenience we have assumed a Fickian formulation for the diffusive flux, with a common
diffusivity, D, for all gas species. It is straightforward to incorporate a Maxwell-Stefan formulation,
[25, 26] for the diffusive gas fluxes into the analysis presented here.

The gas pressure is given by the ideal gas law

P̃g = C̃RT̃ ,(2.10)

where the total gas concentration C̃ satisfies C̃ = C̃o + C̃v + C̃n. The gas velocity is given by
Darcy’s law

Ug = −Kkrg(β)

µg
P̃g,z̃ ,(2.11)

where K is the permeability, µg is the gas viscosity, and the gas relative permeability, krg is given
by

krg(β) = (1 − β)3.(2.12)

An essential feature of the multiphase model are the constitutive relations which specify the
liquid relative permeability and the capillary pressure in terms of the liquid volume fractions.
These relations incorporate the considerable role played by the hydrophobicity of the GDL into
the model. Our approach is not new to the fuel cell literature, [7, 16], and is borrowed from the
hydrology literature on hydrophobic soils, see [17] and references within. The liquid velocity is
defined by Darcy’s law

Ul = −Kkrl(β)

µl
P̃l,z̃ ,(2.13)

where the liquid relative permeability krl is given by

krl(β) =

{

0 β < β∗,

(β − β∗)
1

2 , β ≥ β∗
,(2.14)

This constitutive form for the relative permeability supposes that for low liquid volume fractions,
β < β∗ the water is contained in disconnected droplets which are immobile. For volume fractions
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larger than the percolation threshold β∗ the droplets merge to form a locally connected domain
which supports transport. A second impact of hydrophobicity is on the capillary pressure which
describes the pressure jump across the pore-scale liquid-gas interfaces,

P̃l = P̃g + P̃c,(2.15)

where following Leverett, [15], we take the capillary pressure to have the form

P̃c = Spγs

( ǫ

K

)
1

2 J (β).(2.16)

Here γs is the liquid surface tension, Sp > 0 is a scaling constant which includes both contact
angle effects and the substantially larger scaling for capillary pressure in hydrophobic media. For
the dependence of capillary pressure on liquid volume fraction we use a simplified van Genuchten
function, [11],

J (β) =

√

1

(1 − β)2
− 1,(2.17)

which describes the increasing pressure jump required at high liquid volume fractions to force the
water into increasingly smaller pores. The liquid flux, Ñl is defined in terms of the liquid velocity,
the liquid volume fraction, and the constant liquid molar density, Cl, as

Ñl = ClUlβ.(2.18)

The heat flux is given by

ÑT = ρcUT̃ − κT̃z̃,(2.19)

where c is the specific heat, ρ is the density, and κ is the thermal conductivity. The thermal
conductivity is taken to be that of the solid phase, since it is dominant,

κ = (1 − ǫ)κs,(2.20)

while the heat capacity and convective heat flux are averaged over the phases

ρc = (1 − ǫ)ρscs + ǫ ((1 − β)ρgcg + βρlcl) ,(2.21)

ρcU = ǫ ((1 − β)ρgcgUg + βρlclUl) .(2.22)

The condensation rate Γ̃ is given by

Γ̃ =
γvh(β, C̃v)

Lp

(

C̃v − C̃sat(T̃ )
)

,(2.23)

where Lp = 1µm is the typical pore size in the GDL, the coefficient of evaporation is approximated
by Langmuir’s formula [30]

γv =

√

RT̃

2πmv
,(2.24)

where mv = 0.018 kg/mole is the molecular weight of water, and the liquid-gas interface density
is given by

h(β, C̃v) =

{

β
2

3 C̃v < C̃sat,

(1 − β)
2

3 C̃v > C̃sat.
(2.25)
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Here the exponent 2
3 arises from the assumption of spherical water droplets and gas bubbles, with

the corresponding relationship between volume and surface area. The vapor saturation concentra-
tion, C̃sat is given in terms of the saturation pressure P̃sat of water vapor,

C̃sat(T̃ ) =
P̃sat(T̃ )

RT̃
,(2.26)

which is given empirically, in atmospheres, by the formula [24]

log10 P̃sat(T̃ ) = −2.18 + 0.029(T̃ − 273.2)

−9.18 · 10−5(T̃ − 273.2)2 + 1.44 · 10−7(T̃ − 273.2)3.(2.27)

cg 2.6 × 103 J/(Kg oK) cl 103 J/(Kg oK) cs 7.1 × 102 J/(Kg oK)

C 1.02 × 102 mol/m3 Cl 5.56 × 104 mol/m3 D 8.0 × 10−6 m2/s
F 96485 C/mol hv 4.54 × 104 J/mole Ĩ 1 × 104 Amp/m2

K 1.0 × 10−12 m2 L 3 × 10−4 m Lp 1 × 10−6 m
mv 0.018 Kg/mole R 8.31 J/(mole oK) r̃ 8.0 m/s
r̃T 1.1 × 104 J/(m2 s ◦K) Sp 100 - T c 353 ◦K
β∗ 0.1 - ǫ 0.74 - γs 0.0724 Kg/s2

γv 161 m/s κg 2.8 × 10−2 J/(m s oK) κl 0.675 J/(m s oK)
κs 1 J/(m s oK) µg 2.24 × 10−5 Kg/(m s) µl 0.3 Kg/(m s)
ρg 2 Kg/m3 ρl 1 × 103 Kg/m3 ρs 4.9 × 102 Kg/m3

Table 2.1

Material Parameters

2.3. Boundary Conditions. We prescribe fluxes at the catalyst layer-GDL boundary. At
the channel-GDL boundary we prescribe Robin type conditions to account for boundary layers
introduced in the gas channel flow by the fluxes from the GDL. The fluxes out of the catalyst layer
are described by three interrelated parameters: the current density, Ĩ, the heat flux out of the
catalyst layer, Ñm

cT , and the water (liquid plus vapor) flux out of the catalyst layer, Ñm
cw. These

last two quantities are thought of as the heat and water production of the catalyst layers, which
are clearly related to the current density Ĩ, adding or subtracting heat and water flux between
the membrane and catalyst layers. The heat and water fluxes between the membrane and catalyst
layer depend upon the state of the membrane and the anode channel, as such we take Ñm

cT and
Ñm

cw as given quantities. In the fixed boundary layer at the catalyst layer the phase change resolves
the catalyst water flux into a vapor flux and a liquid water flux

Ñm
cw = Ñm

l + Ñm
v .(2.28)

The vapor flux will be determined by the temperature profile in the vapor-saturated two-phase
region. In the event that the vapor flux Ñm

v is toward the membrane, the liquid water flux into
the GDL can exceed the water flux out of the catalyst layer, Ñcw. The phase change within the
catalyst-GDL boundary layer also impacts the heat flux, Ñm

T , into the GDL,

Ñm
cT − Ñm

T = hvÑ
m
v .(2.29)

Region I: Membrane-GDL Region II: Channel-GDL

Ño =
Ĩ(x)
4F r̃(C̃o(0) − Co) = −Ño(0)

Ñv = Ñm
v r̃(C̃v(0) − Cv) = −Ñv(0)

Ñn = 0 r̃(C̃n(0) − Cn) = −Ñn(0)

Ñl = Ñm
cw − Ñm

v β = 0

ÑT = Ñm
cT − hvÑ

m
v r̃T (T̃ (0) − T c) = −ÑT (0)
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We take the same mass transport parameter, r̃, for each of the three gas species. The heat transport
is primarily through the channel landing and we take a value of the heat transport parameter, r̃T ,
which is consistent with a solid-solid interface, [9]. The cathode channel total gas concentration,
C, satisfies

C = Co + Cv + Cn =
P

RT c

,(2.30)

and will be prescribed in place of Cn. The value C = 102 moles/m3 given in Table 1 corresponds
to a cathode pressure of 3 atmospheres at 353◦K.

3. Nondimensionalization. We scale the gas species concentrations by the channel total

molar concentration. We choose the temperature scale T∗ = hvC
ρlcl

to balance the heat flux produced

by evaporation against the molar fluxes of liquid and vapor water, setting the coefficient of Γ in the
heat equation to one. Distance is scaled by the thickness L of the diffusion layer, and time is scaled

by τ∗ = ǫL2

D , the characteristic diffusive time. The dimensionless dependent and independent
variables are

Co = C̃o/C Cv = C̃v/C Cn = C̃n/C,

T = T̃ /T∗ τ = t/τ∗ z = z̃/L,
(3.1)

and the dimensionless fluxes are

NT =
L

hvCD
ÑT , Nα =

L

DC
Ñα, Nl =

L

DC
Ñl,

where α runs over the gas species oxygen, nitrogen, and water vapor. The dimensionless current,
or ion flux, is scaled by

I =
ĨL

4FCD
.(3.2)

A key observation is that the current, while a large charge flux, represents a weak molar flux due to
the size of Faraday’s constant F = 96485 Coulomb/mole and the thinness of the GDL. At typical
current densities Ĩ = 104 A/m2, the dimensionless ion flux I = O(10−3 − 10−2).

We eliminate the nitrogen concentration Cn in favor of the dimensionless total gas concentra-
tion C = Co + Cv + Cn and rescale the the conservation laws for the heat and mass transport in
the gas diffusion layer as

((1 − β)C)τ + (Ng)z = −Γ,(3.3)

(σ(β)T )τ + (NT )z = Γ,(3.4)

((1 − β)Co)τ + (No)z = 0,(3.5)

((1 − β)Cv)τ + (Nv)z = −Γ,(3.6)

δ−1
l βτ + (Nl)z = Γ.(3.7)

The total flux of gas species α is

Nα = −Rgkrg(β)Cα(CT )z − C

(

Cα

C

)

z

,(3.8)

while the gas flux Ng = No + Nv + Nn is purely convective,

Ng = −Rgkrg(β)C(CT )z .(3.9)
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Here the convective gas parameter Rg = KCRT∗
Dµg

, is a Péclet number and the dimensionless heat

capacity σ is given by

σ = σls + δlσlg(1 − β) + β,(3.10)

where liquid-solid and liquid-gas heat capacity ratios are σls =
(1 − ǫ)ρscs

ǫρlcl
and σlg =

ρgcgCl

ρlclC
where

the ratio of liquid to gas molar concentrations, δl = C
Cl

, has been factored out of the liquid-gas

ratio.
The dimensionless liquid water flux Nl is given by

Nl = −Rlβkrl(β)(CT )z − Rc

δl
ν(β)βz ,(3.11)

where Rl =
µgCl

µlC
Rg measures the contribution of gas convection to the liquid motion and Rc =

γs

√
Kǫ

Dµl
, balances capillary pressure against diffusivity. The effective water diffusivity ν is given

by

ν(β) = βkrl(β)J ′(β).(3.12)

The dimensionless condensation rate Γ is given by

Γ = Hh(β, Cv)(Cv − Csat(T )),(3.13)

where the condensation rate H is given by

H =
L2

DLp

√

RTcT∗
2πmv

.(3.14)

The temperature in this formula has been approximated by the dimensionless channel temperature
Tc = T̃ /T∗. The dimensionless vapor saturation concentration is given by

Csat(T ) = C̃sat(T c + TT∗)/C.(3.15)

The dimensionless heat flux is given by

NT = −
(

δl

[

Rgσlg(1 − β)krg(β) + Rlβkrl(β)
]

T (CT )z + RcTν(β)βz + RT Tz

)

,(3.16)

where the Lewis number RT =
(1 − ǫ)κs

Dρlcl
, represents the balance of thermal conductivity against

molecular diffusivity.
We collect the fluxes and unknowns into vectors ~N = (Ng, NT , No, Nv, Nl)

t, and ~V = (C, T, Co, Cv, β)t.
The constitutive relations for the fluxes may then be written as

~N = D(~V )~Vz ,(3.17)

with the matrix D given by

D = −











RgkrgTC RgkrgC
2 0 0 0

δlClgT
2 δlClgCT + RT 0 0 RcTν(β)

(

RgkrgT − 1
C

)

Co RgkrgCCo 1 0 0
(

RgkrgT − 1
C

)

Cv RgkrgCCv 0 1 0
RlβkrlT RlβkrlC 0 0 Rcν(β)/δl











,(3.18)
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where Clg = Rgσlg(1 − β)krg + Rlβkrl describes the impact of convective transport on the heat
flux. The system of conservation laws takes the form

M(~V )~Vτ +
(

D(~V )~Vz

)

z
= Γ~S,(3.19)

where ~S = (−1, +1, 0,−1, +1)t describes the impact of phase change on each species, and the
matrix M is given by

M =











1 − β 0 0 0 −C
0 σ 0 0 (1 − δlσlg)T
0 0 1 − β 0 −Co

0 0 0 1 − β −Cv

0 0 0 0 δ−1
l











.(3.20)

C P
RT c

102† mol/m3 I∗
4FCD

L
1.26 × 106 C/(s m2) L L 2.5 × 10−4m

t∗
ǫL2

D
5.8 × 10−3 s T∗

hvC
ρlcl

4.63◦K H
L2γv

DLp
1.26 × 106

I LĨ
4FCD

7.91 × 10−3 r Lr̃
D

2.5 × 102 rT
LT∗r̃T

hvCD
0.34

Rg
KCRT∗

Dµg
21.9 Rc

γsSp

√
Kǫ

Dµl
2.59 Rl

KClRT∗

Dµl
0.891

RT
(1 − ǫ)κs

Dρlcl
3.25 × 10−2 Tc T c/T∗ 76.2 Xo Co/C [0.05 − 0.2]

Xv Cv/C 0.142 Xs App. A 0.143 X′
s App. A 2.34 × 10−2

δl C/Cl 1.83 × 10−3 σlg
ρgcgCl

ρlclC
2.83 σls

(1 − ǫ)ρscs
ǫρlcl

0.122

Table 3.1

Scaling Constants and Dimensionless Parameters, at T c = 353
◦K†

4. Scalings and Reductions for the Three Regimes. The asymptotics for the gas, liquid,
and heat transport are predicated upon the small parameters, of which there are five. Chief
among these is the dimensionless flux density I which is the driving force for the flow. The inverse
evaporation rate 1/H drives a singular perturbation which defines the boundary layer asymptotics.
Other small parameters which are tangentially involved are the liquid-gas molar density ratio, δl,
the Lewis number, RT , which balances thermal conductivity against molecular diffusivity, and the
inverse scaled channel temperature 1/Tc. We scale the boundary conditions at the membrane by
the current density

~N(z = 1) = ~FmI,(4.1)

where the scaled membrane fluxes

~Fm = (1 + Nm
v , Nm

cT − Nm
v , 1, Nm

v , Nm
cw − Nm

v )t,(4.2)

are written in terms of the prescribed catalyst layer fluxes Nm
cT =

LÑm
cT

hvCD
, Nm

cw =
LÑm

cw

CD
, and the

undetermined GDL vapor flux Nm
v =

LÑm
v

CD
. On the two-phase side of the interface we prescribe

the unknowns

~V (z = z+
∗ ) = ~V∗,(4.3)

where ~V∗ is to be determined. On the dry side of the interface we prescribe the fluxes

~N(z = z−∗ ) = ~F dI,(4.4)
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where again ~F d is to be determined. Using the projection πd defined in Section 2.1, we write the
Robin conditions at the channel as

πd

(

~V (z = 0) − ~Vc

)

= −Mrπd
~N(z = 0),(4.5)

and the Dirichlet condition for the liquid water as

β(0) = 0.(4.6)

The channel values ~Vc = (1, Tc, Xo, Xv, 0)t, are given in Table 3.1, and the 4 × 4 matrix Mr is
diagonal

Mr = diag (r−1, r−1
T , r−1, r−1),(4.7)

where r = D
L r̃ and rT = LT∗

hvCD
r̃T .

4.1. Dry Regime. After subtracting off the channel values, we scale the dry regime solution
with the dimensionless current density I, after subtracting off the the channel values. In the dry
region there is no liquid water present (β = 0) and that the gas is undersaturated, so there is no

phase change. The scaled unknowns are ~V d = (C1, T 1, C1
o , C1

v )t where

C = 1 + C1

Tc
I,

T = Tc + T 1I,

Co = Xo + C1
o I,

Cv = Xv + C1
vI.

(4.8)

The relative permeabilities simplify to krg = 1, and krl = 0, and the conservation laws (3.3-3.6)
and boundary conditions become

Md~V d
τ +

(

Dd(~V d)~V d
z

)

z
= 0,(4.9)

~V d(0) = −MrDd(~V d)~V d
z (0),(4.10)

Dd(~V d)~V d
z (z−∗ ) = πd

~F d,(4.11)

where Md and Dd are 4 × 4 matrices. The matrix Md is independent of ~V d, and is given by

Md =







1/Tc 0 0 0
0 σls + δlσlg 0 0
0 0 1 0
0 0 0 1






.(4.12)

We expand the z-derivatives to find

Md~V d
τ + Dd

c
~V d

zz = −
(

(Dd(~V d) −Dd(~Vc))~V
d
zz + ∇~V dDd : ~V d

z : ~V d
z

)

I,(4.13)

where Dd
c = Dd(~V d

c ) is given by

Dd
c = −







Rg Rg 0 0
δlσlgRgTc δlσlgRgTc + RT 0 0

Xo(Rg − 1/Tc) XoRg 1 0
Xv(Rg − 1/Tc) XvRg 0 1






.(4.14)
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We neglect the O(I) terms in (4.13), and find a leading order constant-coefficient parabolic system,

~V d
τ + Kd~V d

zz = O(I),(4.15)

where

Kd =
[

Md
]−1 Dd

c = −











RgTc RgTc 0 0
δlσlgRgTc

σls + δlσlg

δlσlgRgTc + RT

σls + δlσlg
0 0

Xo(Rg − 1/Tc) XoRg 1 0
Xv(Rg − 1/Tc) XvRg 0 1











.(4.16)

The characteristic polynomial of Kd is

p(λ) = (λ + 1)2
(

(σls + δlσlg)λ2 + ((σls + 2δlσlg)RgTc + RT )λ + RgRT Tc

)

.(4.17)

Using the asymptotic relations δl, 1/Tc ≪ 1 we approximate the eigenvalues to find

λ1 = λ2 = −1,(4.18)

λ3 = −RgTc +
RT

σls
+ O(1),(4.19)

λ4 = − RgRT Tc

RgTcσls + RT
+ O(1/Tc, δl).(4.20)

The fastest time scale is associated with the eigenvalue λ3 ≈ −1.7 × 103 and has eigenvector
(1, 1, 0, 0)t + O(δl, 1/Tc) which describes the linearized dimensionless gas pressure

Pg =
P̃g

CTcR
= 1 + (T 1 + C1)I + O(I2).

The smallest eigenvalue λ4 ≈ −0.25 is associated with relaxation of the temperature profile.

4.1.1. The Quasi-Steady Dry Regime. In the quasi-steady regime the two-phase interface
point z∗ and the dry fluxes ~F d are time dependent but on a time scale several orders of magnitude
longer than the relaxation times 1/λ1, . . . , 1/λ4 of the governing systems of conservation laws
(4.15). Given the uniformly parabolic nature of governing equations (4.15), the corresponding
solutions are quasi-stationary, adiabatically driven by the slow evolution of the front and fluxes,
up to the order of the time-scale ratio, which is seen in (4.72) to be O(δl). In this regime the fluxes
are spatially constant to leading order and the governing equation reduces to

Dd
c
~V d

zz = O(I), for z ∈
(

0, z−∗ (τ)
)

(4.21)

Dd
c
~V d

z

(

z−∗ (τ)
)

= πd
~F d(τ) + O(I).(4.22)

~V d(0) = −Mr
~F d(τ) + O(I),(4.23)

Since Dd
c has an O(1) inverse, the system has the simple linear solution

~V d(z) =
(

−Mr + z
[

Dd
c

]−1
)

πd
~F d(τ) + O(I).(4.24)

4.2. The Two-Phase Regime. In the two-phase regime the liquid water is everywhere
greater than the immobile volume fraction, β∗, and the gas is saturated to leading order. As in the
dry regime, the scaled variables ~V w = (C1, T 1, C1

o , C1
v , β1)t describe variations from the channel

values, except for the scaled water vapor and water volume fractions, which describe variations
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from the saturation pressure (3.15) and the immobile volume fraction respectively,

C = 1 + C1I/Tc,

T = Tc + T 1I,

Co = Xo + C1
o I,

Cv = Csat(T ) + C1
vI/H,

β = β∗ + β1 (Iδl)
2

3 .

(4.25)

Change of variables is chosen to render the diffusivity matrix, Dw see (4.35), O(1) with an O(1)

inverse. In particular, the (Iδl)
2

3 scaling for β1 is determined from the liquid flux boundary
conditions at the membrane where the effective liquid diffusivity, given by (3.12) scales as

ν(β) = ν∗
√

β1(Iδl)
1

3 + O(Iδl),(4.26)

where ν∗ = ν(β∗) = β∗J ′(β∗). Near the membrane, neglecting the convective terms, the liquid
flux (3.11) has the scaling

Nl = −Rc

δl
ν(β)βz = −Rcν

∗I
(

β1
)

3

2 + O(I
5

3 δ
2

3

l ),(4.27)

which yields an O(1) value for β1 from the liquid flux boundary condition at the membrane
Nl = Nm

l I.
In linearizing the conservation laws it is convenient to introduce k∗

rg = krg(β∗), σ∗ = σ(β∗),
and C∗

lg = Clg(β∗). In the new variables in the two-phase region the liquid relative permeability
simplifies

krl = (Iδl)
1/3
√

β1.(4.28)

The dimensionless vapor saturation concentration, Csat(T ) =
C̃sat(T c + TT∗)

C
is approximated to

O(I2) by linearizing about the channel temperature, Tc,

Csat(T
1) = Xs + X ′

sIT 1 + O(I2).(4.29)

The coefficient Xs is the saturation mole fraction at the channel, while X ′
s gives the linear response

of the saturation mole fraction to changes in temperature. These coefficients are computed in
Appendix A. We collect the leading order terms in the conservation laws, finding

Mw ~V w
τ + (Dw

(β1)~V w
z )z = C1

v
~S + O(I, δl, 1/H),(4.30)

where

Dw
(~V w) = −













Rgk
∗
rg Rgk

∗
rg 0 0 0

δlC∗
lgTc δlC∗

lgTc + RT 0 0 RcTcδlν
∗
√

β1

(Rgk
∗
rg − 1/Tc)Xo Rgk

∗
rgXo 1 0 0

(Rgk
∗
rg − 1/Tc)Xs Rgk

∗
rgXs + X ′

s 0 0 0

Rlβ∗(δlI)
1

3

√

β1 Rlβ∗(δlI)
1

3

√

β1 0 0 Rcν
∗
√

β1













,(4.31)

and

Mw
= −

















(1 − β∗)/Tc 0 0 0 −δ
2

3

l /I
1

3

0 σ∗ 0 0 (1 − δlσlg)δ
2

3

l /I
1

3

0 0 (1 − β∗) 0 −δ
2

3

l /I
1

3

0 (1 − β∗)X
′
s 0 0 −δ

2

3

l /I
1

3

0 0 0 0 1/(δlI)
1

3

















.(4.32)
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Having neglected the O(H) terms associated with the vapor, the matricies Dw
and Mw

are non-
invertible and the leading order equation for C1

v is degenerate. Inclusion of the O(H) terms forces a
boundary-layer type solution for C1

v which is incompatible with the boundary conditions. Instead,
we separate this equation out,

(1 − β∗)X
′
sT

1
τ −

(

(Rgk
∗
rg − 1/Tc)XsC

1
z +

(

Rgk
∗
rgXs + X ′

s

)

T 1
z

)

z
= −C1

v + O(I, δl, 1/H),(4.33)

and eliminate C1
v from the conservation laws, obtaining a reduced 4 × 4 system. We drop the

O
(

(δlI)
1

3

)

terms in the last row of Dw
, and replace (4.30) with a system for πw

~V w = (C1, T 1, C1
o , β1),

Mw
(

πw
~V w
)

τ
+
(

Dw(β1)
(

πw
~V w
)

z

)

z
= O(I, δl, 1/H, (Iδl)

1

3 ),(4.34)

where

Dw(~V ) = −









Rgk
∗
rg − (Rgk

∗
rg − 1/Tc)Xs Rgk

∗
rg −

(

Rgk
∗
rgXs + X ′

s

)

0 0

δlC∗
lgTc + (Rgk

∗
rg − 1/Tc)Xs δlC∗

lgTc + RT + Rgk
∗
rgXs + X ′

s 0 RcTcδlν
∗
√

β1

(Rgk
∗
rg − 1/Tc)Xo Rgk

∗
rgXo 1 0

(Rgk
∗
rg − 1/Tc)Xs Rgk

∗
rgXs + X ′

s 0 Rcν
∗
√

β1









,

(4.35)
and

Mw =











(1 − β∗)/Tc −(1 − β∗)X
′
s 0 0

0 σ∗ + (1 − β∗)X
′
s 0 −σlgδ

5

3

l /I
1

3

0 0 (1 − β∗) −δ
2

3

l /I
1

3

0 (1 − β∗)X
′
s 0 1/(δlI)

1

3











.(4.36)

We rewrite the conservation laws as
(

πw
~V w
)

τ
+
(

Kw(β1)
(

πw
~V w
)

z

)

z
= O(I, δl, 1/H),(4.37)

where

Kw = [Mw]
−1 Dw(β1),(4.38)

has a spread of eigenvalues from O(103) for pressure relaxation to O(10−2) for the relaxation of
the liquid water profile, for β1 = O(1).

4.2.1. Quasi-Steady Two-Phase Regime. As in the dry regime, we consider the two-
phase regime to be driven adiabatically by the slow variation of the two-phase front location z∗(τ)

and the values at the two-phase interface ~V∗(τ). As a convenience, we replace β1 with the liquid
“potential”

C1
β =

2

3

(

β1
)

3

2 ,(4.39)

so that the scaled unknowns are

~V wq = (C1, T 1, C1
o , C1

v , C1
β)t.(4.40)

With this substitution the quasi-steady version of the conservation law (4.30) takes the form

Dwq ~V wq
zz = C1

v
~S + O

(

I, 1/H, (δlI)
1

3

)

,(4.41)
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where

Dwq = −











Rgk
∗
rg Rgk

∗
rg 0 0 0

δlC∗
lgTc δlC∗

lgTc + RT 0 0 Rcν
∗Tcδl

(Rgk
∗
rg − 1/Tc)Xo Rgk

∗
rgXo 1 0 0

(Rgk
∗
rg − 1/Tc)Xs Rgk

∗
rgXs + X ′

s 0 0 0
0 0 0 0 ν∗Rc











,(4.42)

is a constant matrix. The system (4.41) appears to be degenerate since detDwq = 0, but is
well-posed. Indeed, the solvability condition

~SC1
v ⊥ kernel [Dwq]

t
= span











0
−X ′

s(1 − β∗)
0
σ∗

δl(σ∗ + (1 − β∗)X
′
s(1 − δlσlg)











,(4.43)

requires that C1
v = 0 since ~S is not orthogonal to the kernel. This implies that, away from the two-

phase boundary layer, the phase change is a higher-order effect arising from nonlinear interactions.
The solvability condition also gives uniqueness, the only solution to

Dwq ~V wq
zz = 0,(4.44)

subject to C1
v = 0 is ~V wq

zz = 0. In particular we observe that the fluxes are constant to leading
order within the two-phase region (z+

∗ , 1).

We drop C1
v , and introduce the reduced variables ~V wr = (C1, T 1, C1

o , C1
β)t and the reduced

diffusivity matrix Dwr which is the 4, 4 minor of Dwq. With a two-phase front located at z = z∗,
the solution to (4.44) subject to (4.1) and (4.3) is a simple linear function of position

~V wr = πw
~V∗ + (z − z∗) [Dwr]

−1
πw

~Fm.(4.45)

The vapor flux carried by the saturated gas, Nv, is constant to leading order, and is given in
terms of the temperature and total gas gradients in (4.33). This yields a leading order expression
for the vapor flux into the GDL-catalyst boundary layer,

Nm
v = −(Rgk

∗
rg − 1/Tc)XsC

1
z −

(

Rgk
∗
rgXs + X ′

s

)

T 1
z .(4.46)

The analytic solution (4.45) gives the slope of the scaled molar gas concentration and temperature
in terms of the prescribed fluxes,

C1
z = −

δlC∗
lgTc + RT

Rgk
∗
rgRT

(1 + Nm
v ) +

Nm
cT − Nm

v

RT
− Tcδl

RT
(Nm

cw − Nm
v ) ,(4.47)

T 1
z =

δlC∗
lgTc

Rgk
∗
rgRT

(1 + Nm
v ) − Nm

cT − Nm
v

RT
+

Tcδl

RT
(Nm

cw − Nm
v ) .(4.48)

Substituting these expressions into (4.46) leads to a linear equation for Nm
v , which has solution

Nm
v =

(

Nm
cT − Tcδl(

C∗
lg

Rgk∗
rg

+ Nm
cw)
)

(Xs + TcX
′
s) + TcRT

(

1 − 1
TcRgk∗

rg

)

Xs
(

1 + Tcδl(
C∗

lg

Rgk∗
rg

− 1)
)

(Xs + TcX
′
s) + TcRT

(

1 −
(

1 − 1
TcRgk∗

rg

)

Xs

) .(4.49)

The denominator is positive, while the term on the left in the numerator is negative since the
heat flux is away from the membrane Nm

cT < 0 while the total water flux Nm
cw is dominated by the

positive term
C∗

lg

Rgk
∗
rg

. The term on the right in the numerator is positive since 1/(TcRgk
∗
rg) ≪ 1
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. We have two competing effects, the heat and water flux push the vapor flux negative, while the
thermal conductivity, RT , pushes it positive. The heat flux and the thermal conductivity are only
partially linked, at quasi-steady state the heat produced in the MEA must leave through either the
cathode or anode side of the membrane, the total heat flux is essentially prescribed. The thermal
conductivity ascribes a temperature gradient necessary to accommodate the heat flux, and has only
a secondary affect on the heat flux itself. For small values of RT , as we have taken here for carbon
fiber paper, the fluxes dominate and the vapor flux is negative. Indeed in the limit RT Tc ≪ 1 the
vapor flux has the simple form

Nm
v =

Nm
cT − Tcδl(

C∗
lg

Rgk∗
rg

+ Nm
cw)

1 + Tcδl(
C∗

lg

Rgk∗
rg

− 1)
< 0.(4.50)

For a more thermally conductive GDL, intermediate between Torayr©carbon fiber paper and pure
graphite, for example κs ≈ 30 J/(m s ◦K) with RT ≈ 1, the positive terms dominate and the vapor
flux is towards the membrane. In the limiting case RT Tc ≫ 1, the vapor flux depends only upon
the channel saturation mole fraction

Nm
v =

Xs

1 − Xs
+ O(1/Tc).(4.51)

The high thermal conductivity lowers the temperature difference between membrane and channel,
forcing condensation at the GDL-catalyst boundary layer where the liquid flux

Nm
l = Nm

cw − Nm
v ,(4.52)

is more negative than the total water output of the membrane. This condensation is a sink for water
vapor, and the vapor flux towards the membrane gives the oxygen a convective boost, enhancing
the transport of oxygen towards the membrane. More specifically the convective boost increases
the oxygen concentration at the membrane for a prescribed oxygen flux (current density) reducing
oxygen reduction reaction overpotential losses. The benefit comes at the cost of increased liquid
water production, and hence increased heat removal load for the coolant. Assessing the impact
of the increased water production on flooding in the catalyst layer is beyond the scope of this
analysis.

4.3. The Two-Phase Interface. The free boundary layer has a double-layer structure. The
first, which we resolve, is the evaporative layer in which the leading order phase change occurs. The
infinitesimal layer is the point at which the liquid volume fraction reaches the immobile volume
fraction, and the governing equation losses parabolicity. We address each layer in turn.

4.3.1. The Evaporative Layer. The key to the free boundary evolution is to determine
the total amount of phase change which occurs within the evaporative layer (z0

∗, z
+
∗ ), (see Figure

2). We will express this net phase change and the flux jumps in terms of Θ∗, the degree of vapor
undersaturation at the two-phase point z−∗ ,

Θ∗ = Csat

(

T (z−∗ )
)

− Cv(z−∗ ).(4.53)

We assume that the liquid water is everywhere greater than the immobile volume fraction, β∗. We
rescale the variables as in the two-phase region, except for the water vapor whose scaling H−αI
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contains a parameter α determined below,

C = 1 + C1I
Tc

,

T = Tc + T 1I,

Co = Xo + C1
o I,

Cv = Csat(T ) +
C1

vI
Hα ,

β = β∗ + (δlI)
2

3 β1.

(4.54)

The local phase change takes the form

Γ = C1
vh∗(C

1
v )IH1−α,(4.55)

where h∗(C
1
v ) = h(C1

v , β∗).
We rescale the spatial variable within the evaporative layer, introducing z̃ = (z − z0

∗)
√

H.
The natural parabolic rescaling of time τb = Hτ suggests relaxation times which are yet 5 − 6
magnitudes of order faster than those of the two-phase regime. For this reason we only consider
the quasi-steady version of the conservation laws

~Nz̃ =
Γ√
H

~S = IH
1

2
−αC1

vh∗~S.(4.56)

The fluxes are related to the scaled variables ~V b = (C1, T 1, C1
o , C1

v , C1
β) through the constitutive

laws as

~N = I
√

HDb~V b
z̃ + O(I2

√
H),(4.57)

where the 5 × 5 matrix Db is given by

Db = −















Rgkrg Rgkrg 0 0 0
ClgδlTc ClgδlTc + RT 0 0 RcTcδl

(

Rgkrg − 1
Tc

)

Co RgkrgCo 1 0 0
(

Rgkrg − 1
Tc

)

Xs RgkrgXs + X ′
s 0 1

Hα 0

0 0 0 0 Rc















.(4.58)

Combining the conservation laws (4.56) with the constitutive relations (4.57), we obtain a 5×5
system

Db~Vz̃z̃ =
h∗C

1
v

Hα
~S + O(I).(4.59)

We observe that

1

Hα [Db]−1~S =











0
0
0
ξv

0











+ O(H−α),(4.60)

where

ξv = 1 − Xs +
Xs + TcX

′
s

RT

(

1

Tc
+ δl

( C∗
lg

Rgk
∗
rg

− 1

))

+
Xs

TcRgk
∗
rg

.(4.61)
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The parameter ξv is independent of H and strictly positive. The equation for C1
v uncouples at

leading order,
(

C1
v

)

z̃z̃
= ξvh∗C

1
v ,(4.62)

lim
z̃→∞

C1
v (z̃) = 0,(4.63)

C1
v (0) =

HαΘ∗
I

.(4.64)

We assume Θ∗ > 0, so the constant h∗ = β
2

3

∗ . This equation has a classic boundary layer solution,

C1
v = C1

v (0)e−
√

h∗ξv z̃ .(4.65)

Returning to the conservation laws (4.59), we find that

[[

Db~Vz̃

]]

=

∞
∫

0

Db~Vz̃z̃dz̃ =

∞
∫

0

h∗C
1
v (z̃)

Hα dz̃ ~S =
h∗C

1
v (0)

Hα
√

ξvh∗
~S = −Θ∗

√
h∗

I
√

ξv

~S.(4.66)

To balance the jumps in the fluxes with the magnitude of the catalyst layer fluxes suggests the
scaling

Θ1
∗ =

√
H

I
Θ∗,(4.67)

and the associated choice of α = 1
2 in the scaling of C1

v . From (4.57) we find the leading order
jump in the fluxes across the boundary layer,

[[

~N
]]

= I
√

H
[[

Db~Vz̃

]]

= −IΘ1
∗

√

h∗
ξv

~S.(4.68)

4.3.2. The Sub-Layer and the Front Motion. The free boundary has an infinitesimal
sublayer with left and right limits z−∗ and z0

∗, where the liquid volume fraction reaches the threshold,

β∗, for motion. For piece-wise smooth solutions ~V = (C, T, Co, Cv, β)t of the full problem (3.3-3.7)
to form a weak solution when glued together across the interface, Rankine-Hugoniot conditions
must be enforced. The non-degenerate variables C, T, Co, and Cv, must be continuous across the
interface and the corresponding flux jumps must be zero,

[[

πw
~V
]]

s
= 0,(4.69)

[[

πw
~N
]]

s
= 0.(4.70)

The degenerate variable, β jumps from β∗ down to 0 across the inner layer, and the liquid flux
is related to the interface motion and the liquid jump through a degenerate Rankine-Hugoniot
relation, see [8, 23],

dz∗
dτ

=
δl

[[

Nl

]]

s
[[

β
]]

s

=
δlNl(z

0
∗)

β∗
.(4.71)

The jump in liquid water flux across the evaporative layer is given by (4.68) while the flux is
constant to leading order across the two-phase region (z+

∗ , 1). We express the front motion in
terms of the water membrane flux and the undersaturation

dz∗
dτ

=
δlI
(

Nm
cw − Nm

v − Θ1
∗
√

h∗/ξv

)

β∗
,(4.72)

where the vapor flux is given by (4.49). The front motion is on a time scale O(10−5), which is
slower than the next slowest time scale, relaxation of the β profile, by the factor δl ≪ 1, and is 8-9
orders of magnitude slower than the fastest time scale, gas pressure relaxation in the dry regime.



A Sharp Interface Reduction for Multiphase Transport 19

5. The Quasi-Steady Sharp-Interface Reduction. We define a two-phase sharp-interface
solution of the governing system of conservation laws (3.19) to be one which is a piecewise solution
on either side of a front z = z∗(τ), which is dry (β = 0) on one side, with a mobile two-phase
regime on the other (β > β∗) and which satisfies the jump conditions

[[

πw
~V
]]

f
= 0,(5.1)

[[

~N
]]

f
= −IΘ1

∗

√

h∗
χv

~S +
β∗
δl

dz∗
dτ

~Eβ ,(5.2)

and the boundary condition on the two-phase side of the interface

β(z∗) = β∗.(5.3)

Here ~Eβ = (0, 0, 0, 0, 1)t. For such a solution the previous section shows that one can add an

evaporative layer which adjusts the fluxes ~N according to (4.68) so that the remaining jump satisfies
the Rankine-Hugoniot conditions (4.69-4.71), and forms a weak solution across the interface.

The dichotomy between relaxation times of the conservation laws and evolution of the front
scale like δl, the density ratio between liquid water and gas. It is consistent to take the solutions

in the dry and two-phase regions to be at steady state, with ~Vτ , dz∗
dτ

= O(Iδl) representing small
forcing terms which can be neglected at the order we consider, except for their cumulative effects,
on time scales of O(δ−1

l ) which are manifest through the evolution of the free boundary and the
slow change of the dry fluxes.

We construct leading-order sharp-interface solutions from the quasi-steady solutions constructed
in sections 4.1 and 4.2 whose fluxes are piecewise spatially constant and given by

~N =











I ~Fm two − phase region,

I ~F d(τ) dry region.

(5.4)

The jump conditions (5.2) applied to ~Fm and ~F d yield the equation

πd

(

~Fm − ~F d
)

= −Θ1
∗(τ)

√

h∗
ξv

πd
~S.(5.5)

We rewrite the dry region solution (4.24) as

~V d =
(

−Mr + z
[

Dd
]−1
)

πd
~F d =

(

−Mr + z
[

Dd
]−1
)

πd

(

~Fm + Θ1
∗

√

h∗
ξv

~S

)

.(5.6)

Defining

~Gm =
[

Dd
]−1

πd
~Fm,(5.7)

~Gs =
[

Dd
]−1

πd
~S,(5.8)

~Hm = −Mrπd
~Fm,(5.9)

~Hs = −Mrπd
~S,(5.10)

we obtain the expression

~V d =
(

~Hm + z ~Gm
)

+ Θ1
∗

√

h∗
ξv

(

~Hs + z ~Gs
)

,(5.11)



20 K. PROMISLOW

which yields expressions for the vapor mole fraction and dimensionless vapor saturation at the
interface

Cv(z−∗ ) = Xv + I ~V d
4 (z∗) = Xv + I

[

(

~Hm
4 + z∗ ~Gm

4

)

+ Θ1
∗

√

h∗
ξv

(

~Hs
4 + z∗ ~Gs

4

)

]

,

Csat(T∗) = Xs + X ′
sI ~V d

2 (z∗) = Xs + IX ′
s

[

(

~Hm
2 + z∗ ~Gm

2

)

+ Θ1
∗

√

h∗
ξv

(

~Hs
2 + z∗ ~Gs

2

)

]

.

(5.12)

We introduce the scaled channel undersaturation,

Θ1
c =

Xs − Xv

I
,(5.13)

and combine the dry-region solutions (5.12) with the definition (4.53, 4.67) of Θ1
∗ to obtain a single,

linear, equation for Θ1
∗, which has the solution

Θ1
∗ =

Θ1
c − ~Hm

4 + X ′
s
~Hm

2 − z∗

(

~Gm
4 − X ′

s
~Gm

2

)

1√
H

+

√

h∗
ξv

(

Hs
4 − X ′

s
~Hs

2 + z∗

(

~Gs
4 − X ′

s
~Gs

2

))

.(5.14)

Substituting for ~Gm, ~Gs, ~Hm, ~Hs yields a leading order expression for Θ1
∗,

Θ1
∗ = ∆−1

(

Θ1
c −

rX ′
s(N

m
cT − Nm

v ) − rT Nm
v

rT r − z∗

[

Xv + (1 − Xv)N
m
v +

Xv + TcX
′
s

RT

(

Nm
cT − Nm

v
Tc

− δlσ
∗
lg(1 + Nm

v )

)]

)

+ O(1/
√

H, 1/Tc),

(5.15)

where the uniformly positive denominator ∆ is given by,

∆ =

√

h∗
ξv

(

rT + rX ′
s

rT r
+ z∗

[

1 + Xv

(

Rg(1 + δlTcσ
∗
lg) + RT

TcRgRT
− 1

)

+
X ′

s

RT

(

1 + δtTcσ
∗
lg

)

])

.(5.16)

We summarize our result in the theorem below,
Theorem 5.1. Given channel values ~Vc, (see Table 3.1) for which the scaled channel under-

saturation, Θ1
c, given by (5.13) is O(1) and given catalyst layer heat, Nm

cT , and water, Nm
cw fluxes

which are O(I), we determine the catalyst layer vapor flux by (4.49) and the scaled membrane
fluxes by (4.2). So long as the dry phase undersaturation Θ1

∗, determined by (5.15), is positive,
then the function

~V (z, τ) =











~V−(z, τ) z ∈ (0, z∗(τ)),

~V+(z, τ) z ∈ (z∗(τ), 1),

(5.17)

with the free boundary z = z∗(τ) given by (4.72) is, to leading-order, a sharp-interface solution

of the system of conservation laws (3.19). Here ~V− is determined from (5.6) through the change

of variables (4.8), and ~V+ is determined from (4.45) through the change of variables (4.25) and
(4.39).

6. Results and Discussion. We have presented an asymptotic reduction of the degenerate
system (3.19) of coupled nonlinear partial differential equations describing multi-phase flow in a
PEM fuel cell gas diffusion layer. We obtain a reduced system which is comprised of a pair of
linear equations on either side of a sharp interface whose evolution is given in terms of liquid flux
balance. In the adiabatic limit we obtain explicit solutions to the free interface motion of the
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reduced problem. This eliminates the primary source of stiffness that is the bane of numerical
simulations, affording a computational speed-up of 3-4 orders of magnitude over the full system.
Building this model into a unit cell simulation code promises huge reductions in computational
cost, and admits the possibility of performing either full stack-based calculations, or doing inverse
calculations and parameter estimation.

We have derived analytic expressions for the partition of product water into liquid and vapor
at the GDL-catalyst layer interface and for the evolution of the free boundary. These analytical
expressions provide insight into the influence of material parameters on water management and
can be used in the design of fuel cell components and in the choice of materials to better optimize
performance under a wide range of operating conditions.

In applications the reduced system is embedded in a 1+1D computational scheme for the
overall fuel cell. This includes a model of the membrane’s water content and temperature, the
anode GDL, and the variation of the oxygen and water vapor contents in the flow-field channels in
the along-the-channel direction. To present numerical results from the reduced system, we simulate
this coupling by providing along-the-channel data for the oxygen and water vapor concentrations,
temperature, current density and catalyst layer production of heat and total water from a previous
1+1D computation reported in [5]. These values vary in the y direction, but are constant in time
and do not couple back to the reduced simulations.

The computations for two different runs are presented in Figure 3. In the top run, with the
GDL thermal conductivity at κs = 1 J/(m s ◦K), the inlet and outlet ends of the channel remain
dry, while the two-phase interface, plotted at 10s intervals, grows from zero at t = 0 to occupy the
majority of the mid-channel region by t = 80 seconds. The vapor flux Nm

v from the catalyst layer
is largest (most negative) at the dry cathode inlet and jumps as the channel flow saturates slightly
downstream. In the high thermal conductivity run, bottom right, the catalyst layer total water
flux, Nm

cw goes positive (towards anode) at the cathode outlet y = 0.67m where all the product
water crosses over to the anode side to hydrate the dry inlet stream. The amount of evaporation
at the two-phase boundary is an order of magnitude lower than either the liquid water or vapor
fluxes from the catalyst layer. In the bottom run, with κs = 10 J/(m s ◦K) the front velocity is an
order of magnitude greater, and the two-phase region occupies all but the very end section of the
cathode outlet. The two-phase front is plotted at intervals of 5 seconds up to t = 15 seconds. The
dimensionless catalyst vapor flux Nm

v has dropped from roughly −7 × 10−3 to −1.6 × 10−3 while
the liquid water flux has grown by approximately an order of magnitude. For the high thermal
conductivity case the evaporation at the front is large at the cathode inlet, and significantly slows
the front evolution there.

The results presented have several extensions. The formal result of Theorem 1 can be made
rigorous: the reduction of the full system to the sharp-interface solutions fits into the renormal-
ization group approach introduced by the first author in [19]. By rescaling the spatial domain the
front can be kept at a fixed position, with slowly varying coefficients introduced to the differential
operators on either side of the front. The full system (3.19) can be written in the form

~Uτ = F (~U, δlτ),(6.1)

and the exact solution can be decomposed as

~U = ~V (z; z0(τ)) + ~W,(6.2)

where ~V is the formal solution given by Theorem 1. The role of the renormalization group approach
is to find an evolution for the free parameters, here the front position z0, which guarantees that
the remainder ~W remains small. The requires a detailed understanding of the linear operators Lz0

obtained by linearizing the flow F about ~V (z; z0). The application of the renormalization approach
to this class of zeroth order phase transitions is a promising avenue of future work.

The model can be extended to two space dimensions by inclusion of the transverse or x variation
(see Figure 1) in the GDL which arises due to the landing area obstructing the gas, liquid and
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heat flow. The chief obstacle is the considerable difficulty in tracking the interface which will take
the form of a curve, or family of curves, in the two-dimensional x − y plane. These curves can
self-intersect, or or have non-trivial interaction with the boundary. Adaptation to a phase-field
model may be appropriate.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5
x 10

−4 Front Location

Along Channel

T
hr

ou
gh

 G
D

L

t=10s 

t=20s 

t=80s 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−10

−8

−6

−4

−2

0

2
x 10

−3

Along channel

D
im

en
si

on
le

ss
 Q

ua
nt

iti
es

Evaporation at Front
100xFront Velocity
Liquid Flux from Catalyst
Vapour flux from Catalyst

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5
x 10

−4 Front Location

Along Channel

T
hr

ou
gh

 G
D

L

t=5s 

t=15s 

t=10s 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Along channel

D
im

en
si

on
le

ss
 Q

ua
nt

iti
es

Evaporation at Front
100xFront Velocity
Liquid Flux from Catalyst
Vapour flux from Catalyst

Figure 3: (Left-top) The front position through the GDL, not shown are the gas flow field
on the bottom and the catalyst layer and membrane are on the top. The values of oxygen
and water vapor , the current density, and catalyst layer production of heat and liquid water
are prescribed in the along-the-channel direction and constant in time. Both the cathode
inlet at y = 0 and outlet at y = 0.67 meter are in a “dry” state. The front starts at t = 0 at
the catalyst layer and is plotted every 10 seconds up to t = 80. (Right-top) Typical values
of the scaled, dimensionless fluxes Nm

v and Nm
l = Nm

cw − Nm
v of vapor and liquid water

out of the catalyst layer, the front velocity (dz0/dτ) × 100, and the net evaporation which
takes place at the front. (Left-bottom) The same as left-top but with the GDL thermal
conductivity κs = 10 J/(m s ◦K). The front starts at the catalyst layer and is plotted every
5 seconds up to t = 15. (Right-bottom) The same as right-top but with the elevated thermal
conductivity.

For applications of the reduced system to design and engineering of PEM fuel cells, the reduced
system must be integrated into a 1+1D unit-cell code for the full PEM fuel cell and validated both
against the full system and against experimental data. This reflects an extenion of an on-going
program with Ballard Power Systems, [2]. Maintaining computational stability whle coupling the
reduced model to the hyperbolic flow in the gas channels and the elliptic equation for the voltage
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balance poses numerical challenges.

Appendix A. Linearization of Saturation Mole Fraction. The dimensionless saturation
pressure Psat(T

1) = P̃sat(T̃ )/(RCT∗) is given to O(I2) by linearizing about the channel tempera-
ture

Psat = a1 + a2IT 1 + O(I2),(A.1)

where a1 = ã1

RCT∗
and a2 = ã2

RC
, and

ã1 = 101325 exp
(

ln 10
{

−10.10 + 0.029T c − 9.18 × 10−5(T c − 273.3)2 + 1.44 × 10−7(T c − 273)3
})

,

ã2 = a1 ln 10(.111 − 4.20 × 10−4T c + 4.32 × 10−7T
2

c).

The coefficient ã1 has units of J/m3, while ã2 has units J/(m3◦K). The vapor saturation mole
fraction is expanded as

Csat(T ) =
a1 + a2IT 1 + O(I2)

Tc + IT 1 + O(I2)
=

a1

Tc
+

(

a2

Tc
− a1

(Tc)
2

)

IT 1 + O(I2).(A.2)

This gives the formulas

Xs =
a1

Tc
,(A.3)

X ′
s =

a2

Tc
− a1

(Tc)
2 .(A.4)

At T c = 353◦K, Xs = 0.143 and X ′
s = 0.0234.
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