ADIABATIC RELAXATION OF CONVECTIVE-DIFFUSIVE GAS
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Abstract. The gas diffusion layer in the electrode of a proton exchange membrane fuel cell is a
highly porous material which acts to distribute reactant gases uniformly to the active catalyst sites.
We develop a mathematical model for flow of a multicomponent mixture of ideal gases in a highly
porous electrode. The model is comprised of a porous medium equation for the evolution of the gas
mixture and a singularly perturbed convection—diffusion equation for the interspecies mass transfer
within the mixture. The equations are coupled through nonlinear boundary conditions which describe
consumption of reactants and generation of end products at the catalyst layer. Through a two
time-scale analysis, we derive a single reduced equation which captures the slow, diffusively-driven,
adiabatic relaxation to the steady state at each electrode. The asymptotic results are compared with
one- and two-dimensional computations of the full system.
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1. Introduction. In many industrial and biological applications, transport of
reactant gases takes place across a thin layer of porous material. Here we consider
the electrodes of a proton exchange membrane (or PEM) fuel cell, in which reactant
gases are distributed to catalyst sites through a sheet of carbon fiber paper known as
the gas diffusion layer or GDL. The consumption of reactant gases (Hs and O2) and
generation of end products (H2O) create gradients in component concentration across
the thickness of the paper. The resulting component diffusion engenders a convective
Darcy’s law flow inside the porous layer, which interacts with the diffusive motion.
The convective time scales are much faster than diffusive ones in the full nonlinear
problem, and diffusion represents a singular perturbation to convection. Indeed our
model is distinguished from similar multicomponent problems in groundwater trans-
port by this scaling, arising from the thinness of the domain and the high porosity
of the GDL. We capture the competition between convective and diffusive effects,
demonstrating that the slow transients related to the relaxation of these nonlinear
equations are accurately described by a single diffusion equation with a non-local
convective term.

The cathode and the anode sides of a PEM fuel cell are characterized by distinct
scalings, each possessing a nonlinearly stable, steady state solution. We derive asymp-
totic expressions for the impact of convection on the net reactant delivered across the
gas diffusion layer, and provide a detailed description of the relaxation onto the steady
states. On the fast time scale a convective transient governs the concentration gradi-
ent of the overall gas mixture. On the slow, diffusive time scale the convective flow
relaxes adiabatically to its diffusively-driven steady state. In the anode scaling, the
adiabatic equations governing the reactant concentrations are diffusively dominated,
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while in the cathode scaling a nonlinear, nonlocal convection term appears at leading
order.

Our analysis should be of particular interest to fuel cell researchers, affording a
substantial simplification of a complex, nonlinear process. Most efforts at modeling
and simulating fuel cells in the literature to date have focused on the entire fuel cell,
including charge, heat and mass transport. Despite the complexity of these coupled
models, extensive one- and two-dimensional numerical simulations yield concentration
profiles that vary linearly through the thickness of both the GDL and PEM [4, 9, 19,
26]. The reduced adiabatic model developed herein captures precisely this effect (refer
to Eqs. (4.21) and (4.40)). Moreover, by deriving equations that govern the adiabatic
relaxation onto the steady states, we can distinguish the significant dynamics of the
system, including intermediate transients, while eliminating the stiffness which may
plague numerical simulations of the fuel cell system.

Our modeling approach focuses solely on the GDL, decoupling each electrode from
the rest of the fuel cell. This permits classification of different operational regimes
inside the GDL based on the boundary conditions and parameters which mimic the
remainder of the fuel cell. Indeed, previous modeling efforts have focused on the
proton exchange membrane, despite experimental studies which strongly link fuel
cell performance to geometry and material composition of the porous gas diffusion
layer [2, 6].

In the next section, we discuss the physical assumptions in our GDL model and
derive equations of mass transport. One of the key aspects in the model is the parame-
ters which appear in the boundary conditions; these describe the operating conditions
within the fuel cell. Section 3 presents the derivation and scaling of the equations and
boundary conditions. The different scalings associated with the anode and cathode
operation are of primary importance in the non-dimensionalization procedure. The
analysis of a one-dimensional version of the GDL model is presented in Section 4,
including derivation of the adiabatic equation and analysis of the nature of the con-
vergence of the full system to steady state. The analytical results are verified by
numerical experiments in Section 5 and conclusions are drawn regarding the applica-
bility of the model to two-dimensional geometries that arise in fuel cells.

2. Model Derivation.

2.1. Fuel Cell Overview. A cross-section of a PEM fuel cell, depicting the
major components, is shown in Fig. 2.1. The membrane—electrode assembly, or MEA,
is sandwiched between two graphite plates (shaded in the diagram at left) into which
are etched flow channels for oxygen gas at the cathode (top) and hydrogen at the
anode (bottom). Inside the channels, a pressure gradient initiates the flow of gases,
while consumption of reactants and generation of end products lead to variations in
component concentrations. We introduce a coordinate system in which z denotes
distance along the lateral direction in the MEA, y is measured along the height of
a channel and through the thickness of the MEA, and z denotes distance along the
length of a flow channel.

In the middle of the cell is a proton exchange membrane or PEM, composed of a
polymer material, which is permeable to small, positively-charged ions. On each side
of the PEM is attached a layer of carbon fiber paper, called a gas diffusion layer or
GDL. The boundary between the PEM and GDL is loaded with a platinum catalyst
that facilitates the reactions. The electric current in a fuel cell is derived from the
two reactions listed at the right of Fig. 2.1. Hydrogen ions generated at the anode
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Fic. 2.1. A proton exchange membrane fuel cell and its component parts. On the left is a
cross-sectional view of the cell, showing the MEA sandwiched between the oxygen and hydrogen flow
channels. The in-channel gas flow is directed normal to the page. On the right is an expanded view
of the MEA. The reaction occurring at each electrode is listed on the far right, along with the flow
of electrons generated when the anode and cathode are linked in an external circuit.

catalyst layer migrate across the PEM, where they react with oxygen gas at the upper
catalyst layer to produce water vapor.

2.2. Geometry and Assumptions. We focus our attention on the GDL for
which we consider a two-dimensional cross-section, labeled 2 in Fig. 2.2. The lower
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Fi1c. 2.2. Dimensions of the model domain Q: length (L), GDL thickness (H), and channel
width (Lc). The boundary components are identified with Roman numerals I-IV.

boundary of 2, at y = 0, represents the interface between the GDL and either the
graphite plate or an open, gas-filled, flow channel. The upper boundary, at y = H,
corresponds to the catalyst layer separating the GDL and the PEM. The transport of
ions and water within the MEA as well as the convective flow within the gas channels
will not be modeled here. The coupling of the GDL to the rest of the fuel cell,
including such effects as variation in reactant concentration along the length of the
flow channel, nonuniformity of component concentrations in the channel, boundary
layers at the porous GDL—channel interface, and dissociation rates at the catalyst
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layer will be accounted for through the boundary conditions.

The channel gases are comprised of many species; indeed the Os flow is typically
ambient air with significant amounts of nitrogen and water vapor. Proper modeling
of diffusive effects requires the Maxwell-Stefan equations [12], however we substan-
tially reduce the technical complexity of our analysis by employing Fick’s model of
diffusion. This approximation introduces only small quantitative differences as indi-
cated by our preliminary calculations. We gather below the principle assumptions
and simplifications we make in our model:

e Our model is isothermal and does not include transport of charge and heat.
While these effects are important to overall fuel cell operations (and partic-
ularly water management), they do not have a leading order effect on the
convective-diffusive transport of reactants.

e We assume all water vapor remains in the gas phase.

e All non-reacting gas species (e.g., N2 on the cathode side) have constant mole
fractions.

e The inlet-to-outlet pressure drop in the channel may engender a small z
component in the GDL flow velocity which we assume to be uniform. Our
focus is on the z and y components of the flux.

e All reactants are immediately consumed upon reaching the PEM, so that the
limiting factor is mass transport in the GDL.

e External body forces such as gravity can be neglected.

2.3. Governing Equations. Models for convective diffusive gas transport in
porous media have been developed for applications arising in a wide range of fields
including electrochemistry [13], flow in insulating materials [25], and groundwater
transport [1], to name a few. The standard approach is to couple a mass transport
equation for the mixture (typically Darcy’s Law or some appropriate modification
thereof) with an equation governing inter-component diffusion within the mixture.
Diffusive transport is frequently modeled using Fick’s Law, which is the approach
taken here. However, Fick’s Law is strictly valid only for binary mixtures, and for some
mixtures of three or more components, the Maxwell-Stefan equations are required to
obtain physically reproducible results [12].

Similar models have appeared in the fuel cell context, in which equations describ-
ing multicomponent gas flow in the GDL are coupled with equations for heat and
charge transport occurring in the other fuel cell components. With the important
exception of the boundary conditions, the GDL model we develop below is similar to
that in [9] or [26].

We present the governing equations for the gas mixture, described by the concen-
trations C, Cy, and C3. We denote by C the concentration of reactant gas, which is
H, on the anode side and Oy at the cathode. At both anode and cathode, Cs refers
to water vapor concentration, while C3 denotes any non-reacting gases, principally
N, on the cathode side and CO» on the anode side. We assume that the non-reacting
gas concentration C3 is a fixed proportion, (1 — ~,), of the total gas concentration,
C = Cy + Cy + C3. This assumption is supported by multi-component numerical
simulations which show a variation in the mole fraction C3/C of about 2% at steady
state, compared to 20% variation for C;/C and C5/C. Thus we may write

C1+ Cy =~,C, (21)

where the constant 7, is determined by concentration values inside the channel. In
what follows, (2.1) will be used to eliminate the variable C in favor of the total
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mixture concentration C.
The conservation of mass for the gas mixture takes the form

aC
— + V- (CU) =0, (2.2)
ot
where U is the molar-averaged mixture velocity. The transport of individual reactants
is significantly affected by inter-component diffusion. The conservation law for the
reactant concentration takes the form
acC
L4V (CU+J,)=0, (2.3)

ot ~————
N,y

where J is the diffusive flux (measured relative to the molar-averaged velocity) and
N, is the total (convective plus diffusive) flux of the first component.

The diffusive flux is given by Fick’s law, which states that the flux of one com-
ponent relative to the molar averaged velocity is proportional to the gradient in mole
fractions via

J, = —CDV (%) , (2.4)

where D is the diffusivity. There are several other equivalent forms of Fick’s Law,
which vary depending on the averaging procedure used to obtain a mixture velocity [5,
22]. The form of Eq. (2.4) is tied to our choice of a molar-averaged velocity, which
is consistent with the treatment of flow of gases in porous media by others in the
engineering literature [7, 20]. Darcy’s Law gives the mixture velocity in terms of the
pressure P as

K
U=-—VP, (2.5)
EpHt

where p is the viscosity of the mixture, and the GDL material is characterized by
the parameters K (permeability) and €, (porosity). The coefficients K and D are
actually tensor quantities because the fibrous GDL material is anisotropic; however,
we will assume for the sake of simplicity that the GDL is isotropic, taking K and D
as scalars. The validity of Darcy’s law is subject to the assumptions that boundary
effects are negligible, and that the gas velocity is small enough that inertial terms can
be neglected [17]. The latter is clearly satisfied in the GDL since the pore Reynolds
number is small (i.e., Re, = pUV/K /u < 1), and the boundary layer between channel
and GDL has a thickness on the order of one pore width [9].

The final relation needed to close the system is a constitutive equation for the gas
mixture. Assuming the gas to be ideal and adiabatic, the pressure depends linearly
on the concentration,

P = CRT, (2.6)

where R is the universal gas constant and 7 is the temperature. While there are
significant temperature variations within a fuel cell, we will take the system to be
isothermal, an assumption that is commonly made in other fuel cell models ([26] and
[4], for example).
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Egs. (2.2) (2.6) together form a coupled system of nonlinear PDEs for the con-
centrations C' and C;. This is most easily seen by substituting expressions (2.4) (2.6)
into the conservation Eqgs. (2.2) and (2.3) to obtain

oC

801 C11
5 \% CiVC + DCV < C ﬂ 0, (2.7b)

where I' = is a constant. The relative importance of convection and diffusion,

EpHt
determined by the parameters I' and D, is critical in determining the behavior of
solutions. We will discuss this issue and the importance of an appropriate rescaling
of the equations in Section 3.

2.4. Boundary Conditions. The boundary consists of four distinct compo-
nents, labeled I 1V in Fig. 2.2. We derive the boundary conditions on each of the four
sections as follows:

I. The impermeable boundary at y = 0 between the graphite plate and the
GDL where there can be no flux of reactant, either by diffusion or convection, in
the direction normal to the wall. This translates into the following conditions on the
y-component of the fluxes

JY=0 and NY=0,

which are equivalent to the following Neumann conditions on the concentrations

o (Cy ocC
—_— _— p— _ = . 2.
3y <C> 0 and 3y 0 (2.8)

II. The permeable boundary at y = 0, where the mixture concentration immedi-
ately inside the GDL is taken to be identical to that in the channel:

C=0C, (2.9a)

that is, we assume the pressure to be uniform throughout the depth of the channel.
We assume further that the diffusive flux of the first component across the chan-
nel/GDL interface is proportional to the difference in concentrations on either side:

J{l = 7‘0(61 — Cl)

Here C is a depth-averaged channel concentration and r, can be interpreted as a
mass transfer coefficient. Using (2.9a), this expression can be rewritten entirely in
terms of the concentrations as

8 Cl ’I'O —
— | =] =—-——==(C1 — C1). 2.9b
5 (%)= -ms@ - (2.90)

An estimate for r, can be obtained from the Sherwood number, Sh = r,L;/D,
where L, is a characteristic length that we take proportional to the channel depth.
The Sherwood number is typically obtained experimentally and values are available
in the literature (see [3] and the references therein).
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III. The permeable boundary at y = H, between the catalyst and GDL, where a
similar condition to (2.9b) is applied

Jiy = TH(Cl - 0)

The mass transfer coefficient r,, models the reactions and electrochemistry taking
place in the catalyst region. It is tuned to match net flux to experimental values
determined from averaged current densities. We consider the catalytic reaction to be
instantaneous and irreversible, which leads to a choice of zero concentration in the
catalyst layer. Using the definition of the diffusive flux, the condition above can be

rewritten as
0 01 Ty 01
—~ =) = = . 2.1
By < c) DC (2.102)

The second boundary condition on IIT arises from a return fluz of the end product
component which is proportional to that of the reactant

Ny =(@w—-1)N/.

The parameter v is a return coefficient that determines the direction and magnitude
of the product HyO component flux. We assume that at steady state the majority
of water vapor manufactured at the cathode catalyst layer remains on the cathode
side. Since two water molecules are produced by the reaction for every O molecule
consumed, but only one H, O for every Hy molecule, we take —1 < v < 0 at the cathode
and 0 < v <1 at the anode. Indeed, taking v = —1 at the cathode corresponds to the
situation where all water produced remains at the cathode in the vapor state, while
—1 < v corresponds to either some loss of water vapor to the liquid state or transfer
of water vapor to the anode. The boundary condition above may be rewritten as a
Neumann condition involving the concentrations:

oc _ ___vraCGi (2.10b)

Ay [ (v.C —vC)

IV. The open side boundaries (z = 0 and z = L), where we assume that the

solution is periodic in z.

3. Non-Dimensionalization. We now seek to identify the mechanisms that
dictate the balance between convection- and diffusion-induced fluxes, and the differing
time scales on which the two fluxes operate. The units and approximate magnitude
of each of the parameters appearing in the problem are listed in Table 3.1. In the
remainder of this paper, we use the dimensionless variables obtained by scaling C by
C, x and y by H, and introducing the rescaled “convective time”, 7 = (I'C/H?)t,
and reactant mole fraction, R = C;/C. With these definitions, we arrive at the
dimensionless equations

C,-V-(CVC) =0, (3.1a)
CR, — CVC-VR — V- (CVR) = 0. (3.1b)

The new parameter
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can be interpreted as the reciprocal of a Péclet number (i.e., § ~ Pe™1). It represents
the ratio of the convective (H2/I'C) and diffusive (H2/D) time scales, and defines
the slow time variable, T' = §7, that appears in the analysis of the adiabatic equation
in Section 4. We have in (3.1) a porous medium equation for the concentration and
a singularly perturbed convection—diffusion equation for the reactant.

For simplicity we study a one-dimensional vertical slice, shaded in Fig. 2.2, that
extends from the channel at y = 0 to the membrane at y = 1. The relevant boundary
conditions are (2.9) and (2.10). Physically, we would expect that this problem is
a reasonable approximation to the two-dimensional problem when the channels are
very wide, so that L./L = 1. Introducing the dimensionless parameters e = Hr,, /D,
B =Hr,/D and v = C/C, the boundary conditions become

C(0) =1, C,(1) = 65%”_}%71/(2(1), (3.2a)
R, (0) = =B(y = R(0)), R,(1) = —eR(1). (3:2b)
These are supplemented with initial conditions
C(0,y) = Caly), R(0,y) = Ro(y). (3.2¢)
For later reference we introduce the dimensionless net flux of reactant
Ny = —-CRVC - §CVR, (3.3)

which is related to its dimensional counterpart by the expression N¢ = N - FU2/H.
Typical values of the parameters are listed in Table 3.1 for both physical and non-

dimensional quantities. Particular attention should be paid to r, and r,, since the
TABLE 3.1
Parameter values (in cgs units) used for the GDL model.
Parameter Anode (H;) Cathode (02)
Domain: H (GDL thickness, cm) 0.05 0.05
L (domain width, e¢m) 1.0 1.0
L. (channel width, cm) 0.5 0.5
Gas properties: I' (convection, cm®/s - mol) 3.24 x 107 1.85 x 107
D (diffusivity, cm®/s) 0.29 0.066
C (concentration, mol/cm?) 3.475 x 1077 3.475 x 1077
r, (bottom transfer rate, cm/s) 3.0 0.20
r, (top transfer rate, cm/s) 0.005 0.0625
Time scales: t/T = H?/TC (fast time, s) 2.2 x107° 3.9 x 107°
t/T = H?/D (slow time, s) 0.0086 0.038
Nondimensional ~ § = D/TC 0.00026 0.00010
quantities: e=Hr, /D 0.00086 0.047
B=Hr,/D 0.52 0.15
v=0Ci/C 0.80 0.21
v = (Ci1+ C2)/C 0.90 0.31-0.41"
v (return coefficient) 0.99 —1.0

I'The range in values for 7, represents a variation in the water vapor mole fraction from inlet to
outlet as the reactant gas is consumed on the cathode side.
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difference in magnitude betwen the two mass transport coefficients lends support to
the separate scalings for anode and cathode boundary conditions. The quantities
D/r, and D/r, are length scales over which diffusion operates for a given mass
transport coefficient (or a given consumption). Thus, € and # are measures of the
ratio of diffusive length scale to the thickness of the GDL. For the anode, we have
0 < 1 and fix € as a multiple of § via € = €, with ¢g = O(1); this corresponds to a
consumption limited state. For the cathode on the other hand, d and € are taken to
satisfy the relationship 0 <« € < 1. To obtain explicit expressions in the expansion of
the adiabatic steady state solutions, we assume that § and - are comparable in size
to €, so that = fye and v = e, where Sy, v = O(1).

4. Adiabatic Relaxation. A great deal of analytical work has appeared in the
literature for the porous medium equation, which is our Eq. (3.1a) governing the mix-
ture concentration. We refer the interested reader to the reviews of Kalashnikov [10]
and Vazquez [24] which provide excellent overviews of the current status of the theory
for this equation. We focus our analysis on the effect of coupling Eq. (3.1a) to (3.1b)
for interspecies diffusion through the nonlinear boundary conditions. Similar systems
arise in a host of related porous media problems involving gas transport [8], multi-
phase flows [23], and reaction and heat transfer in porous catalysts [13]. Analyses
have been performed for related diffusion problems [11, 18], but the focus in these
other works is on forced convection with passive diffusion. Our problem is unique
in that it is convectively dominated, but the driving force arises primarily through
diffusive processes.

In what follows, we provide a detailed description of the two-stage relaxation of the
coupled system (4.4) which is obtained from (3.1) by neglecting a small transient term.
We derive a Maximum Principle for the system and show that the total concentration
C relaxes on the fast time scale to a quasi-steady state determined by boundary
values. The reactant mole fraction R converges to steady state on the slow scale
T = 7, but after a rapid initial transient both reactant and total concentration may
be well described in terms of the solution of a single nonlinear, nonlocal, adiabatic
equation (4.21). Indeed, we develop expansions for the steady states of the full system
from an analysis of the reduced adiabatic equations.

As a notational convenience in this section, x will denote a positive constant
which depends upon the fixed parameters but not upon 4, €, or the initial data, while
A will denote any positive constant independent of § and e, whose value may change
from line to line. We use || - ||, to denote the L? norm, || - ||« the L norm, and the
H! norm takes the form || - [z =[|| - |3 + ||(%(-)||§]1/2.

We simplify the study of equation (3.1) and (3.2) by introducing new dependent
variables which satisfy homogeneous boundary conditions, namely

M(r,y) =C(r,y) — 1+ df(R(7,1))y), (4.1a)
N(T7y) = R(T7y) - Rb(y); (41b)
where f(z) = 76%”772'1/2 and
Ry(y) = —ray, (4.2)
with r; = % and ry = H—E?%-I—e) For notational convenience we denote

f(R(7,1)) by f(R) or simply f when this presents no ambiguity. In these new variables
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we have

The linear term ¢ f'(R(1)) R, (1) y is formally O(d), and on the slow time scale it
is O(6?) and eventually decays to zero. The inclusion of this small transient term
introduces significant technicalities into the analysis, without modifying the main
result, namely Theorem 4.4 and Corollary 4.5 detailing the proximity of the adiabatic
form (4.40) to the full solution. Moreover the numerical results (see Figure 5.4) show
excellent agreement between the full system (3.1) and the adiabatic form derived from
Eqgs. (4.4) below. We neglect the small transient term in (4.3), and the new variables
satisfy the following equations

M, = (My + 6f)2 + (M +1+ 5fy)Myy7 (4.4a)
N, =(C+0InC)y (N, —1r2) + INy,, (4.4b)

with the boundary conditions

M(0) = 0, M,(1) =0, (4.52)
N, (0) = BN(0), N, (1) = —eN(1). (4.5b)

In the statement and proof of the Maximum Principle, it is convenient to introduce
v
Yr _7%/71
LEMMA 4.1 (Maximum and Minimum Principle). Let o and v1 be given which
satisfy 1 > a > 0 and v, > v > 7. Then for any initial data Cy, Ry € H' satisfying
Co(y) > a+25fs and 1 > Ro(y) > 0, the corresponding solutions C and R of (3.1)
and (3.2) satisfy

the quantity f,, = max {6, € } where 7 > 0 is defined in the lemma below.

C(r,y) > a >0, v > R(t,y) >0 for all y € (0,1) and 7 > 0. (4.6)

Proof. Suppose M attains its minimum value at some smooth curve of interior
points y = (7). Then LM (1,5(r)) = M, + M,y = M., but
My = (My +6f)° + Myy(M +1+6f5) > My,C.

It follows that any interior minimum of M is non-decreasing so long as C > 0. The
minimum of M cannot be achieved at y = 0 since M (0) = 0 while from the boundary
condition M, (1) = 0, the point y = 1 can be a minimum of M only if M,,(1) > 0,
which implies M, (1) = M,, (1)C(1). We conclude that so long as C' > 0, the minimum
value of M is non-decreasing. Rewriting (3.1b) as

R, = (C+6InC), Ry + 0Ry,,

we find that at any interior extremal point of R we have R, = 0 and R, = dR,,; hence,
interior minima of R are non-decreasing and interior maxima are non-increasing. An
examination of the boundary conditions shows R can have a local maximum at y = 0
only if R(0) < v and a local minimum only if R(0) > . So long as R(1) > 0 the point
y = 1 can only be a local minimum; however R(7,1) may decrease with increasing 7,
but only to the value R(1) = 0. Indeed if R achieves a minimum value of 0 at y = 1
then the boundary conditions imply R, (1) = 0 and hence R, (1) = dRy, (1) > 0. Thus
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we have shown that the range of R is a subset of the interval [0,7]. This implies
|f(R)| < foo. Moreover M (7,y) is bounded from below by

min M(0,y) = min (Co(y) — (1 +6fy)) > a—1+0f,
y€[0,1] y€[0,1]

which from (4.1a) yields C(7,y) > M(1,y) + (1 — dfs) > a > 0, for all 7 > 0. O

4.1. Relaxation of the Total Concentration. The slow time evolution of the
total concentration C' is controlled by its boundary data through the term f(R).

PROPOSITION 4.2. Let a > 0 be as given by Lemma 4.1. There exist ng and g
positive, such that for all initial data Cy satisfying ||Coyll2 < 1m0 and all 0 < 6 < do,
the solution C' given by (4.1) through (4.4) satisfies

[[C(T) = (1+0f(R)y)||lm <A (e*” + 5262) , for all 7 >0, (4.7)

and for some k and A both positive. Moreover, the estimate (4.7) holds in the L?
norm for any Cy € H'.

Proof. Multiply equation (4.4a) by M, integrate over (0, 1), integrate by parts
and use the boundary conditions (4.5); there follows the equality

d, v ) .
%EHMH; = _/0 (M2(1+ M + 8 fy) — 6> f*M) dy+%6fM2(1)- (4.8)

From Lemma 4.1 we have C' = M + 1+ dfy > a > 0, while \folMdy\ < ||IM||2;

and from the L* embedding ||M|le < V2| M|3?||M,|[5/* we have |M(1)]2 <
2||M||2 || Myl|2. Applying Holder’s inequality and these bounds to (4.8) yields the
inequality

1d, . s
37 1M1 < —allMyl5 +6° 2| M]|2 + 81 f| - M| 1Myl (4.9)

Young’s inequality applied to the last term gives the estimate
2 LUMIE < — g allMy I3+ 82 (1M1l + o 104113 (410)
2dr' "= 2 vz 20" 2)7 '

All M satisfying the boundary conditions (4.5a) also verify a Poincaré inequality
Bl M|l2 < | My, (4.11)

for some b > 0, which together with an application of Young’s inequality yields
d 2 2 2 £2 1 2 s4pd
M < — (BPa =5 (14 =) ) IMIB + 60y, (4.12)

Lemma 4.1 affords the bound |f(R)| < fe = O(e), so that for 6 small enough there
exist A and k > 0 such that

d ‘ ‘
LM < 2w M3 + A5 (4.13)
We may integrate (4.13) in 7 to obtain

IM(7)]l2 < A(e™™" + 677 (4.14)
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for some A > 0 independent, of 4 and e.

To strengthen these decay estimates to the H' norm, take the y derivative of
(4.42), multiply by M,, integrate over (0, 1), and integrate by parts to obtain the
equality

1d 2 ! 2
sl == [ O+ 14583, dy
1

2 A
+ (‘ y HOfMy+ (M +1+ 6fy)MyMyy) (4.15)

3

0

From Lemma 4.1 we have C' = M + 1+ dfy > a > 0, while the boundary condition
(4.5a) at y = 0 implies M.(7,0) = 0 and (4.4a) yields the equality M,,(7,0) =
—(My(7,0) + 6f)% These relations, together with the usual boundary conditions on
M, yield the inequality

1d 1
§E||My||§ < —al|Myy |5 + 6 My (0) + gMS(O) + 67 2 M,(0). (4.16)
The L>™ embedding applied to M, the bound |f| < foo = O(e), and an application
of Young’s inequality lead to the estimate

1d 1
ST < =Sall My 13 + A (114,15 + 61, [ + (06 |10, 1)) . (4.17)
We employ Young’s inequality on the last term on the right-hand side of (4.17) followed
by a Poincaré inequality ||Aly,ll2 > b||M, ||, valid for M satisfying the boundary
conditions (4.5a), to arrive at the inequality

1d . 1 . 5 .
3 1M < = (Jo0 = 42 ) IMB+ A (MG IE+0') . (419

If 4 is small enough, then there exists £ > 0 such that

1d . .
S M3 < —RIM, 3 + A (1M, ]S + 6°€) (4.19)

For ||M,(0)|]2 small enough, the right-hand side of (4.19) is initially negative and
n = ||M,||3 decays exponentially to the small positive root, §; = O(d*€*), of the
equation —rm + A(n? + d%€?) = 0. From this we deduce the existence of x, 4 > 0
such that

|Myll2 < A(e™ "7 + §€?) for all 7 > 0. (4.20)

Since Cy = M, + 0 f(R), ||M,||> may be chosen small enough if ||Cy]|» is small and §
is small. Thus 6y may depend upon 79, but 79 may be taken independent of §y. The
result (4.7) follows from (4.20) and (4.1a). O

4.2. Relaxation of the Reactant Mole Fraction. Due to the small coefficient
0 multiplying the diffusive term in (3.1b) the solution R may initially suffer boundary
layers; but after a fast transient period, R relaxes to a smooth steady state on the
slow time scale measured in 7' = §7. Unlike the total concentration C, the steady
states of R are not well described by the boundary terms, given by R, in (4.2), and

so we must also account for the influence of convection. To this end, we introduce
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the adiabatic equation given below, a dynamic reduction of (4.4b) which captures its
slow relaxation. Consider the solution U to

Ur = F(U(T,1))(U, —12) + Uyy, (4.21a)
U,(0) = BU(0),  U,(1) = —eU(1), (4.21b)

where F(z) = f(z+ Ry(1)). We will denote F(U(T, 1)) by F(U). The nonlinear, non-
local equation (4.21a) is derived by approximating C' in (4.1b) with its quasi-steady
state value from (4.7), and then replacing N throughout with U. It is appropriate to
supplement (4.21) with the initial condition

U(Ty,y) = Uo(y) = R(To/d,y) — Ru(y), (4.22)

where Ty > 0 is specified in Section 4.2.3.

We note that the convective term F(U)(U, — 1) in (4.21b) appears at higher
order in § in the anode scaling, while in the cathode scaling it appears at leading
order in §. In this sense we say that the anode is diffusion-dominated. This is also
reflected in the asymptotics of the steady states derived below.

In the remainder of this section we find the steady states of (4.21), examine the
convergence to steady state in the slow time 7', and finally show that N and U stay
close for all T > Tj.

4.2.1. Steady States of the Adiabatic Equation. The steady state ® of
(4.21) satisfies the equation

b, + Fo, =rF, (4.23a)
®,(0) = 59(0), D,(1) = —e®(1), (4.23b)

where here and below F' = F(®(1)). With the integrating factor e/, one obtains the
following expression for ® which satisfies (4.23a) and the boundary condition (4.23b)
aty =1,

d=0, 4 F ! (r2 (€FU=Y) (14 F(1 — y)) + e®y (P19 — 1)) , (4.24)

where ®; = ®(1) The boundary condition at y = 0 yields a nonlinear equation for
(bh

(lfeF)+6(1+FfeF)/F.

= e T B = eF)/F

(4.25)

For the cathode scaling, we replace f = fpe and 7 = =€, and employ a regular
expansion for &, = ®F,

o = Q1€+ ag€’ + - . (4.26)

A straightforward calculation shows that a; = ay = 0 and

c lﬁg’yg 3 4
P = ——— "+ 0 . 4.27
! ’)/T(l-l-ﬂo)ge (6 ) ( )

The solution & = ®¢ given by (4.24) corresponding to the cathode scaling has the
expansion ®¢ = ®¢+((e*), with spatially dependent terms appearing at higher order.
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In the anode scaling we substitute € = €9d and expand ®; = ®f as
B = b6+ b6 + -+, (4.28)

which yields
vy?e5(2+ B)
26(7yr — )
The expansion for the corresponding anode solution ® = ®¢ of (4.23) is
vy’ (2 + 28y — By®)

2B(7yr — )

The expansions of the steady state solutions of (4.23) given by (4.26) and (4.29)
are the leading order convective contribution to the limiting states of the reactant
equation (3.1b).

7 = 82 + 0(8%). (4.29)

P = 82+ 0(8%). (4.30)

4.2.2. Relaxation of the Adiabatic Equation. We address the convergence
of the solution U of (4.21) to the steady states ® found in Section 4.2.1 through the
quantity V = U — @, which satisfies

Vi = F(U)V, + (F(U) — F(®))(®, — r2) + Vyy, (4.31a)
V,(0) = BV(0),  V,(1) = —eV(1), (4.31D)
V(To.y) = Voly) = Us(y) — @(y). (4.31c)

The following proposition shows that V' converges exponentially to zero. In particular
this shows that the steady states of (4.21) are stable and unique.

PROPOSITION 4.3. For ¢ and € small enough, there exists k > 0, independent of
d,¢, and |Vo||m1, such that the solution V' of (4.31) satisfies

Vg <e "T||Vollar, for all T' > Tj. (4.32)

Proof. We consider only the cathode scaling; the result for the anode scaling
follows with only slight modification to the proof.

Multiply (4.31a) by V, integrate over (0, 1), and integrate the last term by parts.
There results the equality

1

32rlVIE = I+ (F©) - F@) [ (@, - mvay + (FFOW? 7T,

(433)

It is easy to see from (4.21) that the function U+ R, (y) satisfies the same bounds as R

Tr — VTN
O(e). From (4.27) and (4.2) we have the estimate ||®, — ra[|> < Ae? for some 4 > 0.
These bounds and the boundary conditions (4.31b) applied to (4.33) lead to the in-
equality
1d

s7plVIE == IVullz + ALEV )] - [[V]]2

in (4.6). The function F'is Lipschitz on [0, v;] with constant L = max {ey|, Lh”} =

+SIEO) (VAP 4 VOP) — (V20 +5V70) . (43)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 15

Any function V satisfying the boundary conditions (4.31b) obeys the Poincaré in-
equality [|[Vy|]2 > b||V]|2 for some b > 0 if € > —3/(1 + (), which clearly holds since e
and [ are both positive. For the boundary terms in (4.34) we use the L> embedding
IVllee < V2IV,IL*IVIE? < \/275]IVy 12 and the bound |F(U)| = O(e), to obtain
an inequality of the form

1d
57pllVIE < (1= Ae) - [V, ]15. (4.35)
For e small enough the Poincaré inequality applied to (4.35) implies the exponential
decay of ||V]|2.

To obtain bounds on ||V, |2, we simplify the boundary conditions by introducing
the linear function p(y) = 8 —y(e + () and the quantity W =V, — pV, which satisfies
Dirichlet boundary conditions at y = 0 and 1. The evolution of W is governed by the
equation

Wr = FU) (Wy + pyV) + (F(U) = F(2)) - (Byy — p(y — 12)) + Wyy + 2, V.
(4.36)

From the bound ||[Vy|l2 < |[|[W]l2 + ||plles - [V||2, we see that the exponential decay of
[[W |2 and ||[V||2 are sufficient to imply the exponential decay of ||[V|| g1 .

Multiply (4.36) by W, integrate over (0,1), and integrate by parts. From the
Dirichlet boundary conditions on W, we derive the inequality

1d : ‘
37 IWIs < = IWy[I3 + (e + B IFW)] - VI 1W 15

+ |F(U) = F(®)] - [|®yy — p(@y = r2)[2[]WIl2 + 2[py| - [Wl2][V]]2-
(4.37)

From (4.27) and (4.2) we obtain the bound ||®,, — p(®, — r2)|]2 < A€® for some
A > 0. The estimate on the Lipschitz constant for F' and the L°° embedding yield
the following string of inequalities

IF(U) = F(®)| < LIV(1)] < Ac(IW ]3> + IVII%) - 1V]ls, (4.38)

for some A > 0. With these bounds, the Poincaré inequality on W, and Young’s
inequality all applied to (4.37), we obtain an estimate of the form

1d . 1 . .
S W < — Sy 1B + AIVI3, (439)

for some A > 0. The usual Poincaré inequality applied to |1V, ||2, and the exponential
decay of ||V||2 yield the exponential decay of [|[IW |2, and the result (4.32) follows. 0O

4.2.3. Proximity to the Adiabatic Solution. The solutions C' and R of equa-
tions (3.1) can be well-approximated by the adiabatic forms defined below in terms
of the solution U(r,y) = U(T'/d,y) of (4.21)

C*(U) =1+ 6F(U)y, (4.40a)
R (U) = Ry(y) +Ur,p). (4.40b)

The initial data (4.22) for U is taken at time 79 = Ty/0, where 79 is large enough that
e "7 = 0(8%€2). We may now state and prove our main analytical result.
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THEOREM 4.4. Under the assumptions of Lemma 4.1 and Proposition 4.2, in
particular 6 and € small enough, the solutions C' and R given by (4.1) through (4.4)
are approzimated by the adiabatic forms (4.40) in the sense that

|IC — C*® ()| < A(e ™ + 62%€2), for all 7 > 0, (4.41a)
IR — R*P(U)|| g1 < Ade, for all T > 79, (4.41b)

for some A,k > 0.

Proof. We consider only the cathode scaling; the arguments for the anode scaling
require only minor modifications. Since R = Ry, + N where N satisfies (4.1b), we
prove (4.41b) by bounding the quantity £ = N — U, whose evolution is governed by
the equation

E, = (C+0C),E, + [(C+6InC)y — 6FU)]- (U, —12) +6E,,.  (4.42)

Moreover, E satisfies the same homogeneous boundary conditions as N in (4.5b), and
has zero initial data at 7 = 7¢. In light of Proposition 4.2 we have the estimate

IC — (14 6FEU)y) |l < A (e + 6% + 8| F(U) — F(N)]) . (4.43a)

The function F'is Lipschitz on the range of U and N with Lipschitz constant L = O(e).
This implies

[F(U) = F(N)| < Ae||E|so, (4.44)
and so we find
IC— 1+ 6FU)y) |l < A(5°€ + 0€]| El|oo) for all 7> 7. (4.45)

To obtain bounds on ||E||; we multiply (4.42) by E, integrate over (0,1), and
integrate the last term by parts, from which follows the equality

L d ||E||2—/1((C+61 0),E,E

+ [(C+610C), — SF(U)] - (U, —12)E — 5E§) dy — (e +B)E?|, .
(4.46)

From Proposition 4.2 we have the bound
(C+d6InC)yll2 < Ad|f(R)| < Ade, for all T > 9. (4.47)

In particular ||§(InC),l|2 = 6]|C,/C||2 < Ad%€. This inequality together with (4.45)
yields
1(C'+6InC)y = FU)l2 < |Cy = 0F(U)|l2 + 0]|Cy/Cl2,
< Ade(0 + || Bl so)- (4.48)

We drop the negative boundary terms in (4.46) and employ the estimates (4.47),
(4.48), and Hélder’s inequality to find

N | =
| =

1E1 < 8B B + 466 (1 By lall Ellc + 6+ 1Elloe) - (U 12 +72) - [ Bl ).
(4.49)

U

T
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Rescale time to 7" = 47, use the L* embedding and Poincaré inequality on E, and
Young’s inequality on terms linear in E to obtain an estimate of the form

d 1
Il < - (5 — Ae(|lUy 13 + 1)) 1B 113 + Ad*e* (I1U, ]I + 1), (4.50)

for some A > 0. Proposition 4.3 implies that ||U,||2 is uniformly bounded, independent
of § for T' > Ty. For e small enough it follows from Poincaré’s inequality that the
solution E of (4.42), with zero initial data at T' = Tj satisfies

[[E]l2 < Ade for all T > Tp. (4.51)

To extend these results to the H' norm, we introduce the quantity W= E,—pE which

satisfies Dirichlet boundary conditions at y = 0 and y = 1. Since W, = E., —pE., we
may combine (4.42) with its y derivative to obtain the following evolution equation
for W,

Wr =(C+0InC)yyEy + (C+6ln C)y(Wy +pyE)+ ((C+6InC), - 5F(U))y (Uy —12)

+((C+8InC), — F(U)) - (Uyy — pUy + pra) + 6W,, + 20p,E,. (4.52)
Multiply (4.52) by W, integrate over (0, 1), and integrate by parts on the first, third,
fifth, and sixth terms on the right-hand side, to obtain the equality

1d = ! — —~

Sz = {(C"'Mnc)y(WWy + pyEW — (E,W)y)

2 dT Jo

— ((C+8mC)y = 0FU)) - (U, = 12) - (oW + W,)) } dy

1
~ O, - 200, | EW,dy. (4.53)
0

The integrand of the first integral on the right-hand side of (4.53) is comprised of two
terms. The first factor of the first term is estimated by (4.47), while the second factor

is dominated by the term (EyW)y We estimate
1By W)ylls < [Eyyll2[Wlloo + [ Eylloc][W 2, (4.54)

and from the triangle inequality, the L> embedding applied to, E, and Poincaré
applied to W it follows that

1Eyyllo + 1Byllee < A(IWyll2 + |1 Ell2), (4.55a)
IEylls + |Elle < AW |l + || E]l2)- (4.55b)

The inequalities (4.54) and (4.55), together with an application of Young’s inequality,
lead to the estimate

(B, W)yl < AW, 13 + | EI3). (4.56)

The first factor of the second term of the integrand of (4.52) is bounded by the estimate
(4.48). From arguments similar to those used to derive (4.56), we find an estimate on
the second factor of the second term of the form

1(Uy = 12) - (oW + Wyl < AUy ]|z + 1) - [[W, . (4.57)
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Then, rescaling time by 7' = d7, and applying Hélder’s inequality and the estimates
gathered above, we obtain an inequality of the form

ST < — 1, 13 + A1, 13 + 113

+ @+ Wl + 1Bl - (0,2 + D) - [Wyll2).  (4.58)

We employ the bound ||E||, < Ade from (4.51) and use Poincaré on W and Young’s
inequality on all terms linear in ||W||» to combine the W dependent terms on the
right-hand side of (4.58) into one term quadratic in ||Wy||2 For € small enough, the

sign of this later term is negative, and applying Poincaré to W we obtain an inequality
of the form

d . — ) - .
WIS < =26]|WI5 + AS*([U |15 + 1), (4.59)

for some k and A positive and independent of § and e small enough. Since ||U,||> is

uniformly bounded for T > Ty and W has zero initial data at T = Ty, integration of
(4.59) over the time interval (Tp, T') yields the bound

W (T)||» < Abe,  for all T > Ty, (4.60)

and for some A > 0 independent of € and 4. The result (4.41b) follows immediately
from (4.51), (4.60), and the inequality (4.55b), while (4.41a) follows from (4.41b),
(4.45), and Proposition 4.2. O

4.3. Limiting states of the Anode and Cathode Scalings. Theorem 4.4
indicates that the steady state solutions of the adiabatic equations (4.21), given for
the anode and cathode scalings in Section 4.2.1, describe the limiting behavior of
the full system as 7 — oo. Indeed from Theorem 4.4 and Proposition 4.3 we have
immediately

COROLLARY 4.5. Under the assumptions of Theorem 4.4, for the steady state
solution ® of (4.23)

limsup ||C — C*(®)]| ;1 < A§?€?, (4.61a)
T—>00

limsup ||R — R*"(®) ||z < Ade. (4.61b)
T—>00

For the anode scaling, using ® = ®? from (4.30) and the definition of C*I" and
R24b from (4.40), it is straightforward to obtain an expansion for the limiting states
of total concentration and reactant

Cadb () =1 — (60%> 52+ O(6%), (4.62a)
R (@) = v — eoy(y + 1/8)6 + O(67), (4.62Db)

valid to within the error of Corollary 4.5. More importantly, from (3.3) we can
approximate asymptotically the net flux N7 of reactant into the catalyst layer at
y=1as

Ny = 200 52 4 0@, (4.63)
Vr — VY
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In dimensional variables this expression takes the form

2

0(6%) (4.64)

_ C C. [‘_
Nld:C'17“H< ¢t >+ ¢

(1 - 1/)61 + 62 H

where we observe from Table 3.1 that FU2/H ~ O(1.0 mol/em? - s). In the anode
scaling, the transfer coefficient r,, is the limiting element (i.e., r,, < r,), and we find
that the flux depends only upon r,,, the return coefficient v, and the channel reactant
concentration C;.

For the cathode scaling, using the expression ® = ®°¢ = ®$ + O(e*) from (4.27)
we expand the limiting states in € to find

adbygy _ 1 YPoro 2 Bolyr —0v) 5 A 52
Cc* (@) =1 Tt B, (e YA € > yd + O(e"9,67), (4.65a)
adb gy _ Doy | (1 2 Bo e (LA 4
) = 5 e (v 1) @ (v ) ¢ o
(4.65D)

The net flux for the cathode takes the dimensionless form

_ Boyw (o Bolyr —0v)
M=% ( (1 + Bo)r

In dimensional variables, we may express the flux in the appealing form

e3> 5+ O(e*8,6%). (4.66)

(4.67)

3

d = Cyvr, H Ic’ Ao 2
N = (1+ G 10y v 1) pre) + T Ol )
where the effective transfer coefficient, r. = (1/r, +1/r,)"", is the reciprocal sum of
the individual transfer coefficients r, and r,,.

The net flux of reactant depends only upon the transfer rates at top and bottom,
concentrations in the channel, return coefficient v, diffusivity, and GDL thickness. The
permeability is not evident here, occurring at higher order in the expansion of N{.
Moreover, the diffusivity and GDL thickness occur only through the dimensionless
combination %re = O(e), which is a small correction to the leading order term. We
expect the diffusivity to appear at first order in a two-dimensional problem with flow
channels if the channel aspect ratio L./L is not small.

Remarks: (1) We can recover the anode result to leading order by taking r, < r,
and expanding (1 —vy)™' ~ 1+ vy +.... (2) For the cathode v < 0 and formula
(4.67) demonstrates the sub-linear response of flux (and hence also current density) to
increasing O, channel concentration C'1. This effect is present in our one-dimensional
model and is associated with convective terms.

5. Numerical Comparisons. We now give a brief overview of the numerical
method we employed for solving the two-dimensional GDL equations. A complete
description of the code, including a study of convergence, stability and parameter
sensitivities, is provided in [21].

The dimensional system (2.2) (2.6) is discretized in space using a finite volume
approach, which is a natural choice in view of the mass conservation properties of
the continuous problem. The rectangular domain is divided into a uniform, nz x ny
mesh with grid spacings Az? = L/nz and Ay? = H/ny (the superscript “d” denotes
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dimensional length measurements to avoid confusion with the nondimensional grid
spacing Ay = 1/ny). The concentrations C' and C; and pressure P are cell-averaged
quantities located at cell centers, while the vector-valued velocities and fluxes are
defined as edge averages. Centered differences are used to approximate derivatives
so that the resulting discretization is second order accurate in the grid spacing. The
boundary conditions are also approximated by centered differences, with “fictitious
cells” being used for points lying outside the domain. Solution values at fictitious
points are approximated using second-order extrapolation from interior points so that
the overall scheme retains second order accuracy up to the boundary.

After spatial discretization, we are left with a large, time-dependent, nonlinear
system of ordinary differential equations to solve at each grid point. Furthermore,
the system is stiff, as indicated by the presence of two widely disparate time scales
in our convergence analysis of Section 4. Consequently, we have chosen to use the
stiff differential algebraic system solver DASSL [15] to integrate the solution in time.
DaAsSL uses a variable-order BDF method with adaptive time-stepping which provides
an accurate and efficient computation of the solution, as outlined in the next section.

5.1. Stiffness. The presence of a fast and slow time scale, discussed in the pre-
vious analysis, suggests a very stiff problem for which explicit time-stepping methods
can be highly inefficient. A small step is required for accurate resolution of initial,
rapidly-varying transients, but is unjustified at later times when the transients have
died out and the solution relaxes adiabatically to steady state on the slow time scale.
We have implemented an explicit, forward Euler version of the code, which for a typi-
cal GDL simulation on a 34 x 24 grid requires over 10° time steps to reach steady state
(corresponding to a fixed time step of At ~ 107? s) and which was quite computa-
tionally intensive. In contrast, the implicit, variable time-stepping method in DASSL
provided a dramatic improvement in performance. Clearly, the stiffness in the GDL
problem is severe enough that use of an implicit method is required for practicality.
This situation can only be further complicated in a larger coupled system for the
entire fuel cell.

The severity of the time step restriction is due primarily to the porous medium
equation which defines the velocity as a derivative of the concentration, so that the
convective terms in Egs. (2.7) actually appear as diffusive terms. The time step
restriction for diffusive problems takes the form At < (Ay?)?/(2D), while the presence
of a convective term usually introduces a CFL-type restriction of the form At <
Ayd/UmM. For our GDL model however, the convective terms appear as second
derivatives multiplied by a coefficient (I'C) or (I'Cy). The time step restriction for
our problem, written in dimensional variables, has the form

d\2
Ar< @B {1 L 1 (5.1)
2 D'rc ro;

With the anode parameter values from Table 3.1 (and ny = 24 so that Ay? ~
0.002 ¢m), this time step restriction becomes At < 8 x 107, with a limit of only
At < 6 x 1075 arising from the diffusion term. Similar values are obtained at the
cathode. The stability restrictions arising from this simple linear argument give a
very close match to the time steps required for explicit computations of the full fuel
cell system. The reduced, adiabatic equation (4.21) on the other hand, has a time
step limited by diffusion only, which translates into a thousand-fold speed-up for an

explicit method.
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We can also rewrite the time step restriction in terms of non-dimensional variables
for both the fast and slow time scales 7 = (IC/H?)t and T' = (D/H?) t:

(Ay)* 1 1 (Ay)* . 5
< -1, - 3 < — L0, — .
AT < 5 ming =, 1, 5 (fast) and AT < 5 min 1,9, 5 (slow)

Realizing that § < 1 and ~
(Ay)?/2 and AT < §(Ay)?/2
slow time scale T'.

)

< 1, it is clear that these conditions reduce to At <
, clearly indicating that diffusive effects only limit the

5.2. Validation of 1D Steady State Results. In this section, we present
numerical results that validate the analytical formulae for the steady state solutions,
and the adiabatic portion of the convergence. The computations are performed on a
“quasi-1D” problem with the channel and solid wall at the lower boundary replaced
by a uniformly porous surface, which corresponds to taking L. = L in the notation
introduced in Fig. 2.2. Because of the resulting symmetry in the domain and boundary
conditions, the solution is independent of x and so that a vertical, mid-channel cross-
section of the computed results can be readily compared to the analytical solution. All
results that follow are reported in non-dimensional variables, except where otherwise
noted.

We begin by comparing the computed mixture concentration and reactant mole
fraction with the “exact” steady state obtained numerically from the 1D steady state
version of (3.1), and also with the asymptotic solution from either of Eqs. (4.62)
or (4.65). The parameters used for both electrodes are listed in Table 3.1. The results
for the anode and cathode are presented separately in Figs. 5.1 and 5.2 respectively,
from which it is clear that both analytical results match extremely well with the
computations. Furthermore, all curves exhibit the expected linear (or near-linear)
dependence on y that is observed in computations in higher dimensions.
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Fi1c. 5.1. Comparison of the computed concentration (C — 1) and mole fraction R = C1/C with
theoretical predictions for the anode (Ho side). The parameters are taken from Table 3.1, and the
computations performed on a 32 x 48 grid.

We next investigate numerically the nature of convergence to steady state and
draw comparisons with the analytical results derived in Section 4. Fig. 5.3(a) shows
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Fic. 5.2. Comparison of the computed concentration C and mole fraction R = C1/C with
theoretical predictions for the cathode (Os side). The parameters are taken from Table 3.1, and the
computations performed on a 32 x 48 grid.

the variation of concentration profiles with time, starting from the initial profiles
C =1 and R = ~. The initially horizontal concentration curve relaxes over a short
time interval (of approximately 107° s) to a linear profile, which is very close to
the final steady state. The solution then enters the adiabatic regime, in which the
curve remains linear and relaxes to the steady state on the slow time scale. The
concentration actually overshoots the steady state solution, with the slope reaching
a maximum shortly after t = 107° s (i.e., 7 = 3.0 and T = 0.0005), following which
the steady state is approached from below. This adiabatic behavior is best conveyed
by Fig. 5.4(a) which plots the slope of the solution profile versus time for the anode
and cathode concentrations. In this figure, we present numerical solutions of both
the original system (3.1) (3.2) and the adiabatic equation (4.21) derived from (4.3).
The “slope,” computed using the divided difference (C(1) — C(0))/(1 — 0), is an
accurate representation of the curves during the adiabatic phase, but only yields an
approximation during the initial transient regime when the profiles are nonlinear.
Notice that the concentration slope at the cathode is positive, due to the inflow of
water vapor at the upper boundary with a positive return coefficient v = 0.99.

In Fig. 5.3(b), we show profiles of the anode mole fraction, which lacks a rapid con-
vective transient, and consequently the adiabatic variation is much more pronounced.
In contrast with the concentration curves, the relaxation of R to its steady state is
monotonic, as is easily seen in the plots of slope versus time in Fig. 5.4(b).

5.3. Two-Dimensional Computations. The one-dimensional results of the
previous section are strong evidence to support our asymptotic approximations to the
GDL model. In most fuel cell applications, geometric constraints render the flow fun-
damentally two-dimensional. In this section, we present simulations of flow through
more realistic two-dimensional geometry as depicted in Fig. 2.2, and demonstrate how
the one-dimensional asymptotic results are useful in predicting certain flow quantities.

Fig. 5.5 shows a representative computation, with plots of mole fraction and total
hydrogen flux for the case L./L = 0.5. While the variation in R is nearly linear along
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Fic. 5.3. Convergence to steady state of the anode mizture concentration and mole fraction.
The curves are displayed at 50 time steps between 10~° and 5.0, equally-spaced on a log scale. In
the transient, convective regime the mixture concentration moves very rapidly to a linear profile
that overshoots the steady state. There follows an adiabatic relazation on the slow time scale to the
steady state. The mole fraction on the other hand has no fast transient and relaxzes entirely on the
slow time scale.
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FiG. 5.4. Comparison of the computed and adiabatic solutions, in terms of the slope of the C
and R curves versus dimensional time. The asymptotic, adiabatic equations capture the steady state
and the slow relazation.

vertical cross-sections (z = constant), there is a significant two-dimensional effect due
to variation along the z direction, which is also evident in the flux vector plot in
Fig. 5.5(b).

To measure the departure of the two-dimensional solution from one-dimensionality
we vary the channel aspect ratio L./L, with L fixed, focusing our attention on the flux
of reactant along the top wall, N1|,=g. This quantity has very important physical
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implications, being related to the reactant consumption rate and thus also to current
density, which is a primary measure of fuel cell performance. Fig. 5.6(a) contains
plots of the top wall flux as a function of = for aspect ratios between 0.2 and 1.0,
with the domain length fixed at L = 1.0. The asymptotic flux from (4.64) is plotted
as a dashed line for comparison purposes. While there is significant variation in the
overall flux, the peak flux at mid-channel remains virtually fixed and the asymptotic
approximation to the peak flux is accurate to within an error of 2%, even when the
channel aspect ratio is as small as 0.4. It is only when the aspect ratio is reduced
below 0.4 that an appreciable drop in maximum flux appears.
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Fic. 5.5. Plots of reactant mole fraction and total fluz for a two-dimensional anode simulation
with Le/L = 0.5 (in dimensional variables).

Experimental evidence suggests that changing channel geometry influences fuel
cell performance by affecting electrical contacts and water flooding [14]. We have thus
demonstrated a third factor that influences performance namely mass transport
limitations.

A central result of our one-dimensional asymptotic analysis is that the top wall
flux (4.64) at the anode does not depend on parameters such as the diffusivity or
permeability, to lowest order in §. This has implications in terms of the design of
new GDL materials. While the diffusivity is an intrinsic property of the gas that does
not vary, it is technically not the diffusivity D that appears in (2.7b) but rather an
effective diffusivity D7 which is often related to D in the porous media literature
via the semi-empirical formula D = 5;1'5D, known as the Bruggeman correction.
We are therefore justified in considering the effect of variation in D on the reactant
flux. The results are displayed in Fig. 5.6(b), from which it is clear that the maximum
flux has little sensitivity to the diffusivity, even in a two-dimensional calculation.

6. Conclusions. By considering each electrode of the fuel cell in isolation, and
replacing the coupling to the rest of the fuel cell system with appropriate boundary
conditions, we develop a model for multicomponent gas transport within an elec-
trode which is amenable to analysis. The system of convection diffusion equations
we present captures qualitatively the fundamental physical phenomena appearing in
more complicated models of the entire fuel cell. Moreover, we identify distinct scal-
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Fic. 5.6. Plots of the dimensional top wall reactant fluz Nii at the anode as the channel aspect
ratio, Lc/L, or the diffusivity, D, are varied.

ings of the problem variables which describe the different operating conditions at the
anode and cathode.

For a one-dimensional problem we present asymptotic expansions of the steady
state solutions which demonstrate the functional dependence upon material param-
eters. We also derive a reduced system that describes the adiabatic portion of the
two-scale relaxation onto the steady state. This reduced system eliminates the nu-
merical stiffness associated with the fast time scale, while qualitatively reproducing
the diffusive transients which have application to dynamic fuel cell performance. Sig-
nificant computational benefit should be achievable by incorporating some form of
this reduced system into full fuel cell simulations.

The extension of our analysis to two space dimensions is possible. Indeed, we show
that the one-dimensional model retains its predictive power in a two-dimensional
geometry, accurately describing the peak reactant flux and demonstrating its lack
of dependence upon parameters such as the diffusivity. Our preliminary numerical
simulations which include the Maxwell-Stefan equations [12] for the diffusive fluxes
show only a very small quantitative difference from those presented here.

Future work includes modeling temperature variations within the GDL and the
multiphase flow resulting from liquid water condensation, relating to issues of water
management. A coupled anode—cathode model that incorporates elements from the
PEM and the catalytic reaction rates would be of great value to the fuel cell industry.
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