
ADIABATIC RELAXATION OF CONVECTIVE-DIFFUSIVE GASTRANSPORT IN A POROUS FUEL CELL ELECTRODE�KEITH PROMISLOWy AND JOHN M. STOCKIEzAbstrat. The gas di�usion layer in the eletrode of a proton exhange membrane fuel ell is ahighly porous material whih ats to distribute reatant gases uniformly to the ative atalyst sites.We develop a mathematial model for ow of a multiomponent mixture of ideal gases in a highlyporous eletrode. The model is omprised of a porous medium equation for the evolution of the gasmixture and a singularly perturbed onvetion{di�usion equation for the interspeies mass transferwithin the mixture. The equations are oupled through nonlinear boundary onditions whih desribeonsumption of reatants and generation of end produts at the atalyst layer. Through a twotime-sale analysis, we derive a single redued equation whih aptures the slow, di�usively-driven,adiabati relaxation to the steady state at eah eletrode. The asymptoti results are ompared withone- and two-dimensional omputations of the full system.Key words. multiomponent gas, onvetion-di�usion, porous medium, multi-sale analysis,singular perturbation, fuel ell eletrode.AMS subjet lassi�ations. 35B40, 35K55, 76R99, 76S051. Introdution. In many industrial and biologial appliations, transport ofreatant gases takes plae aross a thin layer of porous material. Here we onsiderthe eletrodes of a proton exhange membrane (or PEM) fuel ell, in whih reatantgases are distributed to atalyst sites through a sheet of arbon �ber paper known asthe gas di�usion layer or GDL. The onsumption of reatant gases (H2 and O2) andgeneration of end produts (H2O) reate gradients in omponent onentration arossthe thikness of the paper. The resulting omponent di�usion engenders a onvetiveDary's law ow inside the porous layer, whih interats with the di�usive motion.The onvetive time sales are muh faster than di�usive ones in the full nonlinearproblem, and di�usion represents a singular perturbation to onvetion. Indeed ourmodel is distinguished from similar multiomponent problems in groundwater trans-port by this saling, arising from the thinness of the domain and the high porosityof the GDL. We apture the ompetition between onvetive and di�usive e�ets,demonstrating that the slow transients related to the relaxation of these nonlinearequations are aurately desribed by a single di�usion equation with a non-loalonvetive term.The athode and the anode sides of a PEM fuel ell are haraterized by distintsalings, eah possessing a nonlinearly stable, steady state solution. We derive asymp-toti expressions for the impat of onvetion on the net reatant delivered aross thegas di�usion layer, and provide a detailed desription of the relaxation onto the steadystates. On the fast time sale a onvetive transient governs the onentration gradi-ent of the overall gas mixture. On the slow, di�usive time sale the onvetive owrelaxes adiabatially to its di�usively-driven steady state. In the anode saling, theadiabati equations governing the reatant onentrations are di�usively dominated,�This work was funded by a grant from Ballard Power Systems through the MITACS NationalCentre of Exellene.yDepartment of Mathematis and Statistis, Simon Fraser University, Burnaby, British Columbia,Canada, V5A 1S6 (kpromisl�sfu.a).yDepartment of Mathematis and Statistis, University of New Brunswik, Frederiton, NewBrunswik, Canada, E3B 5A3 (stokie�math.unb.a).To appear in SIAM J. Appl. Math. 1



2 K. PROMISLOW AND J. M. STOCKIEwhile in the athode saling a nonlinear, nonloal onvetion term appears at leadingorder.Our analysis should be of partiular interest to fuel ell researhers, a�ording asubstantial simpli�ation of a omplex, nonlinear proess. Most e�orts at modelingand simulating fuel ells in the literature to date have foused on the entire fuel ell,inluding harge, heat and mass transport. Despite the omplexity of these oupledmodels, extensive one- and two-dimensional numerial simulations yield onentrationpro�les that vary linearly through the thikness of both the GDL and PEM [4, 9, 19,26℄. The redued adiabati model developed herein aptures preisely this e�et (referto Eqs. (4.21) and (4.40)). Moreover, by deriving equations that govern the adiabatirelaxation onto the steady states, we an distinguish the signi�ant dynamis of thesystem, inluding intermediate transients, while eliminating the sti�ness whih mayplague numerial simulations of the fuel ell system.Our modeling approah fouses solely on the GDL, deoupling eah eletrode fromthe rest of the fuel ell. This permits lassi�ation of di�erent operational regimesinside the GDL based on the boundary onditions and parameters whih mimi theremainder of the fuel ell. Indeed, previous modeling e�orts have foused on theproton exhange membrane, despite experimental studies whih strongly link fuelell performane to geometry and material omposition of the porous gas di�usionlayer [2, 6℄.In the next setion, we disuss the physial assumptions in our GDL model andderive equations of mass transport. One of the key aspets in the model is the parame-ters whih appear in the boundary onditions; these desribe the operating onditionswithin the fuel ell. Setion 3 presents the derivation and saling of the equations andboundary onditions. The di�erent salings assoiated with the anode and athodeoperation are of primary importane in the non-dimensionalization proedure. Theanalysis of a one-dimensional version of the GDL model is presented in Setion 4,inluding derivation of the adiabati equation and analysis of the nature of the on-vergene of the full system to steady state. The analytial results are veri�ed bynumerial experiments in Setion 5 and onlusions are drawn regarding the applia-bility of the model to two-dimensional geometries that arise in fuel ells.2. Model Derivation.2.1. Fuel Cell Overview. A ross-setion of a PEM fuel ell, depiting themajor omponents, is shown in Fig. 2.1. The membrane{eletrode assembly, or MEA,is sandwihed between two graphite plates (shaded in the diagram at left) into whihare ethed ow hannels for oxygen gas at the athode (top) and hydrogen at theanode (bottom). Inside the hannels, a pressure gradient initiates the ow of gases,while onsumption of reatants and generation of end produts lead to variations inomponent onentrations. We introdue a oordinate system in whih x denotesdistane along the lateral diretion in the MEA, y is measured along the height ofa hannel and through the thikness of the MEA, and z denotes distane along thelength of a ow hannel.In the middle of the ell is a proton exhange membrane or PEM, omposed of apolymer material, whih is permeable to small, positively-harged ions. On eah sideof the PEM is attahed a layer of arbon �ber paper, alled a gas di�usion layer orGDL. The boundary between the PEM and GDL is loaded with a platinum atalystthat failitates the reations. The eletri urrent in a fuel ell is derived from thetwo reations listed at the right of Fig. 2.1. Hydrogen ions generated at the anode
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Fig. 2.1. A proton exhange membrane fuel ell and its omponent parts. On the left is aross-setional view of the ell, showing the MEA sandwihed between the oxygen and hydrogen owhannels. The in-hannel gas ow is direted normal to the page. On the right is an expanded viewof the MEA. The reation ourring at eah eletrode is listed on the far right, along with the owof eletrons generated when the anode and athode are linked in an external iruit.atalyst layer migrate aross the PEM, where they reat with oxygen gas at the upperatalyst layer to produe water vapor.2.2. Geometry and Assumptions. We fous our attention on the GDL forwhih we onsider a two-dimensional ross-setion, labeled 
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, at y = 0, represents the interfae between the GDL and either thegraphite plate or an open, gas-�lled, ow hannel. The upper boundary, at y = H ,orresponds to the atalyst layer separating the GDL and the PEM. The transport ofions and water within the MEA as well as the onvetive ow within the gas hannelswill not be modeled here. The oupling of the GDL to the rest of the fuel ell,inluding suh e�ets as variation in reatant onentration along the length of theow hannel, nonuniformity of omponent onentrations in the hannel, boundarylayers at the porous GDL{hannel interfae, and dissoiation rates at the atalyst



4 K. PROMISLOW AND J. M. STOCKIElayer will be aounted for through the boundary onditions.The hannel gases are omprised of many speies; indeed the O2 ow is typiallyambient air with signi�ant amounts of nitrogen and water vapor. Proper modelingof di�usive e�ets requires the Maxwell{Stefan equations [12℄, however we substan-tially redue the tehnial omplexity of our analysis by employing Fik's model ofdi�usion. This approximation introdues only small quantitative di�erenes as indi-ated by our preliminary alulations. We gather below the priniple assumptionsand simpli�ations we make in our model:� Our model is isothermal and does not inlude transport of harge and heat.While these e�ets are important to overall fuel ell operations (and parti-ularly water management), they do not have a leading order e�et on theonvetive-di�usive transport of reatants.� We assume all water vapor remains in the gas phase.� All non-reating gas speies (e.g., N2 on the athode side) have onstant molefrations.� The inlet-to-outlet pressure drop in the hannel may engender a small z{omponent in the GDL ow veloity whih we assume to be uniform. Ourfous is on the x{ and y{omponents of the ux.� All reatants are immediately onsumed upon reahing the PEM, so that thelimiting fator is mass transport in the GDL.� External body fores suh as gravity an be negleted.2.3. Governing Equations. Models for onvetive{di�usive gas transport inporous media have been developed for appliations arising in a wide range of �eldsinluding eletrohemistry [13℄, ow in insulating materials [25℄, and groundwatertransport [1℄, to name a few. The standard approah is to ouple a mass transportequation for the mixture (typially Dary's Law or some appropriate modi�ationthereof) with an equation governing inter-omponent di�usion within the mixture.Di�usive transport is frequently modeled using Fik's Law, whih is the approahtaken here. However, Fik's Law is stritly valid only for binary mixtures, and for somemixtures of three or more omponents, the Maxwell{Stefan equations are required toobtain physially reproduible results [12℄.Similar models have appeared in the fuel ell ontext, in whih equations desrib-ing multiomponent gas ow in the GDL are oupled with equations for heat andharge transport ourring in the other fuel ell omponents. With the importantexeption of the boundary onditions, the GDL model we develop below is similar tothat in [9℄ or [26℄.We present the governing equations for the gas mixture, desribed by the onen-trations C1, C2, and C3. We denote by C1 the onentration of reatant gas, whih isH2 on the anode side and O2 at the athode. At both anode and athode, C2 refersto water vapor onentration, while C3 denotes any non-reating gases, prinipallyN2 on the athode side and CO2 on the anode side. We assume that the non-reatinggas onentration C3 is a �xed proportion, (1 � r), of the total gas onentration,C = C1 + C2 + C3. This assumption is supported by multi-omponent numerialsimulations whih show a variation in the mole fration C3=C of about 2% at steadystate, ompared to 20% variation for C1=C and C2=C. Thus we may writeC1 + C2 = rC; (2.1)where the onstant r is determined by onentration values inside the hannel. Inwhat follows, (2.1) will be used to eliminate the variable C2 in favor of the total



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 5mixture onentration C.The onservation of mass for the gas mixture takes the form�C�t +r � (CU ) = 0; (2.2)where U is the molar-averagedmixture veloity. The transport of individual reatantsis signi�antly a�eted by inter-omponent di�usion. The onservation law for thereatant onentration takes the form�C1�t +r � (C1U + J1)| {z }N1 = 0; (2.3)where J1 is the di�usive ux (measured relative to the molar-averaged veloity) andN1 is the total (onvetive plus di�usive) ux of the �rst omponent.The di�usive ux is given by Fik's law, whih states that the ux of one om-ponent relative to the molar averaged veloity is proportional to the gradient in molefrations via J1 = �CDr�C1C � ; (2.4)where D is the di�usivity. There are several other equivalent forms of Fik's Law,whih vary depending on the averaging proedure used to obtain a mixture veloity [5,22℄. The form of Eq. (2.4) is tied to our hoie of a molar-averaged veloity, whihis onsistent with the treatment of ow of gases in porous media by others in theengineering literature [7, 20℄. Dary's Law gives the mixture veloity in terms of thepressure P as U = � K"p�rP; (2.5)where � is the visosity of the mixture, and the GDL material is haraterized bythe parameters K (permeability) and "p (porosity). The oeÆients K and D areatually tensor quantities beause the �brous GDL material is anisotropi; however,we will assume for the sake of simpliity that the GDL is isotropi, taking K and Das salars. The validity of Dary's law is subjet to the assumptions that boundarye�ets are negligible, and that the gas veloity is small enough that inertial terms anbe negleted [17℄. The latter is learly satis�ed in the GDL sine the pore Reynoldsnumber is small (i.e., Rep = �UpK=�� 1), and the boundary layer between hanneland GDL has a thikness on the order of one pore width [9℄.The �nal relation needed to lose the system is a onstitutive equation for the gasmixture. Assuming the gas to be ideal and adiabati, the pressure depends linearlyon the onentration, P = CRT ; (2.6)where R is the universal gas onstant and T is the temperature. While there aresigni�ant temperature variations within a fuel ell, we will take the system to beisothermal, an assumption that is ommonly made in other fuel ell models ([26℄ and[4℄, for example).



6 K. PROMISLOW AND J. M. STOCKIEEqs. (2.2){(2.6) together form a oupled system of nonlinear PDEs for the on-entrations C and C1. This is most easily seen by substituting expressions (2.4){(2.6)into the onservation Eqs. (2.2) and (2.3) to obtain�C�t �r � [�CrC℄ = 0; (2.7a)�C1�t �r � ��C1rC +DCr�C1C �� = 0; (2.7b)where � := KRT"p� is a onstant. The relative importane of onvetion and di�usion,determined by the parameters � and D, is ritial in determining the behavior ofsolutions. We will disuss this issue and the importane of an appropriate resalingof the equations in Setion 3.2.4. Boundary Conditions. The boundary onsists of four distint ompo-nents, labeled I{IV in Fig. 2.2. We derive the boundary onditions on eah of the foursetions as follows:I. The impermeable boundary at y = 0 between the graphite plate and theGDL where there an be no ux of reatant, either by di�usion or onvetion, inthe diretion normal to the wall. This translates into the following onditions on they-omponent of the uxes Jy1 = 0 and Ny1 = 0;whih are equivalent to the following Neumann onditions on the onentrations��y �C1C � = 0 and �C�y = 0: (2.8)II. The permeable boundary at y = 0, where the mixture onentration immedi-ately inside the GDL is taken to be idential to that in the hannel:C = C; (2.9a)that is, we assume the pressure to be uniform throughout the depth of the hannel.We assume further that the di�usive ux of the �rst omponent aross the han-nel/GDL interfae is proportional to the di�erene in onentrations on either side:Jy1 = r0(C1 � C1):Here C1 is a depth-averaged hannel onentration and r0 an be interpreted as amass transfer oeÆient. Using (2.9a), this expression an be rewritten entirely interms of the onentrations as��y �C1C � = � r0DC (C1 � C1): (2.9b)An estimate for r0 an be obtained from the Sherwood number, Sh = r0Ld=D,where Ld is a harateristi length that we take proportional to the hannel depth.The Sherwood number is typially obtained experimentally and values are availablein the literature (see [3℄ and the referenes therein).



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 7III. The permeable boundary at y = H , between the atalyst and GDL, where asimilar ondition to (2.9b) is appliedJy1 = rH (C1 � 0):The mass transfer oeÆient rH models the reations and eletrohemistry takingplae in the atalyst region. It is tuned to math net ux to experimental valuesdetermined from averaged urrent densities. We onsider the atalyti reation to beinstantaneous and irreversible, whih leads to a hoie of zero onentration in theatalyst layer. Using the de�nition of the di�usive ux, the ondition above an berewritten as ��y �C1C � = �rHC1DC : (2.10a)The seond boundary ondition on III arises from a return ux of the end produtomponent whih is proportional to that of the reatantNy2 = (� � 1)Ny1 :The parameter � is a return oeÆient that determines the diretion and magnitudeof the produt H2O omponent ux. We assume that at steady state the majorityof water vapor manufatured at the athode atalyst layer remains on the athodeside. Sine two water moleules are produed by the reation for every O2 moleuleonsumed, but only one H2O for every H2 moleule, we take�1 � � < 0 at the athodeand 0 < � � 1 at the anode. Indeed, taking � = �1 at the athode orresponds to thesituation where all water produed remains at the athode in the vapor state, while�1 < � orresponds to either some loss of water vapor to the liquid state or transferof water vapor to the anode. The boundary ondition above may be rewritten as aNeumann ondition involving the onentrations:�C�y = � �rHC1� (rC � �C1) : (2.10b)IV. The open side boundaries (x = 0 and x = L), where we assume that thesolution is periodi in x.3. Non-Dimensionalization. We now seek to identify the mehanisms thatditate the balane between onvetion- and di�usion-indued uxes, and the di�eringtime sales on whih the two uxes operate. The units and approximate magnitudeof eah of the parameters appearing in the problem are listed in Table 3.1. In theremainder of this paper, we use the dimensionless variables obtained by saling C byC, x and y by H , and introduing the resaled \onvetive time", � = (�C=H2) t,and reatant mole fration, R = C1=C. With these de�nitions, we arrive at thedimensionless equations C� �r � (CrC) = 0; (3.1a)CR� � CrC � rR � Ær � (CrR) = 0: (3.1b)The new parameter Æ = D�C � 1



8 K. PROMISLOW AND J. M. STOCKIEan be interpreted as the reiproal of a P�elet number (i.e., Æ � Pe�1). It representsthe ratio of the onvetive (H2=�C) and di�usive (H2=D) time sales, and de�nesthe slow time variable, T = Æ� , that appears in the analysis of the adiabati equationin Setion 4. We have in (3.1) a porous medium equation for the onentration anda singularly perturbed onvetion{di�usion equation for the reatant.For simpliity we study a one-dimensional vertial slie, shaded in Fig. 2.2, thatextends from the hannel at y = 0 to the membrane at y = 1. The relevant boundaryonditions are (2.9) and (2.10). Physially, we would expet that this problem isa reasonable approximation to the two-dimensional problem when the hannels arevery wide, so that L=L � 1. Introduing the dimensionless parameters � = HrH=D,� = Hr0=D and  = C1=C, the boundary onditions beomeC(0) = 1; Cy(1) = ��Æ �R(1)r � �R(1) ; (3.2a)Ry(0) = ��( �R(0)); Ry(1) = ��R(1): (3.2b)These are supplemented with initial onditionsC(0; y) = C0(y); R(0; y) = R0(y): (3.2)For later referene we introdue the dimensionless net ux of reatantN1 = �CRrC � ÆCrR; (3.3)whih is related to its dimensional ounterpart by the expression Nd1 = N1 � �C2=H .Typial values of the parameters are listed in Table 3.1 for both physial and non-dimensional quantities. Partiular attention should be paid to r0 and rH , sine theTable 3.1Parameter values (in gs units) used for the GDL model.Parameter Anode (H2) Cathode (O2)Domain: H (GDL thikness, m) 0:05 0:05L (domain width, m) 1:0 1:0L (hannel width, m) 0:5 0:5Gas properties: � (onvetion, m5=s �mol) 3:24 � 107 1:85� 107D (di�usivity, m2=s) 0:29 0:066C (onentration, mol=m3) 3:475 � 10�5 3:475 � 10�5r0 (bottom transfer rate, m=s) 3:0 0:20rH (top transfer rate, m=s) 0:005 0:0625Time sales: t=� = H2=�C (fast time, s) 2:2� 10�6 3:9� 10�6t=T = H2=D (slow time, s) 0:0086 0:038Nondimensional Æ = D=�C 0.00026 0.00010quantities: � = HrH=D 0.00086 0.047� = Hr0=D 0.52 0.15 = C1=C 0.80 0.21r = (C1 + C2)=C 0.90 0.31{0.411� (return oeÆient) 0:99 �1:01The range in values for r represents a variation in the water vapor mole fration from inlet tooutlet as the reatant gas is onsumed on the athode side.



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 9di�erene in magnitude betwen the two mass transport oeÆients lends support tothe separate salings for anode and athode boundary onditions. The quantitiesD=rH and D=r0 are length sales over whih di�usion operates for a given masstransport oeÆient (or a given onsumption). Thus, � and � are measures of theratio of di�usive length sale to the thikness of the GDL. For the anode, we haveÆ � 1 and �x � as a multiple of Æ via � = �0Æ, with �0 = O(1); this orresponds to aonsumption limited state. For the athode on the other hand, Æ and � are taken tosatisfy the relationship Æ � �� 1. To obtain expliit expressions in the expansion ofthe adiabati steady state solutions, we assume that � and  are omparable in sizeto �, so that � = �0� and  = 0�, where �0; 0 = O(1).4. Adiabati Relaxation. A great deal of analytial work has appeared in theliterature for the porous medium equation, whih is our Eq. (3.1a) governing the mix-ture onentration. We refer the interested reader to the reviews of Kalashnikov [10℄and Vazquez [24℄ whih provide exellent overviews of the urrent status of the theoryfor this equation. We fous our analysis on the e�et of oupling Eq. (3.1a) to (3.1b)for interspeies di�usion through the nonlinear boundary onditions. Similar systemsarise in a host of related porous media problems involving gas transport [8℄, multi-phase ows [23℄, and reation and heat transfer in porous atalysts [13℄. Analyseshave been performed for related di�usion problems [11, 18℄, but the fous in theseother works is on fored onvetion with passive di�usion. Our problem is uniquein that it is onvetively dominated, but the driving fore arises primarily throughdi�usive proesses.In what follows, we provide a detailed desription of the two-stage relaxation of theoupled system (4.4) whih is obtained from (3.1) by negleting a small transient term.We derive a Maximum Priniple for the system and show that the total onentrationC relaxes on the fast time sale to a quasi-steady state determined by boundaryvalues. The reatant mole fration R onverges to steady state on the slow saleT = Æ� , but after a rapid initial transient both reatant and total onentration maybe well desribed in terms of the solution of a single nonlinear, nonloal, adiabatiequation (4.21). Indeed, we develop expansions for the steady states of the full systemfrom an analysis of the redued adiabati equations.As a notational onveniene in this setion, � will denote a positive onstantwhih depends upon the �xed parameters but not upon Æ; �, or the initial data, whileA will denote any positive onstant independent of Æ and �, whose value may hangefrom line to line. We use k � kp to denote the Lp norm, k � k1 the L1 norm, and theH1 norm takes the form k � kH1 = [k � k22 + k ��y (�)k22℄1=2.We simplify the study of equation (3.1) and (3.2) by introduing new dependentvariables whih satisfy homogeneous boundary onditions, namelyM(�; y) = C(�; y)� (1 + Æf(R(�; 1))y) ; (4.1a)N(�; y) = R(�; y)�Rb(y); (4.1b)where f(z) = �� �zr � �z and Rb(y) = r1 � r2y; (4.2)with r1 = �(1 + �)�+ �(1 + �) and r2 = ���+ �(1 + �) . For notational onveniene we denotef(R(�; 1)) by f(R) or simply f when this presents no ambiguity. In these new variables



10 K. PROMISLOW AND J. M. STOCKIEwe have M� = C� + Æ f 0(R(1))R� (1) y: (4.3)The linear term Æ f 0(R(1))R� (1) y is formally O(Æ), and on the slow time sale itis O(Æ2) and eventually deays to zero. The inlusion of this small transient termintrodues signi�ant tehnialities into the analysis, without modifying the mainresult, namely Theorem 4.4 and Corollary 4.5 detailing the proximity of the adiabatiform (4.40) to the full solution. Moreover the numerial results (see Figure 5.4) showexellent agreement between the full system (3.1) and the adiabati form derived fromEqs. (4.4) below. We neglet the small transient term in (4.3), and the new variablessatisfy the following equationsM� = (My + Æf)2 + (M + 1 + Æfy)Myy; (4.4a)N� = (C + Æ lnC)y(Ny � r2) + ÆNyy; (4.4b)with the boundary onditionsM(0) = 0; My(1) = 0; (4.5a)Ny(0) = �N(0); Ny(1) = ��N(1): (4.5b)In the statement and proof of the Maximum Priniple, it is onvenient to introduethe quantity f1 � maxn�; � ��� �1r � �1 ���o where 1 > 0 is de�ned in the lemma below.Lemma 4.1 (Maximum and Minimum Priniple). Let � and 1 be given whihsatisfy 1 > � > 0 and r > 1 > . Then for any initial data C0; R0 2 H1 satisfyingC0(y) � �+2Æf1 and 1 � R0(y) > 0, the orresponding solutions C and R of (3.1)and (3.2) satisfyC(�; y) � � > 0; 1 � R(�; y) � 0 for all y 2 (0; 1) and � � 0: (4.6)Proof. Suppose M attains its minimum value at some smooth urve of interiorpoints y = by(�). Then dd�M(�; by(�)) =M� +My dd� by =M� , butM� = (My + Æf)2 +Myy(M + 1 + Æfby) �MyyC:It follows that any interior minimum of M is non-dereasing so long as C > 0. Theminimum of M annot be ahieved at y = 0 sine M(0) = 0 while from the boundaryondition My(1) = 0, the point y = 1 an be a minimum of M only if Myy(1) � 0,whih impliesM� (1) =Myy(1)C(1). We onlude that so long as C > 0, the minimumvalue of M is non-dereasing. Rewriting (3.1b) asR� = (C + Æ lnC)y Ry + ÆRyy;we �nd that at any interior extremal point of R we haveRy = 0 and R� = ÆRyy; hene,interior minima of R are non-dereasing and interior maxima are non-inreasing. Anexamination of the boundary onditions shows R an have a loal maximum at y = 0only if R(0) �  and a loal minimum only if R(0) � . So long as R(1) > 0 the pointy = 1 an only be a loal minimum; however R(�; 1) may derease with inreasing � ,but only to the value R(1) = 0. Indeed if R ahieves a minimum value of 0 at y = 1then the boundary onditions imply Ry(1) = 0 and hene R� (1) = ÆRyy(1) � 0. Thus



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 11we have shown that the range of R is a subset of the interval [0; 1℄. This impliesjf(R)j � f1. Moreover M(�; y) is bounded from below byminy2[0;1℄M(0; y) = miny2[0;1℄ (C0(y)� (1 + Æfy)) � �� 1 + Æf1;whih from (4.1a) yields C(�; y) �M(�; y) + (1� Æf1) � � > 0, for all � � 0.4.1. Relaxation of the Total Conentration. The slow time evolution of thetotal onentration C is ontrolled by its boundary data through the term f(R).Proposition 4.2. Let � > 0 be as given by Lemma 4.1. There exist �0 and Æ0positive, suh that for all initial data C0 satisfying kC0yk2 � �0 and all 0 < Æ < Æ0,the solution C given by (4.1) through (4.4) satis�eskC(�) � (1 + Æf(R)y)kH1 � A �e��� + Æ2�2� ; for all � � 0; (4.7)and for some � and A both positive. Moreover, the estimate (4.7) holds in the L2norm for any C0 2 H1.Proof. Multiply equation (4.4a) by M , integrate over (0; 1), integrate by partsand use the boundary onditions (4.5); there follows the equality12 dd� kMk22 = � Z 10 �M2y (1 +M + Æfy)� Æ2f2M� dy + 12ÆfM2(1): (4.8)From Lemma 4.1 we have C = M + 1 + Æfy � � > 0, while j R 10 M dyj � kMk2;and from the L1 embedding kMk1 � p2 kMk1=22 kMyk1=22 we have jM(1)j2 �2kMk2 kMyk2. Applying H�older's inequality and these bounds to (4.8) yields theinequality 12 dd� kMk22 � ��kMyk22 + Æ2f2kMk2 + Æjf j � kMk2 kMyk2: (4.9)Young's inequality applied to the last term gives the estimate12 dd� kMk22 � �12�kMyk22 + Æ2f2�kMk2 + 12�kMk22� : (4.10)All M satisfying the boundary onditions (4.5a) also verify a Poinar�e inequalitybkMk2 � kMyk2; (4.11)for some b > 0, whih together with an appliation of Young's inequality yieldsdd� kMk22 � ��b2�� Æ2f2�1 + 1��� kMk22 + Æ4f4: (4.12)Lemma 4.1 a�ords the bound jf(R)j � f1 = O(�), so that for Æ small enough thereexist A and � > 0 suh thatdd� kMk22 � �2�kMk22 +AÆ4�4: (4.13)We may integrate (4.13) in � to obtainkM(�)k2 � A(e��� + Æ2�2); (4.14)



12 K. PROMISLOW AND J. M. STOCKIEfor some A > 0 independent of Æ and �.To strengthen these deay estimates to the H1 norm, take the y derivative of(4.4a), multiply by My, integrate over (0; 1), and integrate by parts to obtain theequality 12 dd� kMyk22 =� Z 10 (M + 1 + Æfy)M2yy dy+ �23M3y + ÆfM2y + (M + 1 + Æfy)MyMyy�����10 : (4.15)From Lemma 4.1 we have C = M + 1 + Æfy � � > 0, while the boundary ondition(4.5a) at y = 0 implies M� (�; 0) = 0 and (4.4a) yields the equality Myy(�; 0) =�(My(�; 0) + Æf)2. These relations, together with the usual boundary onditions onM , yield the inequality12 dd� kMyk22 � ��kMyyk22 + ÆfM2y (0) + 13M3y (0) + Æ2f2My(0): (4.16)The L1 embedding applied to My, the bound jf j � f1 = O(�), and an appliationof Young's inequality lead to the estimate12 dd� kMyk22 � �12�kMyyk22 +A�kMyk62 + Æ2�2kMyk22 + (Æ4�4kMyk2)2=3� : (4.17)We employ Young's inequality on the last term on the right-hand side of (4.17) followedby a Poinar�e inequality kMyyk2 � bkMyk2, valid for M satisfying the boundaryonditions (4.5a), to arrive at the inequality12 dd� kMyk22 � ��14�b2 �AÆ2�2� kMyk22 +A �kMyk62 + Æ4�4� ; (4.18)If Æ is small enough, then there exists � > 0 suh that12 dd� kMyk22 � ��kMyk22 +A �kMyk62 + Æ4�4� : (4.19)For kMy(0)k2 small enough, the right-hand side of (4.19) is initially negative and� = kMyk22 deays exponentially to the small positive root, �1 = O(Æ4�4), of theequation ���1 + A(�31 + Æ4�4) = 0. From this we dedue the existene of �;A > 0suh that kMyk2 � A(e��� + Æ2�2) for all � � 0: (4.20)Sine Cy =My + Æf(R), kMyk2 may be hosen small enough if kCyk2 is small and Æis small. Thus Æ0 may depend upon �0, but �0 may be taken independent of Æ0. Theresult (4.7) follows from (4.20) and (4.1a).4.2. Relaxation of the Reatant Mole Fration. Due to the small oeÆientÆ multiplying the di�usive term in (3.1b) the solution R may initially su�er boundarylayers; but after a fast transient period, R relaxes to a smooth steady state on theslow time sale measured in T = Æ� . Unlike the total onentration C, the steadystates of R are not well desribed by the boundary terms, given by Rb in (4.2), andso we must also aount for the inuene of onvetion. To this end, we introdue



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 13the adiabati equation given below, a dynami redution of (4.4b) whih aptures itsslow relaxation. Consider the solution U toUT = F (U(T; 1))(Uy � r2) + Uyy; (4.21a)Uy(0) = �U(0); Uy(1) = ��U(1); (4.21b)where F (z) = f(z+Rb(1)). We will denote F (U(T; 1)) by F (U). The nonlinear, non-loal equation (4.21a) is derived by approximating C in (4.1b) with its quasi-steadystate value from (4.7), and then replaing N throughout with U . It is appropriate tosupplement (4.21) with the initial onditionU(T0; y) = U0(y) = R(T0=Æ; y)�Rb(y); (4.22)where T0 > 0 is spei�ed in Setion 4.2.3.We note that the onvetive term F (U)(Uy � r2) in (4.21b) appears at higherorder in Æ in the anode saling, while in the athode saling it appears at leadingorder in Æ. In this sense we say that the anode is di�usion-dominated. This is alsoreeted in the asymptotis of the steady states derived below.In the remainder of this setion we �nd the steady states of (4.21), examine theonvergene to steady state in the slow time T , and �nally show that N and U staylose for all T � T0.4.2.1. Steady States of the Adiabati Equation. The steady state � of(4.21) satis�es the equation �yy + F�y = r2F; (4.23a)�y(0) = ��(0); �y(1) = ���(1); (4.23b)where here and below F = F (�(1)). With the integrating fator eFy, one obtains thefollowing expression for � whih satis�es (4.23a) and the boundary ondition (4.23b)at y = 1,� = �1 + F�1 �r2(eF (1�y) � (1 + F (1� y)) + ��1(eF (1�y) � 1)� ; (4.24)where �1 = �(1) The boundary ondition at y = 0 yields a nonlinear equation for�1, �1 = r2 (1� eF ) + �(1 + F � eF )=F� + �eF � ��(1� eF )=F : (4.25)For the athode saling, we replae � = �0� and  = 0�, and employ a regularexpansion for �1 = �1, �1 = a1�+ a2�2 + � � � : (4.26)A straightforward alulation shows that a1 = a2 = 0 and�1 = ��2020r(1 + �0)3 �3 +O(�4): (4.27)The solution � = � given by (4.24) orresponding to the athode saling has theexpansion � = �1+O(�4), with spatially dependent terms appearing at higher order.



14 K. PROMISLOW AND J. M. STOCKIEIn the anode saling we substitute � = �0Æ and expand �1 = �a1 as�a1 = b1Æ + b2Æ2 + � � � ; (4.28)whih yields �a1 = �2�20(2 + �)2�(r � �) Æ2 +O(Æ3): (4.29)The expansion for the orresponding anode solution � = �a of (4.23) is�a = �2�20(2 + 2�y � �y2)2�(r � �) Æ2 +O(Æ3): (4.30)The expansions of the steady state solutions of (4.23) given by (4.26) and (4.29)are the leading order onvetive ontribution to the limiting states of the reatantequation (3.1b).4.2.2. Relaxation of the Adiabati Equation. We address the onvergeneof the solution U of (4.21) to the steady states � found in Setion 4.2.1 through thequantity V = U ��, whih satis�esVT = F (U)Vy + (F (U)� F (�))(�y � r2) + Vyy; (4.31a)Vy(0) = �V (0); Vy(1) = ��V (1); (4.31b)V (T0; y) = V0(y) = U0(y)��(y): (4.31)The following proposition shows that V onverges exponentially to zero. In partiularthis shows that the steady states of (4.21) are stable and unique.Proposition 4.3. For Æ and � small enough, there exists � > 0, independent ofÆ; �, and kV0kH1 , suh that the solution V of (4.31) satis�eskV kH1 � e��T kV0kH1 ; for all T � T0: (4.32)Proof. We onsider only the athode saling; the result for the anode salingfollows with only slight modi�ation to the proof.Multiply (4.31a) by V , integrate over (0; 1), and integrate the last term by parts.There results the equality12 ddT kV k22 = �kVyk22 + (F (U)� F (�)) Z 10 (�y � r2)V dy + �12F (U)V 2 + V Vy�����10 :(4.33)It is easy to see from (4.21) that the funtion U+Rb(y) satis�es the same bounds as Rin (4.6). The funtion F is Lipshitz on [0; 1℄ with onstantL = max�j��j; j��jrr � �1� =O(�). From (4.27) and (4.2) we have the estimate k�y � r2k2 � A�2 for some A > 0.These bounds and the boundary onditions (4.31b) applied to (4.33) lead to the in-equality12 ddT kV k22 =� kVyk22 +AL�3jV (1)j � kV k2+ 12 jF (U)j � (V (1)2 + V (0)2)� ��V 2(1) + �V 2(0)� : (4.34)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 15Any funtion V satisfying the boundary onditions (4.31b) obeys the Poinar�e in-equality kVyk2 � bkV k2 for some b > 0 if � > ��=(1 + �), whih learly holds sine �and � are both positive. For the boundary terms in (4.34) we use the L1 embeddingkV k1 � p2 kVyk1=22 kV k1=22 � p2=bkVyk2 and the bound jF (U)j = O(�), to obtainan inequality of the form 12 ddT kV k22 � �(1�A�) � kVyk22: (4.35)For � small enough the Poinar�e inequality applied to (4.35) implies the exponentialdeay of kV k2.To obtain bounds on kVyk2, we simplify the boundary onditions by introduingthe linear funtion �(y) = ��y(�+�) and the quantity W = Vy��V , whih satis�esDirihlet boundary onditions at y = 0 and 1. The evolution of W is governed by theequationWT = F (U) (Wy + �yV ) + (F (U)� F (�)) � (�yy � �(�y � r2)) +Wyy + 2�yVy :(4.36)From the bound kVyk2 � kWk2 + k�k1 � kV k2, we see that the exponential deay ofkWk2 and kV k2 are suÆient to imply the exponential deay of kV kH1 .Multiply (4.36) by W , integrate over (0; 1), and integrate by parts. From theDirihlet boundary onditions on W , we derive the inequality12 ddT kWk22 � �kWyk22 + (�+ �) jF (U)j � kV k2kWk2+ jF (U)� F (�)j � k�yy � �(�y � r2)k2kWk2 + 2j�yj � kWk2kV k2:(4.37)From (4.27) and (4.2) we obtain the bound k�yy � �(�y � r2)k2 � A�2 for someA > 0. The estimate on the Lipshitz onstant for F and the L1 embedding yieldthe following string of inequalitiesjF (U)� F (�)j � LjV (1)j � A�(kWk1=22 + kV k1=22 ) � kV k2; (4.38)for some A > 0. With these bounds, the Poinar�e inequality on W , and Young'sinequality all applied to (4.37), we obtain an estimate of the form12 ddT kWk22 � �12kWyk22 +AkV k22; (4.39)for some A > 0. The usual Poinar�e inequality applied to kWyk2, and the exponentialdeay of kV k2 yield the exponential deay of kWk2, and the result (4.32) follows.4.2.3. Proximity to the Adiabati Solution. The solutions C and R of equa-tions (3.1) an be well-approximated by the adiabati forms de�ned below in termsof the solution U(�; y) = U(T=Æ; y) of (4.21)Cadb(U) = 1 + ÆF (U) y; (4.40a)Radb(U) = Rb(y) + U(�; y): (4.40b)The initial data (4.22) for U is taken at time �0 = T0=Æ, where �0 is large enough thate���0 = O(Æ2�2). We may now state and prove our main analytial result.



16 K. PROMISLOW AND J. M. STOCKIETheorem 4.4. Under the assumptions of Lemma 4.1 and Proposition 4.2, inpartiular Æ and � small enough, the solutions C and R given by (4.1) through (4.4)are approximated by the adiabati forms (4.40) in the sense thatkC � Cadb(U)kH1 � A(e�k� + Æ2�2); for all � � 0; (4.41a)kR�Radb(U)kH1 � AÆ�; for all � � �0; (4.41b)for some A; � > 0.Proof. We onsider only the athode saling; the arguments for the anode salingrequire only minor modi�ations. Sine R = Rb + N where N satis�es (4.1b), weprove (4.41b) by bounding the quantity E = N � U , whose evolution is governed bythe equationE� = (C + Æ lnC)yEy + [(C + Æ lnC)y � ÆF (U)℄ � (Uy � r2) + ÆEyy: (4.42)Moreover, E satis�es the same homogeneous boundary onditions as N in (4.5b), andhas zero initial data at � = �0. In light of Proposition 4.2 we have the estimatekC � (1 + ÆF (U)y)kH1 � A �e��� + Æ2�2 + ÆjF (U)� F (N)j� : (4.43a)The funtion F is Lipshitz on the range of U andN with Lipshitz onstant L = O(�).This implies jF (U)� F (N)j � A�kEk1; (4.44)and so we �ndkC � (1 + ÆF (U)y)kH1 � A �Æ2�2 + Æ�kEk1� ; for all � � �0: (4.45)To obtain bounds on kEk2 we multiply (4.42) by E, integrate over (0; 1), andintegrate the last term by parts, from whih follows the equality12 dd� kEk22 = Z 10 �(C + Æ lnC)yEyE+ [(C + Æ lnC)y � ÆF (U)℄ � (Uy � r2)E � ÆE2y� dy � (�+ �)E2��10 :(4.46)From Proposition 4.2 we have the boundk(C + Æ lnC)yk2 � AÆjf(R)j � AÆ�; for all � � �0: (4.47)In partiular kÆ(lnC)yk2 = ÆkCy=Ck2 � AÆ2�. This inequality together with (4.45)yields k(C + Æ lnC)y � ÆF (U)k2 � kCy � ÆF (U)k2 + ÆkCy=Ck2;� AÆ�(Æ + kEk1): (4.48)We drop the negative boundary terms in (4.46) and employ the estimates (4.47),(4.48), and H�older's inequality to �nd12 dd� kEk22 � �ÆkEyk22 +AÆ��kEyk2kEk1 + (Æ + kEk1) � (kUyk2 + r2) � kEk1�:(4.49)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 17Resale time to T = Æ� , use the L1 embedding and Poinar�e inequality on E, andYoung's inequality on terms linear in E to obtain an estimate of the formddT kEk22 � ��12 �A�(kUyk22 + 1)� kEyk22 +AÆ2�2(kUyk22 + 1); (4.50)for some A > 0. Proposition 4.3 implies that kUyk2 is uniformly bounded, independentof Æ for T � T0. For � small enough it follows from Poinar�e's inequality that thesolution E of (4.42), with zero initial data at T = T0 satis�eskEk2 � AÆ� for all T � T0: (4.51)To extend these results to theH1 norm, we introdue the quantityfW = Ey��E whihsatis�es Dirihlet boundary onditions at y = 0 and y = 1. Sine fW� = E�y��E� , wemay ombine (4.42) with its y derivative to obtain the following evolution equationfor fW ,fW� =(C + Æ lnC)yyEy + (C + Æ lnC)y(fWy + �yE) + ((C + Æ lnC)y � ÆF (U))y (Uy � r2)+ ((C + Æ lnC)y � ÆF (U)) � (Uyy � �Uy + �r2) + ÆfWyy + 2Æ�yEy: (4.52)Multiply (4.52) by W , integrate over (0; 1), and integrate by parts on the �rst, third,�fth, and sixth terms on the right-hand side, to obtain the equality12 dd� kfWk22 = Z 10 n(C + Æ lnC)y(fWfWy + �yEfW � (EyfW )y)� ((C + Æ lnC)y � ÆF (U)) � �(Uy � r2) � (�fW +fWy)�o dy� ÆkfWyk22 � 2Æ�y Z 10 EfWydy: (4.53)The integrand of the �rst integral on the right-hand side of (4.53) is omprised of twoterms. The �rst fator of the �rst term is estimated by (4.47), while the seond fatoris dominated by the term (EyfW )y. We estimatek(EyfW )yk2 � kEyyk2kfWk1 + kEyk1kfWk2; (4.54)and from the triangle inequality, the L1 embedding applied to, E, and Poinar�eapplied to W it follows thatkEyyk2 + kEyk1 �A(kfWyk2 + kEk2); (4.55a)kEyk2 + kEk1 �A(kfWk2 + kEk2): (4.55b)The inequalities (4.54) and (4.55), together with an appliation of Young's inequality,lead to the estimate k(EyfW )yk2 � A(kfWyk22 + kEk22): (4.56)The �rst fator of the seond term of the integrand of (4.52) is bounded by the estimate(4.48). From arguments similar to those used to derive (4.56), we �nd an estimate onthe seond fator of the seond term of the formk(Uy � r2) � (�fW +fWy)k2 � A (kUyk2 + 1) � kfWyk2: (4.57)



18 K. PROMISLOW AND J. M. STOCKIEThen, resaling time by T = Æ� , and applying H�older's inequality and the estimatesgathered above, we obtain an inequality of the form12 ddT kfWk22 �� kfWyk22 +A��kfWyk22 + kEk22+ (Æ + kfWk2 + kEk2) � (kUyk2 + 1) � kfWyk2�: (4.58)We employ the bound kEk2 � AÆ� from (4.51) and use Poinar�e on fW and Young'sinequality on all terms linear in kfWk2 to ombine the fWy dependent terms on theright-hand side of (4.58) into one term quadrati in kfWyk2. For � small enough, thesign of this later term is negative, and applying Poinar�e to fW we obtain an inequalityof the form ddT kfWk22 � �2�kfWk22 +AÆ2�2(kUyk22 + 1); (4.59)for some � and A positive and independent of Æ and � small enough. Sine kUyk2 isuniformly bounded for T � T0 and fW has zero initial data at T = T0, integration of(4.59) over the time interval (T0; T ) yields the boundkfW (T )k2 � AÆ�; for all T � T0; (4.60)and for some A > 0 independent of � and Æ. The result (4.41b) follows immediatelyfrom (4.51), (4.60), and the inequality (4.55b), while (4.41a) follows from (4.41b),(4.45), and Proposition 4.2.4.3. Limiting states of the Anode and Cathode Salings. Theorem 4.4indiates that the steady state solutions of the adiabati equations (4.21), given forthe anode and athode salings in Setion 4.2.1, desribe the limiting behavior ofthe full system as � ! 1. Indeed from Theorem 4.4 and Proposition 4.3 we haveimmediatelyCorollary 4.5. Under the assumptions of Theorem 4.4, for the steady statesolution � of (4.23) lim sup�!1 kC � Cadb(�)kH1 � AÆ2�2; (4.61a)lim sup�!1 kR�Radb(�)kH1 � AÆ�: (4.61b)For the anode saling, using � = �a from (4.30) and the de�nition of Cadb andRadb from (4.40), it is straightforward to obtain an expansion for the limiting statesof total onentration and reatantCadb(�) = 1���0 �yr � �� Æ2 +O(Æ3); (4.62a)Radb(�) =  � �0(y + 1=�)Æ +O(Æ2); (4.62b)valid to within the error of Corollary 4.5. More importantly, from (3.3) we anapproximate asymptotially the net ux N1 of reatant into the atalyst layer aty = 1 as N1 = �0rr � � Æ2 +O(Æ3): (4.63)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 19In dimensional variables this expression takes the formNd1 = C1rH � C1 + C2(1� �)C1 + C2�+ �C2H O(Æ3); (4.64)where we observe from Table 3.1 that �C2=H � O(1:0 mol=m2 � s). In the anodesaling, the transfer oeÆient rH is the limiting element (i.e., rH � r0), and we �ndthat the ux depends only upon rH , the return oeÆient �, and the hannel reatantonentration C1.For the athode saling, using the expression � = � = �1 + O(�4) from (4.27)we expand the limiting states in � to �ndCadb(�) = 1� ��00(1 + �0)r ��2 � �0(r � 0�)(1 + �0)r �3� yÆ +O(�4Æ; Æ2); (4.65a)Radb(�) = �001 + �0 ����y � 11 + �0� �2 + �0(1 + �0)r �ry � r � 0�1 + �0 � �3�+O(�4):(4.65b)The net ux for the athode takes the dimensionless formN1 = �001 + �0 ��2 � �0(r � 0�)(1 + �0)r �3� Æ +O(�4Æ; Æ2): (4.66)In dimensional variables, we may express the ux in the appealing formNd1 = C1re �1 + C1�r0(C1 + C2)(r0 + rH ) � HDre�+ �C2H O(�4Æ; Æ2); (4.67)where the e�etive transfer oeÆient, re � (1=r0 +1=rH )�1, is the reiproal sum ofthe individual transfer oeÆients r0 and rH .The net ux of reatant depends only upon the transfer rates at top and bottom,onentrations in the hannel, return oeÆient �, di�usivity, and GDL thikness. Thepermeability is not evident here, ourring at higher order in the expansion of Nd1 .Moreover, the di�usivity and GDL thikness our only through the dimensionlessombination HD re = O(�), whih is a small orretion to the leading order term. Weexpet the di�usivity to appear at �rst order in a two-dimensional problem with owhannels if the hannel aspet ratio L=L is not small.Remarks: (1) We an reover the anode result to leading order by taking rH � r0and expanding (1 � �)�1 � 1 + � + : : : . (2) For the athode � < 0 and formula(4.67) demonstrates the sub-linear response of ux (and hene also urrent density) toinreasing O2 hannel onentration C1. This e�et is present in our one-dimensionalmodel and is assoiated with onvetive terms.5. Numerial Comparisons. We now give a brief overview of the numerialmethod we employed for solving the two-dimensional GDL equations. A ompletedesription of the ode, inluding a study of onvergene, stability and parametersensitivities, is provided in [21℄.The dimensional system (2.2){(2.6) is disretized in spae using a �nite volumeapproah, whih is a natural hoie in view of the mass onservation properties ofthe ontinuous problem. The retangular domain is divided into a uniform, nx � nymesh with grid spaings �xd = L=nx and �yd = H=ny (the supersript \d" denotes



20 K. PROMISLOW AND J. M. STOCKIEdimensional length measurements to avoid onfusion with the nondimensional gridspaing �y = 1=ny). The onentrations C and C1 and pressure P are ell-averagedquantities loated at ell enters, while the vetor-valued veloities and uxes arede�ned as edge averages. Centered di�erenes are used to approximate derivativesso that the resulting disretization is seond order aurate in the grid spaing. Theboundary onditions are also approximated by entered di�erenes, with \�titiousells" being used for points lying outside the domain. Solution values at �titiouspoints are approximated using seond-order extrapolation from interior points so thatthe overall sheme retains seond order auray up to the boundary.After spatial disretization, we are left with a large, time-dependent, nonlinearsystem of ordinary di�erential equations to solve at eah grid point. Furthermore,the system is sti�, as indiated by the presene of two widely disparate time salesin our onvergene analysis of Setion 4. Consequently, we have hosen to use thesti� di�erential{algebrai system solver Dassl [15℄ to integrate the solution in time.Dassl uses a variable-order BDF method with adaptive time-stepping whih providesan aurate and eÆient omputation of the solution, as outlined in the next setion.5.1. Sti�ness. The presene of a fast and slow time sale, disussed in the pre-vious analysis, suggests a very sti� problem for whih expliit time-stepping methodsan be highly ineÆient. A small step is required for aurate resolution of initial,rapidly-varying transients, but is unjusti�ed at later times when the transients havedied out and the solution relaxes adiabatially to steady state on the slow time sale.We have implemented an expliit, forward Euler version of the ode, whih for a typi-al GDL simulation on a 34�24 grid requires over 109 time steps to reah steady state(orresponding to a �xed time step of �t � 10�9 s) and whih was quite omputa-tionally intensive. In ontrast, the impliit, variable time-stepping method in Dasslprovided a dramati improvement in performane. Clearly, the sti�ness in the GDLproblem is severe enough that use of an impliit method is required for pratiality.This situation an only be further ompliated in a larger oupled system for theentire fuel ell.The severity of the time step restrition is due primarily to the porous mediumequation whih de�nes the veloity as a derivative of the onentration, so that theonvetive terms in Eqs. (2.7) atually appear as di�usive terms. The time steprestrition for di�usive problems takes the form �t � (�yd)2=(2D), while the preseneof a onvetive term usually introdues a CFL-type restrition of the form �t ��yd=Umax. For our GDL model however, the onvetive terms appear as seondderivatives multiplied by a oeÆient (�C) or (�C1). The time step restrition forour problem, written in dimensional variables, has the form�t � (�yd)22 min� 1D; 1�C ; 1�C1�: (5.1)With the anode parameter values from Table 3.1 (and ny = 24 so that �yd �0:002 m), this time step restrition beomes �t < 8 � 10�9, with a limit of only�t < 6 � 10�6 arising from the di�usion term. Similar values are obtained at theathode. The stability restritions arising from this simple linear argument give avery lose math to the time steps required for expliit omputations of the full fuelell system. The redued, adiabati equation (4.21) on the other hand, has a timestep limited by di�usion only, whih translates into a thousand-fold speed-up for anexpliit method.



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 21We an also rewrite the time step restrition in terms of non-dimensional variablesfor both the fast and slow time sales � = (�C=H2) t and T = (D=H2) t:�� � (�y)22 min�1Æ ; 1; 1� (fast) and �T � (�y)22 min�1; Æ; Æ� (slow):Realizing that Æ � 1 and  . 1, it is lear that these onditions redue to �� �(�y)2=2 and �T � Æ(�y)2=2, learly indiating that di�usive e�ets only limit theslow time sale T .5.2. Validation of 1D Steady State Results. In this setion, we presentnumerial results that validate the analytial formulae for the steady state solutions,and the adiabati portion of the onvergene. The omputations are performed on a\quasi-1D" problem with the hannel and solid wall at the lower boundary replaedby a uniformly porous surfae, whih orresponds to taking L = L in the notationintrodued in Fig. 2.2. Beause of the resulting symmetry in the domain and boundaryonditions, the solution is independent of x and so that a vertial, mid-hannel ross-setion of the omputed results an be readily ompared to the analytial solution. Allresults that follow are reported in non-dimensional variables, exept where otherwisenoted.We begin by omparing the omputed mixture onentration and reatant molefration with the \exat" steady state obtained numerially from the 1D steady stateversion of (3.1), and also with the asymptoti solution from either of Eqs. (4.62)or (4.65). The parameters used for both eletrodes are listed in Table 3.1. The resultsfor the anode and athode are presented separately in Figs. 5.1 and 5.2 respetively,from whih it is lear that both analytial results math extremely well with theomputations. Furthermore, all urves exhibit the expeted linear (or near-linear)dependene on y that is observed in omputations in higher dimensions.
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24 K. PROMISLOW AND J. M. STOCKIEimpliations, being related to the reatant onsumption rate and thus also to urrentdensity, whih is a primary measure of fuel ell performane. Fig. 5.6(a) ontainsplots of the top wall ux as a funtion of x for aspet ratios between 0:2 and 1:0,with the domain length �xed at L = 1:0. The asymptoti ux from (4.64) is plottedas a dashed line for omparison purposes. While there is signi�ant variation in theoverall ux, the peak ux at mid-hannel remains virtually �xed and the asymptotiapproximation to the peak ux is aurate to within an error of 2%, even when thehannel aspet ratio is as small as 0.4. It is only when the aspet ratio is reduedbelow 0.4 that an appreiable drop in maximum ux appears.
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