
ADIABATIC RELAXATION OF CONVECTIVE-DIFFUSIVE GASTRANSPORT IN A POROUS FUEL CELL ELECTRODE�KEITH PROMISLOWy AND JOHN M. STOCKIEzAbstra
t. The gas di�usion layer in the ele
trode of a proton ex
hange membrane fuel 
ell is ahighly porous material whi
h a
ts to distribute rea
tant gases uniformly to the a
tive 
atalyst sites.We develop a mathemati
al model for 
ow of a multi
omponent mixture of ideal gases in a highlyporous ele
trode. The model is 
omprised of a porous medium equation for the evolution of the gasmixture and a singularly perturbed 
onve
tion{di�usion equation for the interspe
ies mass transferwithin the mixture. The equations are 
oupled through nonlinear boundary 
onditions whi
h des
ribe
onsumption of rea
tants and generation of end produ
ts at the 
atalyst layer. Through a twotime-s
ale analysis, we derive a single redu
ed equation whi
h 
aptures the slow, di�usively-driven,adiabati
 relaxation to the steady state at ea
h ele
trode. The asymptoti
 results are 
ompared withone- and two-dimensional 
omputations of the full system.Key words. multi
omponent gas, 
onve
tion-di�usion, porous medium, multi-s
ale analysis,singular perturbation, fuel 
ell ele
trode.AMS subje
t 
lassi�
ations. 35B40, 35K55, 76R99, 76S051. Introdu
tion. In many industrial and biologi
al appli
ations, transport ofrea
tant gases takes pla
e a
ross a thin layer of porous material. Here we 
onsiderthe ele
trodes of a proton ex
hange membrane (or PEM) fuel 
ell, in whi
h rea
tantgases are distributed to 
atalyst sites through a sheet of 
arbon �ber paper known asthe gas di�usion layer or GDL. The 
onsumption of rea
tant gases (H2 and O2) andgeneration of end produ
ts (H2O) 
reate gradients in 
omponent 
on
entration a
rossthe thi
kness of the paper. The resulting 
omponent di�usion engenders a 
onve
tiveDar
y's law 
ow inside the porous layer, whi
h intera
ts with the di�usive motion.The 
onve
tive time s
ales are mu
h faster than di�usive ones in the full nonlinearproblem, and di�usion represents a singular perturbation to 
onve
tion. Indeed ourmodel is distinguished from similar multi
omponent problems in groundwater trans-port by this s
aling, arising from the thinness of the domain and the high porosityof the GDL. We 
apture the 
ompetition between 
onve
tive and di�usive e�e
ts,demonstrating that the slow transients related to the relaxation of these nonlinearequations are a

urately des
ribed by a single di�usion equation with a non-lo
al
onve
tive term.The 
athode and the anode sides of a PEM fuel 
ell are 
hara
terized by distin
ts
alings, ea
h possessing a nonlinearly stable, steady state solution. We derive asymp-toti
 expressions for the impa
t of 
onve
tion on the net rea
tant delivered a
ross thegas di�usion layer, and provide a detailed des
ription of the relaxation onto the steadystates. On the fast time s
ale a 
onve
tive transient governs the 
on
entration gradi-ent of the overall gas mixture. On the slow, di�usive time s
ale the 
onve
tive 
owrelaxes adiabati
ally to its di�usively-driven steady state. In the anode s
aling, theadiabati
 equations governing the rea
tant 
on
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2 K. PROMISLOW AND J. M. STOCKIEwhile in the 
athode s
aling a nonlinear, nonlo
al 
onve
tion term appears at leadingorder.Our analysis should be of parti
ular interest to fuel 
ell resear
hers, a�ording asubstantial simpli�
ation of a 
omplex, nonlinear pro
ess. Most e�orts at modelingand simulating fuel 
ells in the literature to date have fo
used on the entire fuel 
ell,in
luding 
harge, heat and mass transport. Despite the 
omplexity of these 
oupledmodels, extensive one- and two-dimensional numeri
al simulations yield 
on
entrationpro�les that vary linearly through the thi
kness of both the GDL and PEM [4, 9, 19,26℄. The redu
ed adiabati
 model developed herein 
aptures pre
isely this e�e
t (referto Eqs. (4.21) and (4.40)). Moreover, by deriving equations that govern the adiabati
relaxation onto the steady states, we 
an distinguish the signi�
ant dynami
s of thesystem, in
luding intermediate transients, while eliminating the sti�ness whi
h mayplague numeri
al simulations of the fuel 
ell system.Our modeling approa
h fo
uses solely on the GDL, de
oupling ea
h ele
trode fromthe rest of the fuel 
ell. This permits 
lassi�
ation of di�erent operational regimesinside the GDL based on the boundary 
onditions and parameters whi
h mimi
 theremainder of the fuel 
ell. Indeed, previous modeling e�orts have fo
used on theproton ex
hange membrane, despite experimental studies whi
h strongly link fuel
ell performan
e to geometry and material 
omposition of the porous gas di�usionlayer [2, 6℄.In the next se
tion, we dis
uss the physi
al assumptions in our GDL model andderive equations of mass transport. One of the key aspe
ts in the model is the parame-ters whi
h appear in the boundary 
onditions; these des
ribe the operating 
onditionswithin the fuel 
ell. Se
tion 3 presents the derivation and s
aling of the equations andboundary 
onditions. The di�erent s
alings asso
iated with the anode and 
athodeoperation are of primary importan
e in the non-dimensionalization pro
edure. Theanalysis of a one-dimensional version of the GDL model is presented in Se
tion 4,in
luding derivation of the adiabati
 equation and analysis of the nature of the 
on-vergen
e of the full system to steady state. The analyti
al results are veri�ed bynumeri
al experiments in Se
tion 5 and 
on
lusions are drawn regarding the appli
a-bility of the model to two-dimensional geometries that arise in fuel 
ells.2. Model Derivation.2.1. Fuel Cell Overview. A 
ross-se
tion of a PEM fuel 
ell, depi
ting themajor 
omponents, is shown in Fig. 2.1. The membrane{ele
trode assembly, or MEA,is sandwi
hed between two graphite plates (shaded in the diagram at left) into whi
hare et
hed 
ow 
hannels for oxygen gas at the 
athode (top) and hydrogen at theanode (bottom). Inside the 
hannels, a pressure gradient initiates the 
ow of gases,while 
onsumption of rea
tants and generation of end produ
ts lead to variations in
omponent 
on
entrations. We introdu
e a 
oordinate system in whi
h x denotesdistan
e along the lateral dire
tion in the MEA, y is measured along the height ofa 
hannel and through the thi
kness of the MEA, and z denotes distan
e along thelength of a 
ow 
hannel.In the middle of the 
ell is a proton ex
hange membrane or PEM, 
omposed of apolymer material, whi
h is permeable to small, positively-
harged ions. On ea
h sideof the PEM is atta
hed a layer of 
arbon �ber paper, 
alled a gas di�usion layer orGDL. The boundary between the PEM and GDL is loaded with a platinum 
atalystthat fa
ilitates the rea
tions. The ele
tri
 
urrent in a fuel 
ell is derived from thetwo rea
tions listed at the right of Fig. 2.1. Hydrogen ions generated at the anode
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Fig. 2.1. A proton ex
hange membrane fuel 
ell and its 
omponent parts. On the left is a
ross-se
tional view of the 
ell, showing the MEA sandwi
hed between the oxygen and hydrogen 
ow
hannels. The in-
hannel gas 
ow is dire
ted normal to the page. On the right is an expanded viewof the MEA. The rea
tion o

urring at ea
h ele
trode is listed on the far right, along with the 
owof ele
trons generated when the anode and 
athode are linked in an external 
ir
uit.
atalyst layer migrate a
ross the PEM, where they rea
t with oxygen gas at the upper
atalyst layer to produ
e water vapor.2.2. Geometry and Assumptions. We fo
us our attention on the GDL forwhi
h we 
onsider a two-dimensional 
ross-se
tion, labeled 
 in Fig. 2.2. The lower
III
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cFig. 2.2. Dimensions of the model domain 
: length (L), GDL thi
kness (H), and 
hannelwidth (L
). The boundary 
omponents are identi�ed with Roman numerals I{IV.boundary of 
, at y = 0, represents the interfa
e between the GDL and either thegraphite plate or an open, gas-�lled, 
ow 
hannel. The upper boundary, at y = H ,
orresponds to the 
atalyst layer separating the GDL and the PEM. The transport ofions and water within the MEA as well as the 
onve
tive 
ow within the gas 
hannelswill not be modeled here. The 
oupling of the GDL to the rest of the fuel 
ell,in
luding su
h e�e
ts as variation in rea
tant 
on
entration along the length of the
ow 
hannel, nonuniformity of 
omponent 
on
entrations in the 
hannel, boundarylayers at the porous GDL{
hannel interfa
e, and disso
iation rates at the 
atalyst



4 K. PROMISLOW AND J. M. STOCKIElayer will be a

ounted for through the boundary 
onditions.The 
hannel gases are 
omprised of many spe
ies; indeed the O2 
ow is typi
allyambient air with signi�
ant amounts of nitrogen and water vapor. Proper modelingof di�usive e�e
ts requires the Maxwell{Stefan equations [12℄, however we substan-tially redu
e the te
hni
al 
omplexity of our analysis by employing Fi
k's model ofdi�usion. This approximation introdu
es only small quantitative di�eren
es as indi-
ated by our preliminary 
al
ulations. We gather below the prin
iple assumptionsand simpli�
ations we make in our model:� Our model is isothermal and does not in
lude transport of 
harge and heat.While these e�e
ts are important to overall fuel 
ell operations (and parti
-ularly water management), they do not have a leading order e�e
t on the
onve
tive-di�usive transport of rea
tants.� We assume all water vapor remains in the gas phase.� All non-rea
ting gas spe
ies (e.g., N2 on the 
athode side) have 
onstant molefra
tions.� The inlet-to-outlet pressure drop in the 
hannel may engender a small z{
omponent in the GDL 
ow velo
ity whi
h we assume to be uniform. Ourfo
us is on the x{ and y{
omponents of the 
ux.� All rea
tants are immediately 
onsumed upon rea
hing the PEM, so that thelimiting fa
tor is mass transport in the GDL.� External body for
es su
h as gravity 
an be negle
ted.2.3. Governing Equations. Models for 
onve
tive{di�usive gas transport inporous media have been developed for appli
ations arising in a wide range of �eldsin
luding ele
tro
hemistry [13℄, 
ow in insulating materials [25℄, and groundwatertransport [1℄, to name a few. The standard approa
h is to 
ouple a mass transportequation for the mixture (typi
ally Dar
y's Law or some appropriate modi�
ationthereof) with an equation governing inter-
omponent di�usion within the mixture.Di�usive transport is frequently modeled using Fi
k's Law, whi
h is the approa
htaken here. However, Fi
k's Law is stri
tly valid only for binary mixtures, and for somemixtures of three or more 
omponents, the Maxwell{Stefan equations are required toobtain physi
ally reprodu
ible results [12℄.Similar models have appeared in the fuel 
ell 
ontext, in whi
h equations des
rib-ing multi
omponent gas 
ow in the GDL are 
oupled with equations for heat and
harge transport o

urring in the other fuel 
ell 
omponents. With the importantex
eption of the boundary 
onditions, the GDL model we develop below is similar tothat in [9℄ or [26℄.We present the governing equations for the gas mixture, des
ribed by the 
on
en-trations C1, C2, and C3. We denote by C1 the 
on
entration of rea
tant gas, whi
h isH2 on the anode side and O2 at the 
athode. At both anode and 
athode, C2 refersto water vapor 
on
entration, while C3 denotes any non-rea
ting gases, prin
ipallyN2 on the 
athode side and CO2 on the anode side. We assume that the non-rea
tinggas 
on
entration C3 is a �xed proportion, (1 � 
r), of the total gas 
on
entration,C = C1 + C2 + C3. This assumption is supported by multi-
omponent numeri
alsimulations whi
h show a variation in the mole fra
tion C3=C of about 2% at steadystate, 
ompared to 20% variation for C1=C and C2=C. Thus we may writeC1 + C2 = 
rC; (2.1)where the 
onstant 
r is determined by 
on
entration values inside the 
hannel. Inwhat follows, (2.1) will be used to eliminate the variable C2 in favor of the total
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on
entration C.The 
onservation of mass for the gas mixture takes the form�C�t +r � (CU ) = 0; (2.2)where U is the molar-averagedmixture velo
ity. The transport of individual rea
tantsis signi�
antly a�e
ted by inter-
omponent di�usion. The 
onservation law for therea
tant 
on
entration takes the form�C1�t +r � (C1U + J1)| {z }N1 = 0; (2.3)where J1 is the di�usive 
ux (measured relative to the molar-averaged velo
ity) andN1 is the total (
onve
tive plus di�usive) 
ux of the �rst 
omponent.The di�usive 
ux is given by Fi
k's law, whi
h states that the 
ux of one 
om-ponent relative to the molar averaged velo
ity is proportional to the gradient in molefra
tions via J1 = �CDr�C1C � ; (2.4)where D is the di�usivity. There are several other equivalent forms of Fi
k's Law,whi
h vary depending on the averaging pro
edure used to obtain a mixture velo
ity [5,22℄. The form of Eq. (2.4) is tied to our 
hoi
e of a molar-averaged velo
ity, whi
his 
onsistent with the treatment of 
ow of gases in porous media by others in theengineering literature [7, 20℄. Dar
y's Law gives the mixture velo
ity in terms of thepressure P as U = � K"p�rP; (2.5)where � is the vis
osity of the mixture, and the GDL material is 
hara
terized bythe parameters K (permeability) and "p (porosity). The 
oeÆ
ients K and D area
tually tensor quantities be
ause the �brous GDL material is anisotropi
; however,we will assume for the sake of simpli
ity that the GDL is isotropi
, taking K and Das s
alars. The validity of Dar
y's law is subje
t to the assumptions that boundarye�e
ts are negligible, and that the gas velo
ity is small enough that inertial terms 
anbe negle
ted [17℄. The latter is 
learly satis�ed in the GDL sin
e the pore Reynoldsnumber is small (i.e., Rep = �UpK=�� 1), and the boundary layer between 
hanneland GDL has a thi
kness on the order of one pore width [9℄.The �nal relation needed to 
lose the system is a 
onstitutive equation for the gasmixture. Assuming the gas to be ideal and adiabati
, the pressure depends linearlyon the 
on
entration, P = CRT ; (2.6)where R is the universal gas 
onstant and T is the temperature. While there aresigni�
ant temperature variations within a fuel 
ell, we will take the system to beisothermal, an assumption that is 
ommonly made in other fuel 
ell models ([26℄ and[4℄, for example).



6 K. PROMISLOW AND J. M. STOCKIEEqs. (2.2){(2.6) together form a 
oupled system of nonlinear PDEs for the 
on-
entrations C and C1. This is most easily seen by substituting expressions (2.4){(2.6)into the 
onservation Eqs. (2.2) and (2.3) to obtain�C�t �r � [�CrC℄ = 0; (2.7a)�C1�t �r � ��C1rC +DCr�C1C �� = 0; (2.7b)where � := KRT"p� is a 
onstant. The relative importan
e of 
onve
tion and di�usion,determined by the parameters � and D, is 
riti
al in determining the behavior ofsolutions. We will dis
uss this issue and the importan
e of an appropriate res
alingof the equations in Se
tion 3.2.4. Boundary Conditions. The boundary 
onsists of four distin
t 
ompo-nents, labeled I{IV in Fig. 2.2. We derive the boundary 
onditions on ea
h of the fourse
tions as follows:I. The impermeable boundary at y = 0 between the graphite plate and theGDL where there 
an be no 
ux of rea
tant, either by di�usion or 
onve
tion, inthe dire
tion normal to the wall. This translates into the following 
onditions on they-
omponent of the 
uxes Jy1 = 0 and Ny1 = 0;whi
h are equivalent to the following Neumann 
onditions on the 
on
entrations��y �C1C � = 0 and �C�y = 0: (2.8)II. The permeable boundary at y = 0, where the mixture 
on
entration immedi-ately inside the GDL is taken to be identi
al to that in the 
hannel:C = C; (2.9a)that is, we assume the pressure to be uniform throughout the depth of the 
hannel.We assume further that the di�usive 
ux of the �rst 
omponent a
ross the 
han-nel/GDL interfa
e is proportional to the di�eren
e in 
on
entrations on either side:Jy1 = r0(C1 � C1):Here C1 is a depth-averaged 
hannel 
on
entration and r0 
an be interpreted as amass transfer 
oeÆ
ient. Using (2.9a), this expression 
an be rewritten entirely interms of the 
on
entrations as��y �C1C � = � r0DC (C1 � C1): (2.9b)An estimate for r0 
an be obtained from the Sherwood number, Sh = r0Ld=D,where Ld is a 
hara
teristi
 length that we take proportional to the 
hannel depth.The Sherwood number is typi
ally obtained experimentally and values are availablein the literature (see [3℄ and the referen
es therein).



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 7III. The permeable boundary at y = H , between the 
atalyst and GDL, where asimilar 
ondition to (2.9b) is appliedJy1 = rH (C1 � 0):The mass transfer 
oeÆ
ient rH models the rea
tions and ele
tro
hemistry takingpla
e in the 
atalyst region. It is tuned to mat
h net 
ux to experimental valuesdetermined from averaged 
urrent densities. We 
onsider the 
atalyti
 rea
tion to beinstantaneous and irreversible, whi
h leads to a 
hoi
e of zero 
on
entration in the
atalyst layer. Using the de�nition of the di�usive 
ux, the 
ondition above 
an berewritten as ��y �C1C � = �rHC1DC : (2.10a)The se
ond boundary 
ondition on III arises from a return 
ux of the end produ
t
omponent whi
h is proportional to that of the rea
tantNy2 = (� � 1)Ny1 :The parameter � is a return 
oeÆ
ient that determines the dire
tion and magnitudeof the produ
t H2O 
omponent 
ux. We assume that at steady state the majorityof water vapor manufa
tured at the 
athode 
atalyst layer remains on the 
athodeside. Sin
e two water mole
ules are produ
ed by the rea
tion for every O2 mole
ule
onsumed, but only one H2O for every H2 mole
ule, we take�1 � � < 0 at the 
athodeand 0 < � � 1 at the anode. Indeed, taking � = �1 at the 
athode 
orresponds to thesituation where all water produ
ed remains at the 
athode in the vapor state, while�1 < � 
orresponds to either some loss of water vapor to the liquid state or transferof water vapor to the anode. The boundary 
ondition above may be rewritten as aNeumann 
ondition involving the 
on
entrations:�C�y = � �rHC1� (
rC � �C1) : (2.10b)IV. The open side boundaries (x = 0 and x = L), where we assume that thesolution is periodi
 in x.3. Non-Dimensionalization. We now seek to identify the me
hanisms thatdi
tate the balan
e between 
onve
tion- and di�usion-indu
ed 
uxes, and the di�eringtime s
ales on whi
h the two 
uxes operate. The units and approximate magnitudeof ea
h of the parameters appearing in the problem are listed in Table 3.1. In theremainder of this paper, we use the dimensionless variables obtained by s
aling C byC, x and y by H , and introdu
ing the res
aled \
onve
tive time", � = (�C=H2) t,and rea
tant mole fra
tion, R = C1=C. With these de�nitions, we arrive at thedimensionless equations C� �r � (CrC) = 0; (3.1a)CR� � CrC � rR � Ær � (CrR) = 0: (3.1b)The new parameter Æ = D�C � 1
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an be interpreted as the re
ipro
al of a P�e
let number (i.e., Æ � Pe�1). It representsthe ratio of the 
onve
tive (H2=�C) and di�usive (H2=D) time s
ales, and de�nesthe slow time variable, T = Æ� , that appears in the analysis of the adiabati
 equationin Se
tion 4. We have in (3.1) a porous medium equation for the 
on
entration anda singularly perturbed 
onve
tion{di�usion equation for the rea
tant.For simpli
ity we study a one-dimensional verti
al sli
e, shaded in Fig. 2.2, thatextends from the 
hannel at y = 0 to the membrane at y = 1. The relevant boundary
onditions are (2.9) and (2.10). Physi
ally, we would expe
t that this problem isa reasonable approximation to the two-dimensional problem when the 
hannels arevery wide, so that L
=L � 1. Introdu
ing the dimensionless parameters � = HrH=D,� = Hr0=D and 
 = C1=C, the boundary 
onditions be
omeC(0) = 1; Cy(1) = ��Æ �R(1)
r � �R(1) ; (3.2a)Ry(0) = ��(
 �R(0)); Ry(1) = ��R(1): (3.2b)These are supplemented with initial 
onditionsC(0; y) = C0(y); R(0; y) = R0(y): (3.2
)For later referen
e we introdu
e the dimensionless net 
ux of rea
tantN1 = �CRrC � ÆCrR; (3.3)whi
h is related to its dimensional 
ounterpart by the expression Nd1 = N1 � �C2=H .Typi
al values of the parameters are listed in Table 3.1 for both physi
al and non-dimensional quantities. Parti
ular attention should be paid to r0 and rH , sin
e theTable 3.1Parameter values (in 
gs units) used for the GDL model.Parameter Anode (H2) Cathode (O2)Domain: H (GDL thi
kness, 
m) 0:05 0:05L (domain width, 
m) 1:0 1:0L
 (
hannel width, 
m) 0:5 0:5Gas properties: � (
onve
tion, 
m5=s �mol) 3:24 � 107 1:85� 107D (di�usivity, 
m2=s) 0:29 0:066C (
on
entration, mol=
m3) 3:475 � 10�5 3:475 � 10�5r0 (bottom transfer rate, 
m=s) 3:0 0:20rH (top transfer rate, 
m=s) 0:005 0:0625Time s
ales: t=� = H2=�C (fast time, s) 2:2� 10�6 3:9� 10�6t=T = H2=D (slow time, s) 0:0086 0:038Nondimensional Æ = D=�C 0.00026 0.00010quantities: � = HrH=D 0.00086 0.047� = Hr0=D 0.52 0.15
 = C1=C 0.80 0.21
r = (C1 + C2)=C 0.90 0.31{0.411� (return 
oeÆ
ient) 0:99 �1:01The range in values for 
r represents a variation in the water vapor mole fra
tion from inlet tooutlet as the rea
tant gas is 
onsumed on the 
athode side.
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e in magnitude betwen the two mass transport 
oeÆ
ients lends support tothe separate s
alings for anode and 
athode boundary 
onditions. The quantitiesD=rH and D=r0 are length s
ales over whi
h di�usion operates for a given masstransport 
oeÆ
ient (or a given 
onsumption). Thus, � and � are measures of theratio of di�usive length s
ale to the thi
kness of the GDL. For the anode, we haveÆ � 1 and �x � as a multiple of Æ via � = �0Æ, with �0 = O(1); this 
orresponds to a
onsumption limited state. For the 
athode on the other hand, Æ and � are taken tosatisfy the relationship Æ � �� 1. To obtain expli
it expressions in the expansion ofthe adiabati
 steady state solutions, we assume that � and 
 are 
omparable in sizeto �, so that � = �0� and 
 = 
0�, where �0; 
0 = O(1).4. Adiabati
 Relaxation. A great deal of analyti
al work has appeared in theliterature for the porous medium equation, whi
h is our Eq. (3.1a) governing the mix-ture 
on
entration. We refer the interested reader to the reviews of Kalashnikov [10℄and Vazquez [24℄ whi
h provide ex
ellent overviews of the 
urrent status of the theoryfor this equation. We fo
us our analysis on the e�e
t of 
oupling Eq. (3.1a) to (3.1b)for interspe
ies di�usion through the nonlinear boundary 
onditions. Similar systemsarise in a host of related porous media problems involving gas transport [8℄, multi-phase 
ows [23℄, and rea
tion and heat transfer in porous 
atalysts [13℄. Analyseshave been performed for related di�usion problems [11, 18℄, but the fo
us in theseother works is on for
ed 
onve
tion with passive di�usion. Our problem is uniquein that it is 
onve
tively dominated, but the driving for
e arises primarily throughdi�usive pro
esses.In what follows, we provide a detailed des
ription of the two-stage relaxation of the
oupled system (4.4) whi
h is obtained from (3.1) by negle
ting a small transient term.We derive a Maximum Prin
iple for the system and show that the total 
on
entrationC relaxes on the fast time s
ale to a quasi-steady state determined by boundaryvalues. The rea
tant mole fra
tion R 
onverges to steady state on the slow s
aleT = Æ� , but after a rapid initial transient both rea
tant and total 
on
entration maybe well des
ribed in terms of the solution of a single nonlinear, nonlo
al, adiabati
equation (4.21). Indeed, we develop expansions for the steady states of the full systemfrom an analysis of the redu
ed adiabati
 equations.As a notational 
onvenien
e in this se
tion, � will denote a positive 
onstantwhi
h depends upon the �xed parameters but not upon Æ; �, or the initial data, whileA will denote any positive 
onstant independent of Æ and �, whose value may 
hangefrom line to line. We use k � kp to denote the Lp norm, k � k1 the L1 norm, and theH1 norm takes the form k � kH1 = [k � k22 + k ��y (�)k22℄1=2.We simplify the study of equation (3.1) and (3.2) by introdu
ing new dependentvariables whi
h satisfy homogeneous boundary 
onditions, namelyM(�; y) = C(�; y)� (1 + Æf(R(�; 1))y) ; (4.1a)N(�; y) = R(�; y)�Rb(y); (4.1b)where f(z) = �� �z
r � �z and Rb(y) = r1 � r2y; (4.2)with r1 = �
(1 + �)�+ �(1 + �) and r2 = ��
�+ �(1 + �) . For notational 
onvenien
e we denotef(R(�; 1)) by f(R) or simply f when this presents no ambiguity. In these new variables



10 K. PROMISLOW AND J. M. STOCKIEwe have M� = C� + Æ f 0(R(1))R� (1) y: (4.3)The linear term Æ f 0(R(1))R� (1) y is formally O(Æ), and on the slow time s
ale itis O(Æ2) and eventually de
ays to zero. The in
lusion of this small transient termintrodu
es signi�
ant te
hni
alities into the analysis, without modifying the mainresult, namely Theorem 4.4 and Corollary 4.5 detailing the proximity of the adiabati
form (4.40) to the full solution. Moreover the numeri
al results (see Figure 5.4) showex
ellent agreement between the full system (3.1) and the adiabati
 form derived fromEqs. (4.4) below. We negle
t the small transient term in (4.3), and the new variablessatisfy the following equationsM� = (My + Æf)2 + (M + 1 + Æfy)Myy; (4.4a)N� = (C + Æ lnC)y(Ny � r2) + ÆNyy; (4.4b)with the boundary 
onditionsM(0) = 0; My(1) = 0; (4.5a)Ny(0) = �N(0); Ny(1) = ��N(1): (4.5b)In the statement and proof of the Maximum Prin
iple, it is 
onvenient to introdu
ethe quantity f1 � maxn�; � ��� �
1
r � �
1 ���o where 
1 > 0 is de�ned in the lemma below.Lemma 4.1 (Maximum and Minimum Prin
iple). Let � and 
1 be given whi
hsatisfy 1 > � > 0 and 
r > 
1 > 
. Then for any initial data C0; R0 2 H1 satisfyingC0(y) � �+2Æf1 and 
1 � R0(y) > 0, the 
orresponding solutions C and R of (3.1)and (3.2) satisfyC(�; y) � � > 0; 
1 � R(�; y) � 0 for all y 2 (0; 1) and � � 0: (4.6)Proof. Suppose M attains its minimum value at some smooth 
urve of interiorpoints y = by(�). Then dd�M(�; by(�)) =M� +My dd� by =M� , butM� = (My + Æf)2 +Myy(M + 1 + Æfby) �MyyC:It follows that any interior minimum of M is non-de
reasing so long as C > 0. Theminimum of M 
annot be a
hieved at y = 0 sin
e M(0) = 0 while from the boundary
ondition My(1) = 0, the point y = 1 
an be a minimum of M only if Myy(1) � 0,whi
h impliesM� (1) =Myy(1)C(1). We 
on
lude that so long as C > 0, the minimumvalue of M is non-de
reasing. Rewriting (3.1b) asR� = (C + Æ lnC)y Ry + ÆRyy;we �nd that at any interior extremal point of R we haveRy = 0 and R� = ÆRyy; hen
e,interior minima of R are non-de
reasing and interior maxima are non-in
reasing. Anexamination of the boundary 
onditions shows R 
an have a lo
al maximum at y = 0only if R(0) � 
 and a lo
al minimum only if R(0) � 
. So long as R(1) > 0 the pointy = 1 
an only be a lo
al minimum; however R(�; 1) may de
rease with in
reasing � ,but only to the value R(1) = 0. Indeed if R a
hieves a minimum value of 0 at y = 1then the boundary 
onditions imply Ry(1) = 0 and hen
e R� (1) = ÆRyy(1) � 0. Thus



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 11we have shown that the range of R is a subset of the interval [0; 
1℄. This impliesjf(R)j � f1. Moreover M(�; y) is bounded from below byminy2[0;1℄M(0; y) = miny2[0;1℄ (C0(y)� (1 + Æfy)) � �� 1 + Æf1;whi
h from (4.1a) yields C(�; y) �M(�; y) + (1� Æf1) � � > 0, for all � � 0.4.1. Relaxation of the Total Con
entration. The slow time evolution of thetotal 
on
entration C is 
ontrolled by its boundary data through the term f(R).Proposition 4.2. Let � > 0 be as given by Lemma 4.1. There exist �0 and Æ0positive, su
h that for all initial data C0 satisfying kC0yk2 � �0 and all 0 < Æ < Æ0,the solution C given by (4.1) through (4.4) satis�eskC(�) � (1 + Æf(R)y)kH1 � A �e��� + Æ2�2� ; for all � � 0; (4.7)and for some � and A both positive. Moreover, the estimate (4.7) holds in the L2norm for any C0 2 H1.Proof. Multiply equation (4.4a) by M , integrate over (0; 1), integrate by partsand use the boundary 
onditions (4.5); there follows the equality12 dd� kMk22 = � Z 10 �M2y (1 +M + Æfy)� Æ2f2M� dy + 12ÆfM2(1): (4.8)From Lemma 4.1 we have C = M + 1 + Æfy � � > 0, while j R 10 M dyj � kMk2;and from the L1 embedding kMk1 � p2 kMk1=22 kMyk1=22 we have jM(1)j2 �2kMk2 kMyk2. Applying H�older's inequality and these bounds to (4.8) yields theinequality 12 dd� kMk22 � ��kMyk22 + Æ2f2kMk2 + Æjf j � kMk2 kMyk2: (4.9)Young's inequality applied to the last term gives the estimate12 dd� kMk22 � �12�kMyk22 + Æ2f2�kMk2 + 12�kMk22� : (4.10)All M satisfying the boundary 
onditions (4.5a) also verify a Poin
ar�e inequalitybkMk2 � kMyk2; (4.11)for some b > 0, whi
h together with an appli
ation of Young's inequality yieldsdd� kMk22 � ��b2�� Æ2f2�1 + 1��� kMk22 + Æ4f4: (4.12)Lemma 4.1 a�ords the bound jf(R)j � f1 = O(�), so that for Æ small enough thereexist A and � > 0 su
h thatdd� kMk22 � �2�kMk22 +AÆ4�4: (4.13)We may integrate (4.13) in � to obtainkM(�)k2 � A(e��� + Æ2�2); (4.14)



12 K. PROMISLOW AND J. M. STOCKIEfor some A > 0 independent of Æ and �.To strengthen these de
ay estimates to the H1 norm, take the y derivative of(4.4a), multiply by My, integrate over (0; 1), and integrate by parts to obtain theequality 12 dd� kMyk22 =� Z 10 (M + 1 + Æfy)M2yy dy+ �23M3y + ÆfM2y + (M + 1 + Æfy)MyMyy�����10 : (4.15)From Lemma 4.1 we have C = M + 1 + Æfy � � > 0, while the boundary 
ondition(4.5a) at y = 0 implies M� (�; 0) = 0 and (4.4a) yields the equality Myy(�; 0) =�(My(�; 0) + Æf)2. These relations, together with the usual boundary 
onditions onM , yield the inequality12 dd� kMyk22 � ��kMyyk22 + ÆfM2y (0) + 13M3y (0) + Æ2f2My(0): (4.16)The L1 embedding applied to My, the bound jf j � f1 = O(�), and an appli
ationof Young's inequality lead to the estimate12 dd� kMyk22 � �12�kMyyk22 +A�kMyk62 + Æ2�2kMyk22 + (Æ4�4kMyk2)2=3� : (4.17)We employ Young's inequality on the last term on the right-hand side of (4.17) followedby a Poin
ar�e inequality kMyyk2 � bkMyk2, valid for M satisfying the boundary
onditions (4.5a), to arrive at the inequality12 dd� kMyk22 � ��14�b2 �AÆ2�2� kMyk22 +A �kMyk62 + Æ4�4� ; (4.18)If Æ is small enough, then there exists � > 0 su
h that12 dd� kMyk22 � ��kMyk22 +A �kMyk62 + Æ4�4� : (4.19)For kMy(0)k2 small enough, the right-hand side of (4.19) is initially negative and� = kMyk22 de
ays exponentially to the small positive root, �1 = O(Æ4�4), of theequation ���1 + A(�31 + Æ4�4) = 0. From this we dedu
e the existen
e of �;A > 0su
h that kMyk2 � A(e��� + Æ2�2) for all � � 0: (4.20)Sin
e Cy =My + Æf(R), kMyk2 may be 
hosen small enough if kCyk2 is small and Æis small. Thus Æ0 may depend upon �0, but �0 may be taken independent of Æ0. Theresult (4.7) follows from (4.20) and (4.1a).4.2. Relaxation of the Rea
tant Mole Fra
tion. Due to the small 
oeÆ
ientÆ multiplying the di�usive term in (3.1b) the solution R may initially su�er boundarylayers; but after a fast transient period, R relaxes to a smooth steady state on theslow time s
ale measured in T = Æ� . Unlike the total 
on
entration C, the steadystates of R are not well des
ribed by the boundary terms, given by Rb in (4.2), andso we must also a

ount for the in
uen
e of 
onve
tion. To this end, we introdu
e
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 equation given below, a dynami
 redu
tion of (4.4b) whi
h 
aptures itsslow relaxation. Consider the solution U toUT = F (U(T; 1))(Uy � r2) + Uyy; (4.21a)Uy(0) = �U(0); Uy(1) = ��U(1); (4.21b)where F (z) = f(z+Rb(1)). We will denote F (U(T; 1)) by F (U). The nonlinear, non-lo
al equation (4.21a) is derived by approximating C in (4.1b) with its quasi-steadystate value from (4.7), and then repla
ing N throughout with U . It is appropriate tosupplement (4.21) with the initial 
onditionU(T0; y) = U0(y) = R(T0=Æ; y)�Rb(y); (4.22)where T0 > 0 is spe
i�ed in Se
tion 4.2.3.We note that the 
onve
tive term F (U)(Uy � r2) in (4.21b) appears at higherorder in Æ in the anode s
aling, while in the 
athode s
aling it appears at leadingorder in Æ. In this sense we say that the anode is di�usion-dominated. This is alsore
e
ted in the asymptoti
s of the steady states derived below.In the remainder of this se
tion we �nd the steady states of (4.21), examine the
onvergen
e to steady state in the slow time T , and �nally show that N and U stay
lose for all T � T0.4.2.1. Steady States of the Adiabati
 Equation. The steady state � of(4.21) satis�es the equation �yy + F�y = r2F; (4.23a)�y(0) = ��(0); �y(1) = ���(1); (4.23b)where here and below F = F (�(1)). With the integrating fa
tor eFy, one obtains thefollowing expression for � whi
h satis�es (4.23a) and the boundary 
ondition (4.23b)at y = 1,� = �1 + F�1 �r2(eF (1�y) � (1 + F (1� y)) + ��1(eF (1�y) � 1)� ; (4.24)where �1 = �(1) The boundary 
ondition at y = 0 yields a nonlinear equation for�1, �1 = r2 (1� eF ) + �(1 + F � eF )=F� + �eF � ��(1� eF )=F : (4.25)For the 
athode s
aling, we repla
e � = �0� and 
 = 
0�, and employ a regularexpansion for �1 = �
1, �
1 = a1�+ a2�2 + � � � : (4.26)A straightforward 
al
ulation shows that a1 = a2 = 0 and�
1 = ��20
20
r(1 + �0)3 �3 +O(�4): (4.27)The solution � = �
 given by (4.24) 
orresponding to the 
athode s
aling has theexpansion �
 = �
1+O(�4), with spatially dependent terms appearing at higher order.



14 K. PROMISLOW AND J. M. STOCKIEIn the anode s
aling we substitute � = �0Æ and expand �1 = �a1 as�a1 = b1Æ + b2Æ2 + � � � ; (4.28)whi
h yields �a1 = �
2�20(2 + �)2�(
r � �
) Æ2 +O(Æ3): (4.29)The expansion for the 
orresponding anode solution � = �a of (4.23) is�a = �
2�20(2 + 2�y � �y2)2�(
r � �
) Æ2 +O(Æ3): (4.30)The expansions of the steady state solutions of (4.23) given by (4.26) and (4.29)are the leading order 
onve
tive 
ontribution to the limiting states of the rea
tantequation (3.1b).4.2.2. Relaxation of the Adiabati
 Equation. We address the 
onvergen
eof the solution U of (4.21) to the steady states � found in Se
tion 4.2.1 through thequantity V = U ��, whi
h satis�esVT = F (U)Vy + (F (U)� F (�))(�y � r2) + Vyy; (4.31a)Vy(0) = �V (0); Vy(1) = ��V (1); (4.31b)V (T0; y) = V0(y) = U0(y)��(y): (4.31
)The following proposition shows that V 
onverges exponentially to zero. In parti
ularthis shows that the steady states of (4.21) are stable and unique.Proposition 4.3. For Æ and � small enough, there exists � > 0, independent ofÆ; �, and kV0kH1 , su
h that the solution V of (4.31) satis�eskV kH1 � e��T kV0kH1 ; for all T � T0: (4.32)Proof. We 
onsider only the 
athode s
aling; the result for the anode s
alingfollows with only slight modi�
ation to the proof.Multiply (4.31a) by V , integrate over (0; 1), and integrate the last term by parts.There results the equality12 ddT kV k22 = �kVyk22 + (F (U)� F (�)) Z 10 (�y � r2)V dy + �12F (U)V 2 + V Vy�����10 :(4.33)It is easy to see from (4.21) that the fun
tion U+Rb(y) satis�es the same bounds as Rin (4.6). The fun
tion F is Lips
hitz on [0; 
1℄ with 
onstantL = max�j��j; j��j
r
r � �
1� =O(�). From (4.27) and (4.2) we have the estimate k�y � r2k2 � A�2 for some A > 0.These bounds and the boundary 
onditions (4.31b) applied to (4.33) lead to the in-equality12 ddT kV k22 =� kVyk22 +AL�3jV (1)j � kV k2+ 12 jF (U)j � (V (1)2 + V (0)2)� ��V 2(1) + �V 2(0)� : (4.34)
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tion V satisfying the boundary 
onditions (4.31b) obeys the Poin
ar�e in-equality kVyk2 � bkV k2 for some b > 0 if � > ��=(1 + �), whi
h 
learly holds sin
e �and � are both positive. For the boundary terms in (4.34) we use the L1 embeddingkV k1 � p2 kVyk1=22 kV k1=22 � p2=bkVyk2 and the bound jF (U)j = O(�), to obtainan inequality of the form 12 ddT kV k22 � �(1�A�) � kVyk22: (4.35)For � small enough the Poin
ar�e inequality applied to (4.35) implies the exponentialde
ay of kV k2.To obtain bounds on kVyk2, we simplify the boundary 
onditions by introdu
ingthe linear fun
tion �(y) = ��y(�+�) and the quantity W = Vy��V , whi
h satis�esDiri
hlet boundary 
onditions at y = 0 and 1. The evolution of W is governed by theequationWT = F (U) (Wy + �yV ) + (F (U)� F (�)) � (�yy � �(�y � r2)) +Wyy + 2�yVy :(4.36)From the bound kVyk2 � kWk2 + k�k1 � kV k2, we see that the exponential de
ay ofkWk2 and kV k2 are suÆ
ient to imply the exponential de
ay of kV kH1 .Multiply (4.36) by W , integrate over (0; 1), and integrate by parts. From theDiri
hlet boundary 
onditions on W , we derive the inequality12 ddT kWk22 � �kWyk22 + (�+ �) jF (U)j � kV k2kWk2+ jF (U)� F (�)j � k�yy � �(�y � r2)k2kWk2 + 2j�yj � kWk2kV k2:(4.37)From (4.27) and (4.2) we obtain the bound k�yy � �(�y � r2)k2 � A�2 for someA > 0. The estimate on the Lips
hitz 
onstant for F and the L1 embedding yieldthe following string of inequalitiesjF (U)� F (�)j � LjV (1)j � A�(kWk1=22 + kV k1=22 ) � kV k2; (4.38)for some A > 0. With these bounds, the Poin
ar�e inequality on W , and Young'sinequality all applied to (4.37), we obtain an estimate of the form12 ddT kWk22 � �12kWyk22 +AkV k22; (4.39)for some A > 0. The usual Poin
ar�e inequality applied to kWyk2, and the exponentialde
ay of kV k2 yield the exponential de
ay of kWk2, and the result (4.32) follows.4.2.3. Proximity to the Adiabati
 Solution. The solutions C and R of equa-tions (3.1) 
an be well-approximated by the adiabati
 forms de�ned below in termsof the solution U(�; y) = U(T=Æ; y) of (4.21)Cadb(U) = 1 + ÆF (U) y; (4.40a)Radb(U) = Rb(y) + U(�; y): (4.40b)The initial data (4.22) for U is taken at time �0 = T0=Æ, where �0 is large enough thate���0 = O(Æ2�2). We may now state and prove our main analyti
al result.



16 K. PROMISLOW AND J. M. STOCKIETheorem 4.4. Under the assumptions of Lemma 4.1 and Proposition 4.2, inparti
ular Æ and � small enough, the solutions C and R given by (4.1) through (4.4)are approximated by the adiabati
 forms (4.40) in the sense thatkC � Cadb(U)kH1 � A(e�k� + Æ2�2); for all � � 0; (4.41a)kR�Radb(U)kH1 � AÆ�; for all � � �0; (4.41b)for some A; � > 0.Proof. We 
onsider only the 
athode s
aling; the arguments for the anode s
alingrequire only minor modi�
ations. Sin
e R = Rb + N where N satis�es (4.1b), weprove (4.41b) by bounding the quantity E = N � U , whose evolution is governed bythe equationE� = (C + Æ lnC)yEy + [(C + Æ lnC)y � ÆF (U)℄ � (Uy � r2) + ÆEyy: (4.42)Moreover, E satis�es the same homogeneous boundary 
onditions as N in (4.5b), andhas zero initial data at � = �0. In light of Proposition 4.2 we have the estimatekC � (1 + ÆF (U)y)kH1 � A �e��� + Æ2�2 + ÆjF (U)� F (N)j� : (4.43a)The fun
tion F is Lips
hitz on the range of U andN with Lips
hitz 
onstant L = O(�).This implies jF (U)� F (N)j � A�kEk1; (4.44)and so we �ndkC � (1 + ÆF (U)y)kH1 � A �Æ2�2 + Æ�kEk1� ; for all � � �0: (4.45)To obtain bounds on kEk2 we multiply (4.42) by E, integrate over (0; 1), andintegrate the last term by parts, from whi
h follows the equality12 dd� kEk22 = Z 10 �(C + Æ lnC)yEyE+ [(C + Æ lnC)y � ÆF (U)℄ � (Uy � r2)E � ÆE2y� dy � (�+ �)E2��10 :(4.46)From Proposition 4.2 we have the boundk(C + Æ lnC)yk2 � AÆjf(R)j � AÆ�; for all � � �0: (4.47)In parti
ular kÆ(lnC)yk2 = ÆkCy=Ck2 � AÆ2�. This inequality together with (4.45)yields k(C + Æ lnC)y � ÆF (U)k2 � kCy � ÆF (U)k2 + ÆkCy=Ck2;� AÆ�(Æ + kEk1): (4.48)We drop the negative boundary terms in (4.46) and employ the estimates (4.47),(4.48), and H�older's inequality to �nd12 dd� kEk22 � �ÆkEyk22 +AÆ��kEyk2kEk1 + (Æ + kEk1) � (kUyk2 + r2) � kEk1�:(4.49)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 17Res
ale time to T = Æ� , use the L1 embedding and Poin
ar�e inequality on E, andYoung's inequality on terms linear in E to obtain an estimate of the formddT kEk22 � ��12 �A�(kUyk22 + 1)� kEyk22 +AÆ2�2(kUyk22 + 1); (4.50)for some A > 0. Proposition 4.3 implies that kUyk2 is uniformly bounded, independentof Æ for T � T0. For � small enough it follows from Poin
ar�e's inequality that thesolution E of (4.42), with zero initial data at T = T0 satis�eskEk2 � AÆ� for all T � T0: (4.51)To extend these results to theH1 norm, we introdu
e the quantityfW = Ey��E whi
hsatis�es Diri
hlet boundary 
onditions at y = 0 and y = 1. Sin
e fW� = E�y��E� , wemay 
ombine (4.42) with its y derivative to obtain the following evolution equationfor fW ,fW� =(C + Æ lnC)yyEy + (C + Æ lnC)y(fWy + �yE) + ((C + Æ lnC)y � ÆF (U))y (Uy � r2)+ ((C + Æ lnC)y � ÆF (U)) � (Uyy � �Uy + �r2) + ÆfWyy + 2Æ�yEy: (4.52)Multiply (4.52) by W , integrate over (0; 1), and integrate by parts on the �rst, third,�fth, and sixth terms on the right-hand side, to obtain the equality12 dd� kfWk22 = Z 10 n(C + Æ lnC)y(fWfWy + �yEfW � (EyfW )y)� ((C + Æ lnC)y � ÆF (U)) � �(Uy � r2) � (�fW +fWy)�o dy� ÆkfWyk22 � 2Æ�y Z 10 EfWydy: (4.53)The integrand of the �rst integral on the right-hand side of (4.53) is 
omprised of twoterms. The �rst fa
tor of the �rst term is estimated by (4.47), while the se
ond fa
toris dominated by the term (EyfW )y. We estimatek(EyfW )yk2 � kEyyk2kfWk1 + kEyk1kfWk2; (4.54)and from the triangle inequality, the L1 embedding applied to, E, and Poin
ar�eapplied to W it follows thatkEyyk2 + kEyk1 �A(kfWyk2 + kEk2); (4.55a)kEyk2 + kEk1 �A(kfWk2 + kEk2): (4.55b)The inequalities (4.54) and (4.55), together with an appli
ation of Young's inequality,lead to the estimate k(EyfW )yk2 � A(kfWyk22 + kEk22): (4.56)The �rst fa
tor of the se
ond term of the integrand of (4.52) is bounded by the estimate(4.48). From arguments similar to those used to derive (4.56), we �nd an estimate onthe se
ond fa
tor of the se
ond term of the formk(Uy � r2) � (�fW +fWy)k2 � A (kUyk2 + 1) � kfWyk2: (4.57)



18 K. PROMISLOW AND J. M. STOCKIEThen, res
aling time by T = Æ� , and applying H�older's inequality and the estimatesgathered above, we obtain an inequality of the form12 ddT kfWk22 �� kfWyk22 +A��kfWyk22 + kEk22+ (Æ + kfWk2 + kEk2) � (kUyk2 + 1) � kfWyk2�: (4.58)We employ the bound kEk2 � AÆ� from (4.51) and use Poin
ar�e on fW and Young'sinequality on all terms linear in kfWk2 to 
ombine the fWy dependent terms on theright-hand side of (4.58) into one term quadrati
 in kfWyk2. For � small enough, thesign of this later term is negative, and applying Poin
ar�e to fW we obtain an inequalityof the form ddT kfWk22 � �2�kfWk22 +AÆ2�2(kUyk22 + 1); (4.59)for some � and A positive and independent of Æ and � small enough. Sin
e kUyk2 isuniformly bounded for T � T0 and fW has zero initial data at T = T0, integration of(4.59) over the time interval (T0; T ) yields the boundkfW (T )k2 � AÆ�; for all T � T0; (4.60)and for some A > 0 independent of � and Æ. The result (4.41b) follows immediatelyfrom (4.51), (4.60), and the inequality (4.55b), while (4.41a) follows from (4.41b),(4.45), and Proposition 4.2.4.3. Limiting states of the Anode and Cathode S
alings. Theorem 4.4indi
ates that the steady state solutions of the adiabati
 equations (4.21), given forthe anode and 
athode s
alings in Se
tion 4.2.1, des
ribe the limiting behavior ofthe full system as � ! 1. Indeed from Theorem 4.4 and Proposition 4.3 we haveimmediatelyCorollary 4.5. Under the assumptions of Theorem 4.4, for the steady statesolution � of (4.23) lim sup�!1 kC � Cadb(�)kH1 � AÆ2�2; (4.61a)lim sup�!1 kR�Radb(�)kH1 � AÆ�: (4.61b)For the anode s
aling, using � = �a from (4.30) and the de�nition of Cadb andRadb from (4.40), it is straightforward to obtain an expansion for the limiting statesof total 
on
entration and rea
tantCadb(�) = 1���0 �
y
r � �
� Æ2 +O(Æ3); (4.62a)Radb(�) = 
 � �0
(y + 1=�)Æ +O(Æ2); (4.62b)valid to within the error of Corollary 4.5. More importantly, from (3.3) we 
anapproximate asymptoti
ally the net 
ux N1 of rea
tant into the 
atalyst layer aty = 1 as N1 = �0

r
r � �
 Æ2 +O(Æ3): (4.63)



CONVECTIVE-DIFFUSIVE TRANSPORT IN POROUS ELECTRODES 19In dimensional variables this expression takes the formNd1 = C1rH � C1 + C2(1� �)C1 + C2�+ �C2H O(Æ3); (4.64)where we observe from Table 3.1 that �C2=H � O(1:0 mol=
m2 � s). In the anodes
aling, the transfer 
oeÆ
ient rH is the limiting element (i.e., rH � r0), and we �ndthat the 
ux depends only upon rH , the return 
oeÆ
ient �, and the 
hannel rea
tant
on
entration C1.For the 
athode s
aling, using the expression � = �
 = �
1 + O(�4) from (4.27)we expand the limiting states in � to �ndCadb(�) = 1� ��0
0(1 + �0)
r ��2 � �0(
r � 
0�)(1 + �0)
r �3� yÆ +O(�4Æ; Æ2); (4.65a)Radb(�) = �0
01 + �0 ����y � 11 + �0� �2 + �0(1 + �0)
r �
ry � 
r � 
0�1 + �0 � �3�+O(�4):(4.65b)The net 
ux for the 
athode takes the dimensionless formN1 = �0
01 + �0 ��2 � �0(
r � 
0�)(1 + �0)
r �3� Æ +O(�4Æ; Æ2): (4.66)In dimensional variables, we may express the 
ux in the appealing formNd1 = C1re �1 + C1�r0(C1 + C2)(r0 + rH ) � HDre�+ �C2H O(�4Æ; Æ2); (4.67)where the e�e
tive transfer 
oeÆ
ient, re � (1=r0 +1=rH )�1, is the re
ipro
al sum ofthe individual transfer 
oeÆ
ients r0 and rH .The net 
ux of rea
tant depends only upon the transfer rates at top and bottom,
on
entrations in the 
hannel, return 
oeÆ
ient �, di�usivity, and GDL thi
kness. Thepermeability is not evident here, o

urring at higher order in the expansion of Nd1 .Moreover, the di�usivity and GDL thi
kness o

ur only through the dimensionless
ombination HD re = O(�), whi
h is a small 
orre
tion to the leading order term. Weexpe
t the di�usivity to appear at �rst order in a two-dimensional problem with 
ow
hannels if the 
hannel aspe
t ratio L
=L is not small.Remarks: (1) We 
an re
over the anode result to leading order by taking rH � r0and expanding (1 � �
)�1 � 1 + �
 + : : : . (2) For the 
athode � < 0 and formula(4.67) demonstrates the sub-linear response of 
ux (and hen
e also 
urrent density) toin
reasing O2 
hannel 
on
entration C1. This e�e
t is present in our one-dimensionalmodel and is asso
iated with 
onve
tive terms.5. Numeri
al Comparisons. We now give a brief overview of the numeri
almethod we employed for solving the two-dimensional GDL equations. A 
ompletedes
ription of the 
ode, in
luding a study of 
onvergen
e, stability and parametersensitivities, is provided in [21℄.The dimensional system (2.2){(2.6) is dis
retized in spa
e using a �nite volumeapproa
h, whi
h is a natural 
hoi
e in view of the mass 
onservation properties ofthe 
ontinuous problem. The re
tangular domain is divided into a uniform, nx � nymesh with grid spa
ings �xd = L=nx and �yd = H=ny (the supers
ript \d" denotes



20 K. PROMISLOW AND J. M. STOCKIEdimensional length measurements to avoid 
onfusion with the nondimensional gridspa
ing �y = 1=ny). The 
on
entrations C and C1 and pressure P are 
ell-averagedquantities lo
ated at 
ell 
enters, while the ve
tor-valued velo
ities and 
uxes arede�ned as edge averages. Centered di�eren
es are used to approximate derivativesso that the resulting dis
retization is se
ond order a

urate in the grid spa
ing. Theboundary 
onditions are also approximated by 
entered di�eren
es, with \�
titious
ells" being used for points lying outside the domain. Solution values at �
titiouspoints are approximated using se
ond-order extrapolation from interior points so thatthe overall s
heme retains se
ond order a

ura
y up to the boundary.After spatial dis
retization, we are left with a large, time-dependent, nonlinearsystem of ordinary di�erential equations to solve at ea
h grid point. Furthermore,the system is sti�, as indi
ated by the presen
e of two widely disparate time s
alesin our 
onvergen
e analysis of Se
tion 4. Consequently, we have 
hosen to use thesti� di�erential{algebrai
 system solver Dassl [15℄ to integrate the solution in time.Dassl uses a variable-order BDF method with adaptive time-stepping whi
h providesan a

urate and eÆ
ient 
omputation of the solution, as outlined in the next se
tion.5.1. Sti�ness. The presen
e of a fast and slow time s
ale, dis
ussed in the pre-vious analysis, suggests a very sti� problem for whi
h expli
it time-stepping methods
an be highly ineÆ
ient. A small step is required for a

urate resolution of initial,rapidly-varying transients, but is unjusti�ed at later times when the transients havedied out and the solution relaxes adiabati
ally to steady state on the slow time s
ale.We have implemented an expli
it, forward Euler version of the 
ode, whi
h for a typi-
al GDL simulation on a 34�24 grid requires over 109 time steps to rea
h steady state(
orresponding to a �xed time step of �t � 10�9 s) and whi
h was quite 
omputa-tionally intensive. In 
ontrast, the impli
it, variable time-stepping method in Dasslprovided a dramati
 improvement in performan
e. Clearly, the sti�ness in the GDLproblem is severe enough that use of an impli
it method is required for pra
ti
ality.This situation 
an only be further 
ompli
ated in a larger 
oupled system for theentire fuel 
ell.The severity of the time step restri
tion is due primarily to the porous mediumequation whi
h de�nes the velo
ity as a derivative of the 
on
entration, so that the
onve
tive terms in Eqs. (2.7) a
tually appear as di�usive terms. The time steprestri
tion for di�usive problems takes the form �t � (�yd)2=(2D), while the presen
eof a 
onve
tive term usually introdu
es a CFL-type restri
tion of the form �t ��yd=Umax. For our GDL model however, the 
onve
tive terms appear as se
ondderivatives multiplied by a 
oeÆ
ient (�C) or (�C1). The time step restri
tion forour problem, written in dimensional variables, has the form�t � (�yd)22 min� 1D; 1�C ; 1�C1�: (5.1)With the anode parameter values from Table 3.1 (and ny = 24 so that �yd �0:002 
m), this time step restri
tion be
omes �t < 8 � 10�9, with a limit of only�t < 6 � 10�6 arising from the di�usion term. Similar values are obtained at the
athode. The stability restri
tions arising from this simple linear argument give avery 
lose mat
h to the time steps required for expli
it 
omputations of the full fuel
ell system. The redu
ed, adiabati
 equation (4.21) on the other hand, has a timestep limited by di�usion only, whi
h translates into a thousand-fold speed-up for anexpli
it method.
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an also rewrite the time step restri
tion in terms of non-dimensional variablesfor both the fast and slow time s
ales � = (�C=H2) t and T = (D=H2) t:�� � (�y)22 min�1Æ ; 1; 1
� (fast) and �T � (�y)22 min�1; Æ; Æ
� (slow):Realizing that Æ � 1 and 
 . 1, it is 
lear that these 
onditions redu
e to �� �(�y)2=2 and �T � Æ(�y)2=2, 
learly indi
ating that di�usive e�e
ts only limit theslow time s
ale T .5.2. Validation of 1D Steady State Results. In this se
tion, we presentnumeri
al results that validate the analyti
al formulae for the steady state solutions,and the adiabati
 portion of the 
onvergen
e. The 
omputations are performed on a\quasi-1D" problem with the 
hannel and solid wall at the lower boundary repla
edby a uniformly porous surfa
e, whi
h 
orresponds to taking L
 = L in the notationintrodu
ed in Fig. 2.2. Be
ause of the resulting symmetry in the domain and boundary
onditions, the solution is independent of x and so that a verti
al, mid-
hannel 
ross-se
tion of the 
omputed results 
an be readily 
ompared to the analyti
al solution. Allresults that follow are reported in non-dimensional variables, ex
ept where otherwisenoted.We begin by 
omparing the 
omputed mixture 
on
entration and rea
tant molefra
tion with the \exa
t" steady state obtained numeri
ally from the 1D steady stateversion of (3.1), and also with the asymptoti
 solution from either of Eqs. (4.62)or (4.65). The parameters used for both ele
trodes are listed in Table 3.1. The resultsfor the anode and 
athode are presented separately in Figs. 5.1 and 5.2 respe
tively,from whi
h it is 
lear that both analyti
al results mat
h extremely well with the
omputations. Furthermore, all 
urves exhibit the expe
ted linear (or near-linear)dependen
e on y that is observed in 
omputations in higher dimensions.
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tant mole fra
tion.Fig. 5.1. Comparison of the 
omputed 
on
entration (C�1) and mole fra
tion R = C1=C withtheoreti
al predi
tions for the anode (H2 side). The parameters are taken from Table 3.1, and the
omputations performed on a 32� 48 grid.We next investigate numeri
ally the nature of 
onvergen
e to steady state anddraw 
omparisons with the analyti
al results derived in Se
tion 4. Fig. 5.3(a) shows
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ementsC � 1y R

y(b) Cathode rea
tant mole fra
tion.Fig. 5.2. Comparison of the 
omputed 
on
entration C and mole fra
tion R = C1=C withtheoreti
al predi
tions for the 
athode (O2 side). The parameters are taken from Table 3.1, and the
omputations performed on a 32� 48 grid.the variation of 
on
entration pro�les with time, starting from the initial pro�lesC � 1 and R � 
. The initially horizontal 
on
entration 
urve relaxes over a shorttime interval (of approximately 10�5 s) to a linear pro�le, whi
h is very 
lose tothe �nal steady state. The solution then enters the adiabati
 regime, in whi
h the
urve remains linear and relaxes to the steady state on the slow time s
ale. The
on
entration a
tually overshoots the steady state solution, with the slope rea
hinga maximum shortly after t = 10�5 s (i.e., � � 3:0 and T � 0:0005), following whi
hthe steady state is approa
hed from below. This adiabati
 behavior is best 
onveyedby Fig. 5.4(a) whi
h plots the slope of the solution pro�le versus time for the anodeand 
athode 
on
entrations. In this �gure, we present numeri
al solutions of boththe original system (3.1){(3.2) and the adiabati
 equation (4.21) derived from (4.3).The \slope," 
omputed using the divided di�eren
e (C(1) � C(0))=(1 � 0), is ana

urate representation of the 
urves during the adiabati
 phase, but only yields anapproximation during the initial transient regime when the pro�les are nonlinear.Noti
e that the 
on
entration slope at the 
athode is positive, due to the in
ow ofwater vapor at the upper boundary with a positive return 
oeÆ
ient � = 0:99.In Fig. 5.3(b), we show pro�les of the anode mole fra
tion, whi
h la
ks a rapid 
on-ve
tive transient, and 
onsequently the adiabati
 variation is mu
h more pronoun
ed.In 
ontrast with the 
on
entration 
urves, the relaxation of R to its steady state ismonotoni
, as is easily seen in the plots of slope versus time in Fig. 5.4(b).5.3. Two-Dimensional Computations. The one-dimensional results of theprevious se
tion are strong eviden
e to support our asymptoti
 approximations to theGDL model. In most fuel 
ell appli
ations, geometri
 
onstraints render the 
ow fun-damentally two-dimensional. In this se
tion, we present simulations of 
ow throughmore realisti
 two-dimensional geometry as depi
ted in Fig. 2.2, and demonstrate howthe one-dimensional asymptoti
 results are useful in predi
ting 
ertain 
ow quantities.Fig. 5.5 shows a representative 
omputation, with plots of mole fra
tion and totalhydrogen 
ux for the 
ase L
=L = 0:5. While the variation in R is nearly linear along
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ale. Inthe transient, 
onve
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on
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urves exhibitsa similar adiabati
 relaxation to the steadystate, but no fast transient.Fig. 5.4. Comparison of the 
omputed and adiabati
 solutions, in terms of the slope of the Cand R 
urves versus dimensional time. The asymptoti
, adiabati
 equations 
apture the steady stateand the slow relaxation.verti
al 
ross-se
tions (x = 
onstant), there is a signi�
ant two-dimensional e�e
t dueto variation along the x{dire
tion, whi
h is also evident in the 
ux ve
tor plot inFig. 5.5(b).To measure the departure of the two-dimensional solution from one-dimensionalitywe vary the 
hannel aspe
t ratio L
=L, with L �xed, fo
using our attention on the 
uxof rea
tant along the top wall, N1jy=H . This quantity has very important physi
al
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ations, being related to the rea
tant 
onsumption rate and thus also to 
urrentdensity, whi
h is a primary measure of fuel 
ell performan
e. Fig. 5.6(a) 
ontainsplots of the top wall 
ux as a fun
tion of x for aspe
t ratios between 0:2 and 1:0,with the domain length �xed at L = 1:0. The asymptoti
 
ux from (4.64) is plottedas a dashed line for 
omparison purposes. While there is signi�
ant variation in theoverall 
ux, the peak 
ux at mid-
hannel remains virtually �xed and the asymptoti
approximation to the peak 
ux is a

urate to within an error of 2%, even when the
hannel aspe
t ratio is as small as 0.4. It is only when the aspe
t ratio is redu
edbelow 0.4 that an appre
iable drop in maximum 
ux appears.
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tant 
ux, Nd1 .Fig. 5.5. Plots of rea
tant mole fra
tion and total 
ux for a two-dimensional anode simulationwith L
=L = 0:5 (in dimensional variables).Experimental eviden
e suggests that 
hanging 
hannel geometry in
uen
es fuel
ell performan
e by a�e
ting ele
tri
al 
onta
ts and water 
ooding [14℄. We have thusdemonstrated a third fa
tor that in
uen
es performan
e { namely mass transportlimitations.A 
entral result of our one-dimensional asymptoti
 analysis is that the top wall
ux (4.64) at the anode does not depend on parameters su
h as the di�usivity orpermeability, to lowest order in Æ. This has impli
ations in terms of the design ofnew GDL materials. While the di�usivity is an intrinsi
 property of the gas that doesnot vary, it is te
hni
ally not the di�usivity D that appears in (2.7b) but rather ane�e
tive di�usivity De� , whi
h is often related to D in the porous media literaturevia the semi-empiri
al formula De� = "1:5p D, known as the Bruggeman 
orre
tion.We are therefore justi�ed in 
onsidering the e�e
t of variation in D on the rea
tant
ux. The results are displayed in Fig. 5.6(b), from whi
h it is 
lear that the maximum
ux has little sensitivity to the di�usivity, even in a two-dimensional 
al
ulation.6. Con
lusions. By 
onsidering ea
h ele
trode of the fuel 
ell in isolation, andrepla
ing the 
oupling to the rest of the fuel 
ell system with appropriate boundary
onditions, we develop a model for multi
omponent gas transport within an ele
-trode whi
h is amenable to analysis. The system of 
onve
tion{di�usion equationswe present 
aptures qualitatively the fundamental physi
al phenomena appearing inmore 
ompli
ated models of the entire fuel 
ell. Moreover, we identify distin
t s
al-
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