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ABSTRACT. Computing predictions of future sea-level that include well-7

defined uncertainty bounds requires models that are capable of robustly8

simulating the evolution of ice sheets and glaciers. Ice flow behaviour is9

known to be sensitive to the location and geometry of dynamic ice boundaries10

such as the grounding line, terminus position and ice surface elevation, so11

that any such model should track these interfaces with a high degree of12

accuracy. To address this challenge we implement a numerical approach that13

uses the level set method (LSM) that accurately models the evolution of14

the ice-air and ice-water interface as well as capturing topological changes15

in ice sheet geometry. This approach is evaluated by comparing simulations16

of grounded and marine terminating ice sheets to various analytical and17

numerical benchmark solutions. A particular advantage of the LSM is its18

ability to explicitly track the moving margin and grounding line whilst using19

a fixed grid finite-difference scheme. Our results demonstrate that the LSM20

is an accurate and robust approach for tracking the ice surface interface21

and terminus for advancing and retreating ice sheets, including the transient22

marine ice sheet interface and grounding line positions.23
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1. INTRODUCTION24

The Greenland and Antarctic ice sheets have been losing mass at an accelerated rate (Bevis and others,25

2019; Rignot and others, 2019) and ice sheet margins have recently undergone dramatic changes (Bunce26

and others, 2018; Konrad and others, 2018). These ice sheets are expected to experience further significant27

changes into the future (e.g. Edwards and others, 2019). These rapid dynamic changes are occurring not28

through the slow internal deformation of ice under the force of gravity but rather because of interactions29

between ice bodies and their boundaries. Whether that be ice-bed, such as hydrologically-accelerated basal30

sliding (e.g. Schoof, 2010); ice-ocean, such as submarine melt induced by subglacial discharge and/or31

fjord temperature (e.g. Jenkins, 2011; Straneo and Heimbach, 2013); or ice-air, through mass-balance32

feedbacks (e.g. Vizcaino and others, 2015). Ice flow dynamics are known to be very sensitive to the interface33

locations; for example, the stability of marine ice sheets depends fundamentally on the grounding line34

position (Schoof, 2007). Consequently careful attention must be paid to these interfaces when modelling35

ice sheet flow. In particular, any choice of numerical algorithm must be guided by the need to accurately36

capture dynamically evolving boundaries, and hence to ensure reliable predictions of ice volume and extent37

and to minimize uncertainty in sea level rise estimates.38

To address these challenges, we aim to demonstrate that the level set method is an effective approach for39

accurately tracking the evolution of the ice-air and ice-water interfaces, as well as the terminus position for40

ice sheets and the grounding line position of marine ice sheets. The level set approach is versatile and can41

be incorporated into any ice sheet model (shallow ice to full Stokes) regardless of numerical discretization42

of the governing equations (finite difference or finite element, fixed grid or adaptive mesh). In this paper43

we present a level set method implemented in shallow ice models using a finite difference discretisation on44

a fixed rectangular grid.45

The evolution of an ice sheet free surface is typically modelled by solving the kinematic boundary

condition

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− w =Mj , (1)

where η = h(x, y, t) for the surface elevation of the ice-air interface or η = b(x, y, t) for the elevation of46

the bottom ice-water interface, (u, v, w) are the ice velocity components, and Mj(x, y, t) denotes the47

(surface Mh or bottom Mb) mass balance function. We note that the geometry of an evolving ice-air48

or ice-water interface may experience overriding, breaking, merging, separation, discontinuities, vertical49

fronts, and overhangs, and such events cannot be resolved in the standard setup. Furthermore, because50
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of discretization, elevations are only evaluated at the grid points, and as such, the exact location of the51

terminus and grounding line will fall between grid points and is not tracked explicitly. To improve accuracy,52

a fine grid resolution is required, which can become prohibitively expensive. This is particularly apparent for53

marine ice sheets where fixed-grid methods have been shown to be inadequate in capturing grounding line54

migration (Vieli and Payne, 2005; Pattyn and others, 2012; Seroussi and others, 2014). Consequently, ice55

sheet modellers have incorporated various approaches to more accurately track the grounding line. These56

include grid refinement near the grounding line (e.g. Durand and others, 2009b; Cornford and others,57

2013), requiring adaptive remeshing with each displacement of the grounding line. The use of sub-element58

parameterizations together with mesh refinement has been shown to be beneficial (Seroussi and others,59

2014), although even here the exact grounding line position is not being tracked. Explicit tracking methods60

include coordinate stretching to transform the moving boundary onto a fixed domain using a prognostic61

equation for grounding line migration (e.g. Hindmarsh, 1996). However, this approach cannot be generalized62

to 2-D because of complications in handling the complex evolving geometry of the grounding line. Other63

alternatives include the location-based moving mesh approach of Goldberg and others (2009) where the64

challenge is to define a suitable monitor function to position nodes, or the velocity-based moving-point65

approach proposed by Bonan and others (2016) to track the ice sheet margin, but not yet applied to66

addressing the grounding line problem.67

These difficulties addressed above can be readily handled by the use of the level set method (LSM) which68

can capture complex evolving geometries without requiring adaptive mesh refinement, and with the further69

advantage of being relatively straightforward to implement. The LSM is an increasingly popular tool within70

computational fluid dynamics for tracking the motion of dynamic fluid interfaces and is finding widespread71

use in many applications (Sethian, 1999b; Gibou and others, 2018). Level set methods were first applied in72

glaciology by Pralong and Funk (2004), who proposed the LSM with the ice-air flow problem as a means73

of evaluating the steady-state geometry of a glacier. Further consideration of the applicability of LSM to74

ice flow, compared amongst other numerical algorithms for free surface flows, can be found in Caboussat75

and others (2011). More recently, Bondzio and others (2016) used a LSM to simulate the migration of the76

calving front in a 2-D plan-view modelling study (see also Bondzio and others (2018)). They demonstrate77

the benefit of the LSM for simulating calving front dynamics in Jakobshavn Isbræ, west Greenland.78

In this study, we build on the pioneering exploratory study of Pralong and Funk (2004) by providing79

an extensive series of simulations testing the accuracy of the LSM for tracking evolving land- and marine-80
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terminating ice sheet boundaries. We use flow-line and radial ice flow models together with the LSM to81

simultaneously model ice elevations, continental margins, grounding lines and shelf fronts. We highlight82

implementation details not previously addressed such as the use of the signed distance function, calculation83

of extended velocities, and the fast marching method for reinitialization. In Pralong and Funk (2004)84

and Bondzio and others (2016) the LSM is implemented using the finite element method on unstructured85

meshes. Instead, our implementation uses the finite difference method on a regular fixed grid, which further86

highlights the strength and versatility of the LSM by demonstrating that moving ice boundaries can be87

tracked accurately without requiring local mesh refinement.88

2. LEVEL SET METHOD89

In level set methods, the interface is represented implicitly using a level set function ϕ(x, t) which is a90

differentiable function on a space-time domain Ω× R+, where x ∈ Ω is the spatial domain in 2-D or 3-D.91

The surface itself is represented as the zero isosurface or level set ϕ(x, t) = 0, which propagates at a speed92

directed normal to the surface ∂Ω.93

When tracking the ice–air or ice–water interface for an ice sheet or glacier, we can define a level set

function ϕ with the following properties:

ϕ(x, t) < 0 for x ∈ Ωi,

ϕ(x, t) > 0 for x ∈ Ωc,

ϕ(x, t) = 0 for x ∈ ∂Ω,

(2)

where Ωi represents the region inside the ice body, Ωc is the region outside the ice body (consisting of

either air or water), and ∂Ω is the ice-air or ice-water interface (see Fig. 1). Any level set function fitting

this description (Eqn 2) can be used as an initial condition for the level set evolution equation to track

an interface (see Section 2.1). However, we will use a special choice corresponding to the signed distance

function (cf. Pralong and Funk, 2004) that is numerically advantageous (Vogl, 2016) and improves mass

conservation, compared to other choices (Gibou and others, 2018):

ϕ(x, t) =

 −d(x, ∂Ω), if x ∈ Ωi,

d(x, ∂Ω), if x ∈ Ωc.
(3)

The value of the level set function corresponds to the Euclidean distance d(x, ∂Ω) between any given spatial94

location x and the corresponding closest point on the interface ∂Ω, with the sign chosen as negative for95

inside the ice and positive for outside.96
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Fig. 1. Basic geometry and definition of the level set function ϕ(x, t) for a generic ice sheet.

2.1. Level set evolution97

The value of the level set function at any point on an interface with location x(t) ∈ Ω must satisfy

ϕ(x(t), t) = 0.

Differentiating this equation in time and applying the chain rule, we obtain

∂ϕ

∂t
+∇ϕ(x(t), t) · x′(t) = 0.

Supposing that F is the speed in the outward normal direction, then

x′(t) · n = F where n = ∇ϕ/‖∇ϕ‖.

Therefore, the evolution equation for the level set function ϕ can be written as

∂ϕ

∂t
+ F‖∇ϕ‖ = 0. (4)

The normal speed F should depend on the ice velocity field as well as any accumulation and

ablation (Pralong and Funk, 2004). To this end, let M(x, t) denote the mass balance function and u(x, t)

the ice velocity field, so that the speed function can be written as

F = (u(x, t) + M(x, t)ẑ) · ∇ϕ
‖∇ϕ‖

, (5)

where ẑ is the unit vector in the vertical direction and we have assumed vertical accumulation and98

ablation (Pralong and Funk, 2004). M(x, t) is determined by the surface and basal mass balance functions,99

Mh and Mb, respectively. M(x, t) and u(x, t) can be derived from the specific ice sheet model or fit to100

observational data. The level set equation is solved throughout the computational domain which requires101

speed function values, F , at all grid points both inside and outside the ice. This necessitates the computing102

of so-called extended speed, the full details of which are provided in Appendix A.1. The numerical103
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implementation of the level set equation is described in Appendix A.2 and we include an explanation104

of a re-initialization procedure that uses the fast marching method (FMM) in Appendix A.3.105

2.2. Coupling between Ice Sheet Model and LSM106

For the computational experiments performed in this study the LSM described above requires a 2-D ice107

velocity field u = (u,w) that comes from an ice flow model, which we obtain using either the shallow ice108

approximation (SIA) or the shallow shelf approximation (SSA), see Appendix B.1 and B.2, respectively.109

The ice velocities u and w, the speed function F , and the level set function ϕ, are defined on a 2-D grid,110

with the ice thickness H and the height of the upper surface h defined on a 1-D grid. The overall solution111

procedure and details regarding the coupling between ice sheet model and the LSM are as follows:112

1. Computing the velocities, uk and wk: At any time tk, the ice thickness Hk and the height of the upper113

surface hk are known. Hk, hk and the horizontal derivatives of hk (determined using the central difference114

approximation) are used to calculate the horizontal and vertical velocities at tk, uk and wk, respectively.115

In the radially symmetric SIA experiments, uk is computed using Eqn (B8) and wk using Eqn (B9).116

Whereas for the marine ice sheet and ice shelf experiments, we apply the Picard iteration of the SSA,117

Eqn (B16), to compute uk. The derivatives of uk and the bedrock are then determined using the central118

difference approximation and wk is computed using Eqn (B14), for ice stream, and Eqn (B15), for ice119

shelf.120

2. Computing the speed, F k: The velocities, uk and wk, together with the given surface mass balance121

function, are used to determine F k for grid points interior the ice sheet using Eqn (5). For grid points122

exterior to the ice sheet F k is determined using the procedure described in Appendix A.1.123

3. Computing ϕk+1: The discretized level set evolution Eqn (A5) and the numerical procedure described124

in Appendix A.2 is used to determine the level set at time tk+1, ϕk+1.125

4. Extract Hk+1: The zero level set is determined with subgrid scale precision from the zero contour line of126

ϕk+1. The zero level set identifies the ice surface and is used to determine Hk+1 and hk+1. The terminus127

or grounding line position is identified as the location where the zero level set intersects the bottom128

domain boundary. Although we note that our ice velocity solver does not use any subgrid method; for129

example, the exact grounding line position is not used in the SSA computation.130
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5. Re-initialization: The FMM algorithm (Appendix A.3) can be used to rebuild the level set function ϕ.131

This step is only necessary every 50 to 100 time steps depending on the complexity of the problem and132

the required accuracy.133

3. NUMERICAL RESULTS134

Our aim in this section is to validate the LSM as an effective method for capturing ice sheet evolution,135

including grounding line migration, by comparing results from numerical simulations against various136

analytical and benchmark solutions. We first compare the LSM result for an idealized glacier test case137

with a prescribed velocity field and mass balance, after which we examine the behavior and performance138

of the LSM for tracking both grounded and marine ice sheet boundaries.139

3.1. An idealized test case140

Following Pralong and Funk (2004), we first consider an idealized glacier test case in order to141

focus in on the coupling between the level set calculation and the ice-flow problem. This test case142

fixes the ice flow solution with the given velocity field u(x, z) = x2 + z2 and w(x, z) = 0 and glacier143

surface height h(x, t) = x− x2 + xt. The corresponding extended mass balance function is chosen as144

M(x, z, t) = x+ (x2 + z2)(1− 2x+ t), so that Eqn (1) is satisfied identically in 2-D (Picasso and others,145

2004). The evolution of this “glacier surface” is then simulated using the level set Eqn (4) with the imposed146

flow field u,w and mass balance function M(x, z, t) so that the evolved surface height may be compared147

with the analytical solution h(x, t). The numerical results, from the initial position (at t = 0) to the final148

position (at t = 2), show excellent agreement with the analytical solution (Fig. 2a). We calculate the149

discrete `1-norm of the absolute error for h at t = 2 on uniform spaced grids of 60× 60, 75× 75, 90× 90150

and 105× 105 using the second-order TVD-RK and second-order ENO without re-initialization and time151

step ∆t = 0.005 (Fig. 2b). From these results, we estimate the rate of convergence of the `1 error norm to152

be O(∆x1.3) (and O(∆x1.9) for the `2 error).153

3.2. Halfar similarity solution154

We next apply the level set method to a well-known time-dependent solution of the SIA model called the

Halfar similarity solution. To find this exact solution, we first write the no slip SIA equation (Schoof and

Hewitt, 2013)

∂H

∂t
= ∇.

(
ΓHn+2|∇h|n−1∇h

)
+M(x, t), (6)
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Fig. 2. (a) Evolution of the interface due to an imposed velocity field and surface mass balance. The interface position

is shown at equally-spaced times between t = 0 and 2. The points (‘◦’) represent the analytical solution and the solid

lines correspond to the numerical approximation of the LSM. The simulation uses a spatial grid 60 × 60 and time

step ∆t = 0.005. (b) Verification of the rate of convergence O(∆x1.3) using the `1-norm error.

where Γ = 2A
n+2(ρg)n and H denotes the ice thickness (refer to Appendix B.1 for details). Halfar (1981)

derived a similarity solution for this problem in the case of a flat bed (b(x) = 0) and no surface mass balance

(M(x, t) = 0). Supposing that H(0, t0) = H0 for t0 > 0 and the distance from the origin r = (x2 + y2)1/2,

the 2-D Halfar solution to the SIA is

H(r, t) = H0

(
t0
t

)α 1−

((
t0
t

)β r

R0

)n+1

n


n

2n+1

, (7)

where t0 = (β/Γ)(7/4)3R4
0 H

−7
0 is a characteristic time (Bueler and others, 2005). Note that the values155

of the parameters α = 1
9 and β = 1

18 are such that the factors t−α and t−β change very slowly for large156

times t. Other parameters used in this computation are the Glen’s flow law exponent n = 3 and ice softness157
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A = 10−16 Pa−3 a−1, ice density ρ = 910 kg m−3, gravitational acceleration g = 9.81 m s−2, H0 = 3600 m,158

and R0 = 750 km.159
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Fig. 3. (a) A contour plot of the initial level set function ϕ at t = 100 with the red line denoting the zero level set,

ϕ = 0, of the ice surface; (b) surface elevations of the evolving ice sheet; (c) the absolute error between the Halfar

exact solution and the computed LSM solution at t = 10000 years.

We choose initial time t = 100 in Eqn (7) so that H(r, t = 100) is the initial ice thickness. To compute the160

surface elevation of the Halfar similarity solution using the LSM, we evolve the level set Eqn (4) with the161

SIA horizontal and vertical velocities (Eqns (B8) and (B9), respectively) to compute the new surface at time162

t, identified with ϕ(r, z, t) = 0. The level set function is computed on the domain [0, 1000] km× [0, 5000] m163

with 200× 100 grid size (∆r = 5 km along the radial axis and ∆z = 50 m along the vertical axis).164

We compute an extended velocity field outside the ice, which is then used to generate a signed distance165

function (Eqn (3)) depicted in Fig. 3a based on the initial level set function ϕ(r, z, t = 100). This initial166

surface is then evolved in time and Fig. 3b compares the surface elevation of the ice sheet at t = 1000 and167

10000 years (where ϕ(r, z, 1000) = 0 and ϕ(r, z, 10000) = 0) with the Halfar solution (Eqn (7)). The absolute168

error between the elevations from the exact Halfar solution and the LSM approximation at t = 10000 years169
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is small, limited to at most 30 m at the ice divide (Fig. 3c). The error increases toward the margin due to170

steeper surface gradients near the terminus (Fig. 3c). In spite of this, the position of the margin is obtained171

to within a relative error of 0.29% (comparing 894.14 km (Halfar) with 896.71 km (LSM)). These results172

are in close agreement with the exact solution. We repeated the experiment with uniformly spaced grids173

of 160× 80, 200× 100, 250× 125 and 300× 150 and found the rate of convergence of the absolute error in174

the position of the margin to be O(∆r1.1).175

3.3. Radially symmetric ice sheet experiments176

In this section we perform a moving-margin experiment described in the European Ice Sheet Modelling177

INiTiative (EISMINT) intercomparison project (Huybrechts and Payne, 1996). The aim of this experiment178

is to find a steady state ice sheet surface solution for a given mass balance function.179

Before addressing the EISMINT experiment we first introduce the steady state solution for an ice sheet

with flat bedrock which occurs when the net mass of ice remains constant over some period of time. In

other words, the rate of change of the ice thickness ∂H
∂t = 0, so that the SIA mass balance (Eqn (6)) reduces

at steady state to

M(r)− 1

r

∂(rHū)

∂r
= 0, (8)

where r is the radial coordinate and ū is the vertically averaged ice velocity. Assuming that the surface

mass balanceM(r) is independent of time and the bedrock is flat, the solution for the steady ice thickness

profile is

H(r) =

((
2(n+ 1)

nρg

)n n+ 2

2A

) 1

2(n+1)

×

 R∫
r

1

ξ

ξ∫
0

M(η)η dη


1

n

dξ


n

2(n+1)

, (9)

where R denotes the margin position at steady state (Bonan and others, 2016). The EISMINT

intercomparison project imposes the surface mass balance function

M(r) = min
(
0.5, 10−2 · (450− r)

)
m a−1, (10)

for which the bisection method (a simple numerical root-finding algorithm) can be applied to180 ∫ R
0 M(η)η dη = 0 to find the steady state margin position of R = 579.81 km. We note that the integral181 ∫ ξ
0 M(η)η dη in Eqn (9) can be evaluated numerically using (Eqn (10)), and so the steady H profile can182

be estimated accurately using Simpsons 1/3 rule (see Bonan and others, 2016). Parameters used in the183
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EISMINT benchmarks are the Glen’s flow law exponent n = 3 and ice softness A = 10−16 Pa−3 a−1, ice184

density ρ = 910 kg m−3, and gravitational acceleration g = 9.81 m s−2.185

We perform two experiments on a flat bedrock with no sliding. The first is the EISMINT moving margin

experiment, designed with no initial ice mass (Huybrechts and Payne, 1996). The second is similar but

initialized with the following ice mass profile (Bonan and others, 2016):

H0(r) = 1000

(
1−

( r

450

)2
)

m. (11)

Figures 4a and 4b depict the evolution of the ice sheet geometry for these two initial conditions and both
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Fig. 4. Ice surface solutions for the EISMINT moving-margin experiment with (a) zero initial ice mass and (b) initial

ice mass given by Eqn (11). The LSM simulated profiles are shown every 1000 years (blue lines) until steady state at

t = 20000 years (red line) and the steady state reference solution is represented by circles. (c) The absolute error at

the steady state between the LSM (without and with an initial ice mass) and the numerical reference value.
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Table 1. Steady state results from the EISMINT moving-margin experiment. A comparison between the benchmark

solutions (see Table 5 in Huybrechts and Payne, 1996), the reference solution from numerical integration using

Eqn (9), and the LSM solutions with grid size 240× 60 (∆r = 2.7 km and ∆z = 60 m) obtained without an initial

ice mass and with an initial ice mass from Eqn (11).

Ice thickness Position of the

at r = 0 (in m) margin (in km)

EISMINT/2d 2982.3± 26.4 593.3± 9.0

Reference 2986.91 579.81

LSM (without initial ice mass) 2987.96 579.96

LSM (with initial ice mass) 2987.81 579.94

186

are run for 20,000 years to reach the steady state. The steady state ice divide thickness was found to be187

2986.91 m and 2987.81 m for the two experiments, which both lie within the range 2982.3± 26.4 m given by188

the EISMINT intercomparison, and are extremely close to the numerically integrated value obtained from189

Eqn (9) (Table 1). Similarly, the margin position of both experiments are very close to the numerically190

integrated reference value in Table 1. The absolute error between the simulated result and the reference ice191

thickness across the profile is mostly less than 1 m and never rises above 4.1 m (Fig. 4c). The relative `1-192

norm errors of the surface elevation with and without initial ice mass experiments are 0.038% and 0.036%,193

respectively. After repeating the experiment, without initial ice mass, for grid sizes 192× 60, 216× 60,194

240× 60 and 264× 60 we determined the rate of convergence of the absolute error in the position of the195

margin to be O(∆r1.5). Both Table 1 and Fig. 4 show that our LSM method is able to achieve an excellent196

equivalent estimation of the EISMINT intercomparison result without using coordinate stretching or grid197

refinement near the terminus.198

We now investigate two further experiments, following Bonan and others (2016), which use the EISMINT

surface mass balance with no initial ice mass and a non-flat (fixed) bedrock elevation

b(r) = 2000− 2000
( r

300

)2
+ 1000

( r

300

)4
− 150

( r

300

)6
m. (12)

The first experiment considers no sliding, and the second includes sliding with a bed friction parameter199

C = 7.624× 106 Pa s1/3 m−1/3. Ice sheet profiles for these non-flat bedrock experiments reach a steady state200
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Fig. 5. Ice surface solutions for the EISMINT moving-margin experiment with non-flat bedrock (a) without basal

sliding and (b) with basal sliding. The LSM simulated profiles are shown every 1000 years (blue lines) until steady

state at t = 10000 years (red line). The grid size is 240× 60 (∆r = 2.5 km and ∆z = 50 m).

by roughly t = 10000 years (see Fig. 5). The ice divide thickness at steady state was found to be 4026.25 m201

for the non-sliding case and 3801.72 m for the sliding case. The margin position of the non-sliding and202

sliding experiments are 571.81 km and 578.47 km, respectively. We have found that the LSM produces203

smooth changes along the ice interface in contrast to the moving-point approach of Bonan and others204

(2016) which show linear gradients of the ice sheet surface near the margin as a result of the mesh size205

(refer to Figures 2 and 4 from Bonan and others (2016)). This is because our ice interface is determined206

with sub-grid scale accuracy as we interpolate between the 2-D level set values to determine the zero level207

set, whereas the ice interface in Bonan and others (2016) is linearly interpolated between the 1-D grid208

points of the ice thickness evolution equation.209
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Fig. 6. Evolution of the ice shelf interface using the shallow shelf approximation for cases (a) zero accumulation and

(b) accumulation M = 0.3 m a−1. The initial shelf is a rectangular block of ice and the interface is displayed every

50 years, with the steady state highlighted in red. The points (‘◦’) show the exact ice shelf solution for comparison.

(c) Absolute error of the steady state (t = 1000 years) for both experiments.

3.4. Marine ice sheet experiments210

For the remainder, we shift our focus to simulating marine ice sheets using the governing equations for the211

shallow shelf approximation (SSA) described in Appendix B.2.212

3.4.1. Steady ice shelf213

The velocity and thickness of a steady 1-D marine ice shelf can be computed analytically due to the relative214

simplicity of the SSA Eqn (B12) (Van der Veen, 1983). The exact solution depends on the velocity and215

ice thickness at the grounding line, which we take to be ug = 50 m a−1 and Hg = 500 m respectively. We216
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propose two experiments, one where the surface mass balanceM = 0 and a second withM = 0.3 m a−1. In217

both cases, the initial condition is an ice shelf block having dimensions [0, 50] km×
[
ρ
ρw
Hg,

(
ρ
ρw
− 1
)
Hg

]
m,218

which satisfies the flotation criteria. The bottom boundary is considered a free surface in the water without219

any basal melting. The horizontal velocity is computed using the Picard iteration (B16) and then the220

vertical velocity is determined using Eqn (B15). The grid spacings for the LSM solver are ∆x = 0.5 km221

and ∆z = 5 m with the same grid spacing ∆xv = 0.5 km used for the velocity solver. The ice surface is222

evolved in time using the LSM (Eqn (4)) and Figs. 6a and 6b depict the surface profiles at various times for223

the two experiments with and without accumulation. The steady-state ice thickness at x = 50 km for the224

case without accumulation is found to be 223.14 m and with accumulation (M = 0.3 m a−1) is 290.73 m.225

The absolute error is slightly higher near the grounding line as expected due to the steeper ice thickness226

gradient at this location (Fig. 6c). The relative `1-norm errors in the ice-air shelf interface with and without227

accumulation are 0.24% and 0.34%, respectively and the rates of convergence using the `1-norm error are228

O(∆x1.1) and O(∆x1.3), respectively. These numerical results show very good agreement with the exact229

steady state solution for these ice shelf test cases.230

Table 2. Parameter values the marine ice sheet experiments.

Parameter Value

ice density, ρ 900 kgm−3

water density, ρw 1000 kgm−3

gravitational acceleration, g 9.8m s−2

exponent in Glen’s law, n 3

surface mass balance,M 0.3ma−1

bed friction exponent, m 1/3

bed friction parameter, C 7.624× 106 Pa s1/3 m−1/3

3.4.2. Marine ice sheet benchmark experiment231

Our final experiment is a study of the full marine ice sheet that includes a grounded ice stream attached

to a floating ice shelf. The goal here is to examine the ability of the LSM to accurately track grounding

line migration. We will study the hysteresis effect for a two-dimensional symmetrical marine ice sheet and

compare results with the benchmark Experiment 3 (EXP 3) from the Marine Ice Sheet Intercomparison
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Project (MISMIP)(Pattyn and others, 2012). The setup uses an overdeepened bed with polynomial shape

b(x) = 729 − 2184.8
( x

750

)2
+ 1031.72

( x

750

)4
− 151.72

( x

750

)6
m, (13)

and model parameter values given in Table 2. The experiment consists of a sequence of 13 steps (or time232

intervals) of a given length, in each of which the ice sheet has a different value of the Glen’s flow rate233

constant A (the data is summarized in Table 3). Horizontal and vertical grid spacings for the level set234

discretization are ∆x = 7.5 km and ∆z = 60 m. To ensure a sufficiently accurate horizontal velocity we use235

a finer grid for the velocity solver with spacing ∆xv = 1.875 km, although only velocities coincident with236

the level set grid are used by the level set solver. We use a time step of ∆t = 5 years and every 500 years237

the level set function is re-computed using the fast marching method (see Appendix A.3). The solution238

is initialized with a 50 m thick grounded ice layer that extends to the location where it becomes afloat at239

position x = 479.1 km.240

Table 3. Values of the Glen’s flow law rate constant A and time intervals used for each step of the MISMIP EXP 3

benchmark, corresponding to the simulations displayed in Fig. 7 (Pattyn and others, 2012).

Step no. A (s−1Pa−3) time interval (years)

1 3× 10−25 3× 104

2 2.5× 10−25 1.5× 104

3 2× 10−25 1.5× 104

4 1.5× 10−25 1.5× 104

5 1× 10−25 1.5× 104

6 5× 10−26 3× 104

7 2.5× 10−26 3× 104

8 5× 10−26 1.5× 104

9 1× 10−25 1.5× 104

10 1.5× 10−25 3× 104

11 2× 10−25 3× 104

12 2.5× 10−25 3× 104

13 3× 10−25 1.5× 104

The model simulation proceeds as follows. Starting from the initial values, the solution is computed241

using the value of A listed for step 1 in Table 3 and over the corresponding time interval. The code is then242
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restarted with the new value of A listed in step 2 and using the result from the first step as the initial243

state. This procedure continues until the end of the final step and the results are shown in Fig. 7. The
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Fig. 7. Simulated steady state profiles of the MISMIP EXP 3 results. Steps 1–13 correspond to the parameter

changes listed in Table 3.

244

corresponding grounding line (GRL) position is plotted as a function of 1/A in Fig. 8 in order to demonstrate245

the hysteresis phenomenon and compare with the MISMIP results in Fig. 5 of Pattyn and others (2012).246

In Fig. 8 the black S-shaped curve represents the path according to the boundary layer theory of Schoof247

(2007) with our modelled steady state grounding line positions correctly located on the upper and lower248

branches of this approximate analytic solution. The SSA fixed grid models used in MISMIP EXP 3 (EBU1249

(∆x = 6 km), DPO4 (∆x = 0.1 km), and FPA5 (∆x = 0.3 km)) are either unable to reproduce hysteresis or250

have solutions which lie several tens of kilometres from the boundary layer theory (see red plots in Fig. 8).251

In contrast, our lower resolution fixed-grid (∆x = 7.5 km) level-set approach produces modelled positions252

that closely match those only achieved with the highly resolved (∆x ≤ 1.2 km) moving grid methods or253

the finest adaptive grid (∆x = 0.15 km) SSA models in the MISMIP (see Fig. 5 and Table 2 in Pattyn254

and others (2012)). Our results in Fig. 8 are also plotted with SSA-H FPA4 (∆x = 1.2 km), a MISMIP255

participating SSA model with the Pollard and DeConto heuristic (a grounding line parameterization that256

uses the matched asymptotics of Schoof (2007)) and show excellent agreement (Pattyn and others (2012)).257

Another test of the numerical results is to compare the difference in GRL position between steps 2 and 12,258

where any differences are expected to be a result of numerical approximation (Durand and others, 2009a).259

For our LSM configuration we calculate this gap to be 3.17 km (2.13 km between steps 1 and 13) using our260

relatively coarse uniform grid (∆x = 7.5 km for the LSM and ∆xv = 1.875 km for the velocity solver). We261
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note that in Figure 6 of Durand and others (2009a) the grid size has to be as low as 40 m to achieve a similar262

degree of accuracy and a mesh size of 25− 200 m close to the grounding line was used by Gagliardini and263

others (2016); however, these are full Stokes models and so use a different physical approximation needing264

higher resolution.
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Fig. 8. Hysteresis in the grounding line position as a function of forcing viscosity (A−1) for MISMIP EXP 3. The

black line is from the boundary layer theory of Schoof (2007); ‘◦’ points represent results from our LSM simulations;

the red points ‘•’, ‘×’, and ‘�’ depict results from the fixed grid MISMIP participating models SSA FPA5, SSA

EBU1, and SSA DPO4, respectively; and ‘�’ points are from the MISMIP participating model SSH-H FPA4 which

uses the Pollard and DeConto heuristic (see Fig. 5 in Pattyn and others (2012)).

265

To investigate further we examine the sensitivity of the GRL position (xg) of the steady state ice sheet266

profiles between steps 2 and 12 for different mesh resolution. For this reason, we compare results using267

a grid size of (∆x,∆z) = (10 km, 80 m), (7.5 km, 60 m), (5 km, 40 m) and (3.75 km, 30 m) for the LSM with268

a fixed grid size ∆xv = 15/8 km for the velocity solver. Similarly, we also consider different velocity grid269

sizes with ∆xv = 15/8, 15/16, 15/32, and 15/64 km and a fixed grid size (∆x,∆z) = (3.75 km, 30 m) for270

the LSM. Results are presented in Fig. 9a and Fig. 9b where steady xg are plotted as a function of the271

horizontal grid size ∆x of the LSM and the grid size ∆xv of the velocity solver, respectively. In Fig. 9a,272

the GRL position gap between steps 2 and 12 reduces as the grid size is reduced and reaches 1.89 km at273

the LSM grid ∆x = 3.75 km. Numerical results also depend on the accuracy of velocities that we use for274

the LSM. When steady xg are presented as a function of the grid size of the velocity solver (for a fixed275

LSM grid size ∆x = 1.875 km) the gap reduces to 150 m and we find that the GRL converges to a value276

near 730 km at the lowest resolution (Fig. 9b).277
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Fig. 9. Evolution of the steady xg as a function of (a) the horizontal mesh size ∆x of the LSM for fixed mesh

size ∆xv = 1.875 km of the velocity solver and (b) the mesh size ∆xv of the velocity solver for fixed mesh size

∆x = 3.75 km of the LSM. Blue circles (red squares) represent results obtained for simulations starting from the

steady state obtained at step 2 (step 12). The dashed line depicts results obtained using Schoof’s boundary layer

(BL) theory reported in Durand and others (2009a).

We have shown that by using the LSM on a relatively coarse fixed grid we can determine the evolving278

grounding line position with fine-scale accuracy. The zero level set determines the ice interface and is found279

by interpolating level set values computed on the fixed grid. The grounding line position is identified as280

the location where the zero level set meets the bottom of the domain. In spite of our coarse grid this281

method allows us to determine the grounding line position with subgrid scale precision. The LSM requires282

an additional dimension and therefore greater computational time is needed compared to solving the283

kinematic boundary condition (Eqn (1)). This additional computational time cost is especially apparent284

when solving the relatively fast SIA and SSA, but would not be so significant if the LSM were coupled to the285

more computationally demanding full-Stokes equations. Regardless, simulating grounding line migration286

has required ice sheet models using irregular and adaptive mesh refinements, which come with considerable287

computational cost and complexity, whereas we have shown that a regular fixed-grid model, using the288

LSM, can accurately track advancing and retreating grounding line positions. Furthermore, the coarser289

grid also results in computational savings from the longer time steps allowed by the CFL condition. The290

other alternative is to use a subgrid parameterization, such as using a heuristic rule based on boundary291

layer theory valid for steady-states. The level-set approach used here does not rely on a parameterization292

or employ any other special treatment at the grounding line. The method described has not been tried293
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for two horizontal dimensions, but the 3D LSM could be implemented by extending the array structures294

and gradient operators for tracking the propagating surfaces in two horizontal dimensions (Sethian, 1999b;295

Bondzio and others, 2016).296

4. CONCLUSIONS297

We have devised a new level set algorithm for tracking an evolving ice sheet surface and grounding line298

position, based on an underlying fixed-grid finite difference discretization. Other fixed-grid methods tend299

to be less competitive relative to moving grid methods for dynamic interface problems like ice sheet models,300

and they can only obtain comparable accuracy with moving-grid methods by using highly resolved grids301

near the grounding line. Our level-set approach is able to track the ice sheet margin and grounding line302

location dynamically for both grounded and marine ice sheets without the need for grid refinement and303

any subgrid parameterization or heuristic rule. The method is tested by comparing numerical simulations304

with analytical and benchmark solutions. In particular, we compared model solutions for grounded ice305

sheets with the EISMINT benchmark (Huybrechts and Payne, 1996) and for marine ice sheets with the306

MISMIP intercomparison benchmark (Pattyn and others, 2012). These experiments demonstrate that the307

level set method is an accurate approach for capturing the ice sheet marginal position, while exploiting the308

efficiency in using an underlying fixed grid that is coarse relative to other methods that employ a uniformly309

or locally adapted fine mesh. We have therefore shown that the level set method is an accurate and efficient310

approach for tracking the ice surface interface, terminus positions and grounding lines for grounded and311

marine ice sheets.312
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APPENDIX A. NUMERICAL IMPLEMENTATION OF THE LSM317

A.1. Extended speed318

The level set equation (4) requires that the speed F (Eqn (5)) is defined for all level sets throughout the

computational domain Ω, not just the zero level set or on one side of the interface. Firstly, the mass balance

source term is prescribed on the interface only and must be smoothly extended within the ice for numerical
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stability. As such M is determined by linearly interpolating vertically betweenMh on the ice-air interface

and Mb on the ice-water (or ice-bedrock) interface. Note, that this is an artificial measure that helps to

smooth the derivatives in the level set method solver and not a real change in ice mass. In our case the

ice velocity components are obtained from an ice sheet model and thus defined inside the ice region (Ωi).

Hence, these velocities, added to M, must now be be extended outside the ice domain (Ωc) (Adalsteinsson

and Sethian, 1999). Given a level set function ϕ, our goal is then to construct the extended speed F ext

such that

∂ϕ

∂t
+ F ext‖∇ϕ‖ = 0, (A1)

where we require that F ext matches the given speed F on the zero level set,

F ext = F on ϕ(x(t), t) = 0.

This new speed field F ext is known as the “extended speed” (see Fig. 10). A desirable feature of F ext is

x

z

Air

Ice

F

F
ext

Fig. 10. Constructing extended speeds. The solid line inside the domain represents the ice-air interface or zero

level set. Suppose F is known at ‘◦’ points inside the ice then F ext must be extended to ‘∗’ points outside the ice.

that it should move the neighbouring level sets in such a way that the signed distance function is preserved.

Following Zhao and others (1996), ϕ(x(t), t) remains a signed distance function if and only if

∇F ext · ∇ϕ = 0, (A2)

which in 2-D becomes

∂ϕ

∂x

∂F ext

∂x
+
∂ϕ

∂z

∂F ext

∂z
= 0. (A3)
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Since the interface may experience topological changes, a few different cases must be considered when

determining F ext (Sethian, 1999b). As an example, suppose (i− 1, j) and (i, j − 1) are the points where F

is known (inside the ice), then using finite differences we can approximate the extended speed F ext at the

position (i, j) (outside the ice) by

F ext
i,j =

Fi−1,j(ϕi,j − ϕi−1,j) +
(

∆x
∆z

)2
Fi,j−1(ϕi,j − ϕi,j−1)

(ϕi,j − ϕi−1,j) +
(

∆x
∆z

)2
(ϕi,j − ϕi,j−1)

, (A4)

where ∆x and ∆z are the horizontal and vertical grid spacings, respectively. This approach results in319

Eqn (A2) being satisfied for all points outside the ice.320

A.2. Numerical scheme321

The LSM is a versatile numerical technique that can be implemented in concert with a variety of322

discretizations including finite differences, finite elements, moving meshes, etc. For the sake of simplicity,323

we have chosen to use a fixed, rectangular, Euclidean mesh in which all grid cells are of equal size although324

the grid spacing in each direction may be different. After defining discrete values of ϕ and F at every grid325

point in the computational domain, we use a discrete form of the governing equations to evolve ϕ forward326

in time, and hence transport the interface across the underlying grid.327

We use an explicit Runge-Kutta (RK) type scheme to determine ϕ(x, t+ ∆t) based on known previous

values of ϕ(x, t), the speed in the outward normal direction F , and the gradient ∇ϕ. For a given time,

tk, let ϕk = ϕ(tk) and after some time increment ∆t, we denote new values as ϕk+1 = ϕ(tk + ∆t). We

implement the Total Variation Diminishing Runge-Kutta (TVD-RK) scheme of second order, also known

as Heun’s method or the modified Euler method (Osher and Fedkiw, 2006)

ϕk+1
ij = ϕkij +

F kij∆t

2

(
‖∇ϕkij‖+ ‖∇ϕ̃k+1

ij ‖
)
, (A5)

where

ϕ̃k+1
ij = ϕkij + F kij∆t‖∇ϕkij‖,

and ‖∇ϕij‖ =
√

((ϕx)ij)2 + ((ϕz)ij)2. Here (ϕx)ij and (ϕz)ij denote the spatial derivatives of ϕ at the328

position (xi, zj). As is usual for explicit time-stepping schemes, the allowable time step ∆t is restricted in329

practice by a Courant-Friedrichs-Lewy (CFL) condition that depends on the spatial grid size ∆x and the330

flow speed.331

Moving on to the spatial discretization, traditional finite difference methods based on fixed stencil332

interpolations work well for globally smooth problems, but at second or higher order spatial accuracy333
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these schemes are necessarily oscillatory near a discontinuity. We therefore approximate spatial derivatives334

(ϕx)ij and (ϕz)ij in Eqn (A5) using the Essentially Non-Oscillatory (ENO) scheme (Osher and Fedkiw,335

2006). In this approach, a higher order non-oscillatory interpolant for piecewise smooth functions is used336

to approximate ϕ, and is then differentiated piecewise to obtain a corresponding discrete approximation337

for ∇ϕ. In essence, the ENO approach extends first-order accurate upwind differencing to second-order338

spatial accuracy in a way that suppresses oscillations.339

We next discuss suitable choices for initial and boundary values of ϕ. The level set function can be340

initialized simply using Eqn (3) with ∂Ω as the initial surface for the ice sheet. Then, using the extended341

velocity discussed in Section A.1, the level set in every subsequent time step is guaranteed to remain a342

signed distance function.343

Every node at the edge of the computational domain must be assigned a suitable boundary condition. We

choose to use a special form of linear extrapolation described by Mitchell (2004) that adds an appropriate

number of “ghost nodes” beyond the edge of the grid when working on nodes near the edge. The values

of ϕ at ghost nodes are determined by linear extrapolation from the computational boundary with a slope

direction that matches the sign of the level set at the boundary node. Suppose (xi, zj) for i = 1, 2, . . . , p

and j = 1, 2, . . . , q are nodes in the domain and (x0, zj), (xp+1, zj), (xi, z0) and (xi, zq+1) are ghost nodes,

then the values at the ghost nodes left of the domain are given by

ϕ(x0, zj) = ϕ(x1, zj) + sign(ϕ(x1, zj))|ϕ(x1, zj)− ϕ(x2, zj)|,

for j = 1, 2, . . . , q, and we similarly define the values at the other ghost nodes (xp+1, zj), (xi, z0) and344

(xi, zq+1). This is not a traditional PDE boundary condition, however, it is quite useful in level set345

computations for domains with inflow boundaries that have no physically appropriate boundary conditions,346

as it remains stable whereas regular linear extrapolation may cause stability issues (Mitchell, 2004).347

A.3. Re-initialization using the Fast Marching Method348

The level sets that are located near the zero level set move with speeds that can considerably distort349

and stretch the level set function ϕ. Under such circumstances, ϕ can develop noisy features and steep350

gradients that are detrimental to finite-difference approximations and so can fail to preserve the signed351

distance function. As a result, it may be necessary to periodically re-initialize the level set function, which352

involves stopping the calculation at some point in time and rebuilding the level set function according to353
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the signed distance function (Sethian, 1999b), thereby ensuring that ϕ remains smooth enough to allow its354

spatial derivatives to be computed with sufficient accuracy.355

Although there are several ways this re-initialization could be carried out in practice, we implement the356

Fast Marching Method (FMM), which is known to be very effective for this purpose. The FMM offers a fast357

approach for rebuilding ϕ having computational cost of O(N logN), where N is the total number of grid358

points (Adalsteinsson and Sethian, 1999). To re-initialize the signed distance function ϕ, the FMM solves359

the eikonal equation ‖∇ϕ‖ = 1 on either side of the interface ∂Ω (Sethian, 1999a; Vogl, 2016). The FMM360

algorithm considers three categories of grid points: CLOSE, FAR and ACCEPTED. The ACCEPTED361

points are initially assigned to grid nodes that immediately surround the zero level set, CLOSE points are362

then one grid point further away, and the remaining nodes in the domain are labelled FAR (see Fig. 11).363

The shortest path from each ACCEPTED grid node to the contour of the zero level set (ice-air or ice-364

water interface) is determined using a non-linear optimization solver and used to assign the signed-distance365

value to each ACCEPTED point. The procedure continues with the following steps that efficiently and366

systematically marches CLOSE and FAR points to ACCEPTED in order to assign the signed-distance367

value at all grid points in the domain.368

1. The signed-distance value of CLOSE points are calculated based on the known signed-distance at369

neighbouring ACCEPTED points and the grid size.370

2. Let TRIAL be the CLOSE point with the smallest value of ϕ.371

3. Any FAR points that directly neighbour TRIAL are relabelled CLOSE.372

4. Relabel TRIAL points to ACCEPTED.373

5. Repeat steps 1–4 until all points become ACCEPTED.374

The accuracy of this approach means re-initialization is required less often. For our simulations we used375

the FMM to rebuild the level set function every 50 to 100 time steps.376
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Fig. 11. Initialization of the Fast Marching Method, where ‘◦’ denote the initial ACCEPTED points, ‘x’ the

CLOSE points and ‘∗’ indicating the FAR points.

APPENDIX B. ICE SHEET EQUATIONS377

B.1. Shallow ice approximation (SIA)378

The SIA treats the ice sheet as a shallow film that flows and spreads under its own weight (Hutter,

1983). We denote the sheet thickness at position (x, y) and time t by H(x, y, t). Then, in terms of z

measured vertically upward from sea level, the height of the upper surface in contact with the atmosphere

is represented by z = h(x, y, t) and the lower bedrock surface by z = b(x, y) (which has zero normal velocity,

assuming negligible melt there). Referring to Fig. 12, these three height variables are related by

h(x, y, t) = b(x, y) +H(x, y, t). (B6)

H(x,y,t)
w

u

Ice divide

Free surface, 
z = h(x,y,t) x

z

Accumulation

Ablation

Bedrock, z = b(x,y)

Fig. 12. Geometry of the shallow ice sheet flow problem.

379

The ice deformation is determined by the incompressible Stokes equations, coupled with Glen’s flow

law (Glen, 1958) under the shallow ice assumption. In the isothermal case, the horizontal velocity
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components U = (u, v) as

U = −2A(ρg)n

n+ 1

[
Hn+1 − (h− z)n+1

]
|∇h|n−1∇h, (B7)

in the case where there is no sliding relative to the underlying bedrock. The other variables and parameters380

in the equations are the gravitational acceleration g = (0, 0,−g), ice density ρ, creep parameter A, and381

Glen’s law exponent n ≈ 3.382

For a grounded ice sheet that is radially symmetric about the ice divide, denoted r = 0. The radial

symmetry implies that the sheet geometry depends only on r so that h = h(r, t), H = H(r, t) and b = b(r).

For the case of non-sliding ice, the radial velocity is U = u r̂ where r̂ denotes the unit vector in the radial

direction. At the ice divide (r = 0), a symmetry condition is imposed

u = 0 and
∂h

∂r
= 0.

To handle the case when there may be some slip at the ice sheet base, we consider a friction law that

relates basal stress τb to the sliding velocity ub at the bed by means of the relationship τb = f(ub) = Cu1
b/n,

where the bed friction parameter C depends on the local bed roughness and a bed friction exponent,

m = 1
n (Schoof and Hewitt, 2013). Using the stress balance and Glen’s flow law, the sliding velocity is

ub = −
(
ρgH
C

∂h
∂r

)1/m
, so that the radial velocity can be written in a more general form that captures both

the sliding and non-sliding cases:

u(r, z, t) = −2A(ρg)n

n+ 1

[
Hn+1 − (h− z)n+1

] ∣∣∣∣∂h∂r
∣∣∣∣n−1 ∂h

∂r
+


0, non-sliding,

−
(
ρgH
C

∂h
∂r

)1/m
, sliding.

(B8)

The vertical velocity w(r, z, t) may then be obtained from u(r, z, t) using the incompressibility condition,

which in cylindrical coordinates is

∂w

∂z
+

1

r

∂(ru)

∂r
= 0.
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Integrating this equation in z and applying the vertical no-flow boundary condition at the bed z = b(r)

yields the corresponding expression for

w(r, z, t) = − 2A
n+1(ρg)n

[(
1
r

(
∂h
∂r

)n
+ n

(
∂h
∂r

)n−1 ∂2h
∂r2

)
·
(

1
n+2

(
Hn+2 − (h− z)n+2

)
−Hn+1(z − b)

)
+
(
∂h
∂r

)n+1 (
Hn+1 − (h− z)n+1

)
− (n+ 1)∂H∂r

(
∂h
∂r

)n
Hn(z − b)

]

+


0, non-sliding,

(z − b)
(ρg
C

)1/m [1
r

(
H ∂h

∂r

)1/m
+ 1

m

(
H ∂h

∂r

) 1

m
−1
(
H ∂2h

∂r2 + ∂H
∂r

∂h
∂r

)]
, sliding.

(B9)

B.2. Shallow shelf approximation (SSA)383

The SSA is used to consider a two-dimensional symmetrical marine ice sheet. Denoting the horizontal

coordinate in the flow direction by x, symmetry implies that

u = 0 and
∂h

∂x
= 0 at x = 0. (B10)

The ice stream or grounded portion of the marine ice sheet occupies the region 0 ≤ x < xg, where xg

denotes the grounding line position. The momentum conservation equation of SSA for the grounded ice

sheet (0 ≤ x < xg) was derived by MacAyeal (1989) as

∂

∂x

(
2A−1/nH

∣∣∂u
∂x

∣∣1/n−1 ∂u
∂x

)
− C|u|m−1u = ρgH

∂h

∂x
, (B11)

where h = b + H as in the SIA model, C is the bed friction parameter and H ≥ −ρw
ρ b where ρw is384

the sea water density. The SSA Eqn (B11) represents a balance between longitudinal strain rates that385

are determined by the integrated ice hardness (the coefficient A−1/nH), the slipperiness of the bed (the386

coefficient C and exponent m), and the geometry of the ice sheet (the thickness H and surface slope ∂h
∂x).387

For the unbuttressed freely floating ice shelf that occupies the region xg < x < xc, where x = xc denotes

the calving front, we have H < −ρw
ρ b and h = (1 − ρ/ρw)H. There is no basal friction and so the term

C|u|m−1u vanishes and the sole driving stress for ice shelves is ρ(1− ρ/ρw)gH ∂H
∂x , giving the momentum

conservation equation for the shelf (xg < x < xc) as

∂

∂x

(
2A−1/nH

∣∣∂u
∂x

∣∣1/n−1 ∂u
∂x

)
= ρ(1− ρ/ρw)gH

∂H

∂x
. (B12)
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At the calving front there is an imbalance between hydrostatic pressures in ice and water due to the

buoyancy of ice, hence

2A−1/nH
∣∣∂u
∂x

∣∣1/n−1 ∂u
∂x = 1

2ρ(1− ρ/ρw)gH2 at x = xc. (B13)

At the grounding line, where ice stream couples to ice shelf, we have H = −ρw
ρ b, as well as the boundary388

condition Eqn (B13) applied at x = xg.389

Assuming ice to be an incompressible material, the vertical velocity for the ice stream with rigid bedrock

(∂b∂t = 0) and no melting at the bottom surface is determined by

w(x, z, t) = u(x, t)
∂b

∂x
− (z − b(x))

∂u

∂x
, 0 ≤ x ≤ xg. (B14)

For the ice shelf the vertical velocity is given by

w(x, z, t) = wsl − (z − zsl)
∂u

∂x
, xg < x ≤ xc, (B15)

where wsl is the vertical velocity at sea level that can be determined from the known surface and basal390

mass balances, Mh and Mb, respectively (Greve and Blatter, 2009).391

For a given ice thickness H(x) (determined by the LSM in our case) the velocity u(x) is determined by

solving the nonlinear partial differential equations (B11) and (B12). Our solution approach implements an

iterative numerical method, often called a Picard iteration. Denote the current velocity iterate as u(k) and

the previous iterate as u(k−1), then the Picard iteration for Eqn (B11) (and similarly for Eqn (B12)) is:

∂

∂x

(
W (k−1) ∂u

∂x

(k)
)
− C

∣∣∣u(k−1)
∣∣∣m−1

u(k) = ρgH
∂h

∂x
, (B16)

where W (k−1) = 2A−1/nH
∣∣∣∂u∂x (k−1)

∣∣∣1/n−1
. For grounded ice, 0 < x < xg, we assume the ice is held by basal

resistance only to obtain the initial velocity estimate, u(0)(x) =
(
−C−1ρgH ∂h

∂x

)1/m
and the boundary

conditions from Eqns (B10) and (B13) are u(0) = 0, and ∂u
∂x(xg) = A

(
1
4ρ(1− ρ/ρw)gH

)n
. For floating

ice, xg < x < xc, an initial guess for velocity comes from assuming a uniform strain rate provided by the

calving front condition:

u(0)(x) = A

(
1

4
ρ(1− ρ/ρw)gH

)n
(x− xg) + ug,

where ug denotes the ice velocity at the grounding line, and the boundary conditions are u(xg) = ug and392

∂u
∂x(xc) = A

(
1
4ρ(1− ρ/ρw)gH

)n
.393
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