Chapter 24: Lights Out

Turning out the lights with linear algebra:

Sample gameplay:

Matrix Model for puzzle:

Represent the state of each light by an element of \(F_2 = \{ 0, 1 \} \):
- off \(\leftrightarrow 0 \)
- on \(\leftrightarrow 1 \)

Assign a matrix in \(M_{5 \times 5}(F_2) \) to a configuration of lights:

Assign a "toggle" matrix to each move.
Sample game play written in terms of matrices:

Sample game play written in terms of matrices:

Sample game play written in terms of matrices:

Sample game play written in terms of matrices:
A bit button configuration is solvable iff

\[(*) \sum_{i,j} x_{i,j} T_{i,j} = B \quad \text{(matrix equation)}\]

for some \(x_{i,j} \in \mathbb{F}_2 = \{0,1\} \)

\([x_{i,j}]\) is called the strategy matrix. (written as a vector it is called a strategy vector)

\[
\mathbf{x} = (x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, \ldots, x_{55})
\]

5x5 matrix	dimension 25 vector
\(T_{i,j}\) | \(\mathbf{t}_{i,j}\)
\(B\) | \(\mathbf{b}\)

Eqn \((*)\) can be written as a BIG linear system:

\[(***) A \mathbf{x} = \mathbf{b} \quad \text{where} \quad A = [\mathbf{t}_{11}, \mathbf{t}_{12}, \ldots, \mathbf{t}_{55}]\]

(25 equations in 25 unknowns)

Solving lights out \(\iff\) solving \((***)\) for a strategy vector \(\mathbf{x}\)

We now need to determine the matrix \(A\).
Lights Out Matrix: \[A = [\vec{e}_{i,1}, \vec{e}_{i,2}, \ldots, \vec{e}_{i,r}] \] where \(\vec{e}_{i,j} \) is toggle vector for button \((i,j)\).
A little twist:

We can use techniques from linear algebra to solve (**), but arithmetic must be done in \mathbb{F}_2:

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\quad\quad
\begin{array}{c|cc}
\cdot & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

Definition 24.2.1 A set F with two operations $+$ and \cdot satisfying the following properties for every $a, b, c \in F$ is called a field:

(a) Addition is commutative, $a + b = b + a$.
(b) Addition is associative, $a + (b + c) = (a + b) + c$.
(c) There is a unique element 0 (zero) in F such that $a + 0 = a$.
(d) For each $a \in F$ there is a unique element $-a \in F$ such that $a + (-a) = 0$.
(e) Multiplication is commutative, $ab = ba$.
(f) Multiplication is associative, $a(bc) = (ab)c$.
(g) There is a unique element 1 (one) in F such that $a1 = a$.
(h) For each non-zero $a \in F$ there is a unique element $a^{-1} \in F$ such that $aa^{-1} = 1$.
(i) Multiplication distributes over addition, $a(b + c) = ab + ac$ and $(b + c)a = ba + ca$.

All results in linear algebra hold when \mathbb{R} is replaced by a field F.

Solving linear systems over \mathbb{F}_2:

\[
\begin{align*}
x_1 + x_2 &= 1 \\
x_2 + x_3 &= 0 \\
x_1 + x_3 &= 1
\end{align*}
\]

Augmented

Matrix
Sagemath demo:

In Sagemath, \mathbb{F}_2 is denoted $GF(2)$, called the Galois field of size 2.

Example: Solve the following configuration:

$$ \vec{b} = \ldots $$

Solution:

Solvable Configurations:

\vec{b} is a solvable configuration $\iff A\vec{x} = \vec{b}$ has a solution.

Moreover,

$A\vec{x} = \vec{b}$ is solvable for all $\vec{b} \in \mathbb{F}_2^{15}$ \iff A is invertible $\iff \det A \neq 0$

For 5×5 lights out $\det A =$

For example, \ldots is
How many configurations are solvable?

\[\bar{b} \text{ solvable } \iff \]

The dimension of \(\text{col}(A) \) is \(\text{rank}(A) = \) so there are \[|\text{col}(A)| = \] solvable configurations out of \(2^{25} \) configurations.

Theorem: The probability a random configuration is solvable is

\[2^{25/2^r} = \frac{1}{4} . \]

The nullspace of \(A \) (solutions to \(A\bar{x} = \bar{0} \)) has dimension

\[\text{nullity}(A) = \text{(Rank-Nullity theorem)} \]

so

\[\text{nul}(A) = \text{span}_F() = \]

\[\delta \quad \delta_1 \quad \delta_2 \quad \delta_1 + \delta_2 \]

Optimal solution:

If \(\bar{x} \) and \(\bar{y} \) are two strategy vectors for configuration \(\bar{b} \) then

\[A\bar{x} = \bar{b} = A\bar{y} \]

\[\Rightarrow \]

\[\Rightarrow \]

\[\Rightarrow \]

\[\therefore \bar{x} + \text{Null}(A) = \{ \} \quad \quad \{ \} \]

are four different ways to solve \(\bar{b} \). Pick the one that has the least number of 1's, that is the optimal solution.
Light Chasing: A way to solve with some memorization.

<table>
<thead>
<tr>
<th>Lights on bottom row</th>
<th>Press these on top row</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Light Pattern 1]</td>
<td>![Top Pattern 1]</td>
</tr>
<tr>
<td>![Light Pattern 2]</td>
<td>![Top Pattern 2]</td>
</tr>
<tr>
<td>![Light Pattern 3]</td>
<td>![Top Pattern 3]</td>
</tr>
<tr>
<td>![Light Pattern 4]</td>
<td>![Top Pattern 4]</td>
</tr>
<tr>
<td>![Light Pattern 5]</td>
<td>![Top Pattern 5]</td>
</tr>
<tr>
<td>![Light Pattern 6]</td>
<td>![Top Pattern 6]</td>
</tr>
<tr>
<td>![Light Pattern 7]</td>
<td>![Top Pattern 7]</td>
</tr>
</tbody>
</table>