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Abstract

This thesis consists of two parts. The first part (chapters 1 and 2) consists of an
introduction to theory of Coxeter groups and Artin groups. This material, for
the most part, has been known for over thirty years, however, we do mention
some recent developments where appropriate. In the second part (chapters
3-5) we present some new results concerning Artin groups of finite-type. In
particular, we compute presentations for the commutator subgroups of the
irreducible finite-type Artin groups, generalizing the work of Gorin and Lin
[GL69] on the braid groups. Using these presentations we determine the local
indicability of the irreducible finite-type Artin groups (except for F4 which
at this time remains undetermined). We end with a discussion of the current
state of the right-orderability of the finite-type Artin groups.
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Chapter 0
Introduction and Statement of Results

0.1 Introduction

A number of recent discoveries regarding the Artin braid groups Bn com-
plete a rather interesting story about the orderability1 of these groups. These
discoveries were as follows.

In 1969, Gorin and Lin [GL69], by computing presentations for the com-
mutator subgroups B′

n of the braid groups Bn, showed that B′
3 is a free group

of rank 2, B′
4 is the semidirect product of two free groups (each of rank 2), and

B′
n is finitely generated and perfect for n ≥ 5. It follows from these results

that Bn is locally indicable2 if and only if n = 2, 3, and 4.
Neuwirth in 1974 [Neu74], observed Bn is not bi-orderable if n ≥ 3. How-

ever, Patrick Dehornoy [Deh94] showed the braid groups are in fact right-
orderable for all n. Furthermore, Dale Rolfsen and Jun Zhu [RZ98] proved
(non-constructively3) that the subgroups Pn of pure braids are bi-orderable.

So, by this point in time (1998), the orderability of the braid and pure braid
groups were known. What remained unknown was the relationship between
a right-ordering on Bn and a bi-ordering on Pn. That is, does a right-ordering
on Bn restrict to a bi-ordering on Pn?

This question was recently answered by Rolfsen and Rhemtulla [RR02]

1A group G is right-orderable if there exists a strict total ordering < of its elements
which is right-invariant: g < h implies gk < hk for all g, h, k ∈ G. If in addition g < h

implies kg < kh, the group is said to be orderable, or for emphasis, bi-orderable.
2A group G is locally indicable if for every nontrivial, finitely generated subgroup there
exists a nontrivial homomorphism into Z (called an indexing function).

3Rolfsen and Djun Kim construct a bi-ordering on Pn in [KR02].

1



Chapter 0. Introduction and Statement of Results 2

by determining the connection between local indicability and orderability. In
particular, they showed that since the braid groups Bn are not locally indi-
cable for n ≥ 5 a right-ordering on Bn could not restrict to a bi-ordering on
Pn. 4

This thesis is concerned with investigating whether these results on the
braid groups extend to all finite-type Artin groups. In particular, we are con-
cerned with determining the local indicability of the finite-type Artin groups.

0.2 Outline and Statement of Results

In Chapter 1 we give a quick yet thorough introduction to the theory of Cox-
eter groups.

In Chapter 2 we introduce Artin groups and develop their basic theory.
Most of these results have been known for over thirty years, however, we do
mention recent developments where appropriate.

The remaining chapters consist of recent and new results.
In Chapter 3 we follow the direction of Gorin and Lin and compute pre-

sentations of the commutator subgroups of the finite-type Artin groups. The
results here are new (aside from the particular case of the braid groups which
were done, of course, by Gorin and Lin).

In Chapter 4 we use these presentations to extend the results of Gorin and
Lin on the braid groups to the class of finite-type Artin groups as follows.

Theorem 0.1 The following are finitely generated and perfect:

1. A′An
for n ≥ 4,

2. A′Bn
for n ≥ 5,

3. A′Dn
for n ≥ 5,

4. A′En
for n = 6, 7, 8,

5. A′Hn
for n = 3, 4.

Hence, the corresponding Artin groups are not locally indicable.

4see theorem 5.7.
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On the other hand, we show the remaining finite-type Artin groups are
locally indicable (excluding the type F4 which at this time remains undeter-
mined) .

In Chapter 5 we discuss the orderability of the finite-type Artin groups.
We show that in order to determine the right-orderability (bi-orderability) of
the finite-type Artin groups it is sufficient to determine whether the positive
Artin monoid is right-orderable (bi-orderable). Furthermore, we show that
in order to prove all finite-type Artin groups are right-orderable it suffices to
show the Artin group of type E8 is right-orderable.



Chapter 1
Basic Theory of Coxeter Groups

The first comprehensive treatment of finite reflection groups was given by
H.S.M. Coxeter in 1934. In [Cox34] he completely classified the groups and
derived several of their properties, using mainly geometrical methods. He
later included a discussion of the groups in his book Regular Polytopes [Cox63].
Another discussion, somewhat more algebraic in nature, was given by E. Witt
in 1941 [Wit41]. A more general class of groups; the Coxeter groups, to which
finite reflection groups belong, has since been studied in N. Bourbaki’s chap-
ters on Lie Groups and Lie Algebras [Bou72], [Bou02]. Another discussion
appears in Humphrey’s book Reflection Groups and Coxeter Groups [Hum72].

In this chapter we develop the theory of Coxeter groups with emphasis
on the ”root system” (following Deodhar [Deo82]). The approach we take
here is precisely that of Humphreys [Hum72]. All of the results found in
this chapter may be found in some form or another in Humphreys book ,
however, its inclusion here has primarily two purposes: (1) to make this thesis
self contained for the convience of the reader and (2) to draw a comparison
with the theory of Artin groups developed in chapter 2. The material has been
reorganized and emphasis has been put on the parts of the theory we wish to
compare with the theory of Artin groups.

1.1 Definition

Let S be a finite set. A Coxeter matrix over S is a matrix M = (mss′)s,s′∈S

indexed by the elements of S and satisfying

(a) mss = 1 if s ∈ S,

4



Chapter 1. Basic Theory of Coxeter Groups 5

(b) mss′ = ms′s ∈ {2, . . . ,∞} if s, s′ ∈ S and s 6= s′.

A Coxeter matrix M = (mss′)s,s′∈S is usually represented by its Coxeter graph
Γ. This is defined by the following data.

(a) S is the set of vertices of Γ.
(b) Two vertices s, s′ ∈ S are joined by an edge if mss′ ≥ 3.
(c) The edge joining two vertices s, s′ ∈ S is labelled by mss′ if mss′ ≥ 4.

The Coxeter system of type Γ (or M ) is the pair (W,S) where W is the group
having the presentation

W = 〈s ∈ S : (ss′)mss′ = 1 if mss′ < ∞〉.

The cardinality |S| of S is called the rank of (W,S). The canonical image
of S in W is a generating set which may conceivably be smaller than S, that is,
under the above relations two generators in S may be equal in W . In 1.3 we
show this does not happen. Furthermore, we show in theorem 1.14 that no
proper subset of S generates W . In the meantime, we may allow ourselves to
write s ∈ W for the image of s ∈ S, whenever this creates no real ambiguity
in the arguments. We refer to W itself as a Coxeter group of type Γ (or M ),
when the presentation is understood, and denote it by WΓ. Although a good
part of the theory goes through for arbitrary S, we shall always assume that
S is finite. However, this does not mean that the Coxeter group W is finite.

Here are a couple of examples.

Example 1.1 If mss′ = ∞ when s 6= s′ then W is the free product of |S| copies of
Z/2Z. This group is sometimes referred to as a universal Coxeter group.

Example 1.2 It is well known that the symmetric group on (n + 1)-letters is the
Coxeter group associated with the Coxeter graph;

u u u r r r u u u
1 2 3 n− 2 n− 1 n

where vertex i corresponds to the transposition (i i + 1).

When a group is given in terms of generators and relations it is quite dif-
ficult to say anything about the group – for example, is the group trivial or
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not? In our case it is quite easy to see that W has order at least 2. Con-
sider the map from S into {±1}, defined by taking each element of S to −1.
Since this map takes each relation (ss′)mss′ to 1 it determines a homomor-
phism ε : W −→ {±1} sending the image of each s ∈ S to −1. The map ε is
the generalization for an arbitrary Coxeter group of the sign character of the
symmetric group.

Theorem 1.3 There is a unique epimorphism ε : W −→ {±1} sending each gener-
ator s ∈ S to −1. In particular, each s has order 2 in W .

Note that when |S| = 1, W is just a group of order 2, i.e. Z/2Z. When
|S| = 2, say S = {s, s′}, W is the dihedral group of order 2mss′ ≤ ∞.

1.2 Length Function

We saw that the generators s ∈ S have order two in W , so each w 6= 1 in
W can be written as a word in the generators with no negative exponents:
w = s1s2 · · · sr for some si (not necessarily distinct) in S. If r is as small as
possible we call it the length of w, written l(w), and we call any expression
of w as a product of r elements of S a reduced expression. By convention
l(1) = 0. Note that if s1s2 · · · sr is a reduced expression then so are all initial
segments, i.e. s1s2 · · · si, i ≤ r. Some basic properties of the length function
are included in the following lemma, whose proof is straightforward.

Lemma 1.4 The length function l has the following properties:

(L1) l(w) = l(w−1),

(L2) l(w) = 1 iff w ∈ S,

(L3) l(ww′) ≤ l(w) + l(w′),

(L4) l(ww′) ≥ l(w)− l(w′),

(L5) l(w)− 1 ≤ l(ws) ≤ l(w) + 1, for s ∈ S and w ∈ W.

Property (L5) tells us that the difference in the lengths of ws and w is at
most 1, the following theorem tells us that this difference is exactly 1.

Theorem 1.5 The homomorphism ε : W −→ {±1} of theorem 1.3 is given by
ε(w) = (−1)l(w). Thus, l(ws) = l(w) ± 1, for all s ∈ S and w ∈ W . Similarly for
l(sw).
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Proof. Let w ∈ W have reduced expression s1s2 · · · sr, then

ε(w) = ε(s1)ε(s2) · · · ε(sr) = (−1)r = (−1)l(w).

Now ε(ws) = ε(w)ε(s) = −ε(w) implies l(ws) 6= l(w).

In our study of Coxeter groups we will often use induction on l(w) to
prove theorems. It will therefore be essential to understand the precise re-
lationship between l(w) and l(ws) (or l(sw)). It is clear that if w ∈ W has
a reduced expression ending in s ∈ S then l(ws) = l(w) − 1, however it is
not clear at this point whether the converse is true: for w ∈ W and s ∈ S if
l(ws) = l(w)− 1 then w has a reduced expression ending in s. This turns out
to be true, see section 1.5, but to prove this we need a way to represent W

concretely.

1.3 Geometric Representation of W

Since Coxeter groups are generalizations of finite orthogonal reflection
groups it should be no surprise that we wish to view W as a ”reflection
group” on some real vector-space V . It is too much to expect a faithful repre-
sentation of W as a group generated by (orthogonal) reflections in a euclidean
space. However, we can get a reasonable substitute if we redefine a reflection
to be merely a linear transformation which fixes a hyperplane pointwise and
sends some nonzero vector to its negative.

Define V to be the real vector space with basis {αs : s ∈ S} in one-to-one
correspondence with S. We impose a geometry on V in such a way that the
”angle” between αs and αs′ will be compatible with the given mss′ . To do
this, we define a symmetric bilinear form B on V by requiring

B(αs, α
′
s) = − cos

π

mss′
.

In the case of mss′ = ∞ the expression is interpreted to be −1. From this
definition we have B(αs, αs) = 1, while B(αs, α

′
s) ≤ 0 for s 6= s′. Note that

B is not necessarily positive definite, i.e. there are Coxeter groups W for which
some v ∈ V does not satisfy B(v, v) > 0. Consider the following example.
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Example 1.6 For the universal Coxeter group of rank two,

W = 〈s1, s2 : s2
1, s

2
2〉,

take v = αs1 + αs2 ∈ V . It is easy to check B(αs1 + αs2 , αs1 + αs2) = 0.

Moreover, the following example shows that B may not even be positive
semidefinite.

Example 1.7 For the Coxeter group

W = 〈s1, s2, s3 : s2
1, s

2
2, s

2
3, (s1s2)4, (s1s3)4, (s2s3)4〉,

take v = αs1 + αs2 + αs3 ∈ V . Since B(αsi , αsj ) = − cos π
4 < −2

3 for i 6= j, then
B(v, v) < −1.

For each s ∈ S we can now define a reflecton σs : V −→ V by the rule:

σs(λ) = λ− 2B(αs, λ)αs.

Clearly σs(αs) = −αs, while σs fixes Hs = {λ ∈ V : B(αs, λ) = 0} pointwise.
In particular, we see that σs has order 2 in GL(V ).

Theorem 1.8 There is a unique homomorphism σ : W −→ GL(V ) sending s to σs,
and the group σ(W ) preserves the form B on V . Moreover, for each pair s, s′ ∈ S,
the order of ss′ in W is precisely mss′ .

For a proof of this theorem see Humphreys [Hum72]. To avoid cumber-
some notation, we usually write w(αs) to denote σ(w)(αs). The last statement
in the theorem removes the possibility of s = s′ in W even though s 6= s′ in
S, as promised in section 1.1. We will show next that this representation is
indeed a faithful one. To do this we need to introduce the concept of a root
system.

1.4 Root System

For a Coxeter system (W,S) a root system Φ of W is a set of vectors in V

satisfying the conditions:

(R1) Φ ∩ Rα = {±α} for all α ∈ Φ

(R2) sΦ = Φ for all s ∈ S
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The elements of Φ are called roots. We will only be concerned with the specific
root system given by Φ = {w(αs) : w ∈ W, s ∈ S}. It is clear that axiom (R2) is
satisfied for this choice of Φ, to check axiom (R1) it suffices to note that since
W (more precisely σ(W )) preserves the form B on V (theorem 1.8), Φ is a set
of unit vectors. Note that Φ = −Φ since if β = w(αs) ∈ Φ then −β = ws(αs)
is also in Φ. If α is any root then it can be expressed in the form

α =
∑

s∈S

csαs (cs ∈ R).

If cs ≥ 0 for all s ∈ S then we call α a positive root and write α > 0. Similarly,
if cs ≤ 0 for all s ∈ S then we call α a negative root and write α < 0. We
write Φ+ and Φ− for the respective sets of positive and negative roots. It
may come as some surprise that these two sets exhaust Φ, this follows from
the following theorem. The proof of this theorem is nontrivial, we refer the
reader to Humphreys [Hum72] for proof. The set of roots {αs : s ∈ S} are
called simple roots .

Theorem 1.9 Let w ∈ W and s ∈ S. Then

l(ws) > l(w) iff w(αs) > 0.

Equivalently,

l(ws) < l(w) iff w(αs) < 0.

This tells us the precise criterion for l(ws) to be greater than l(w): w must
take αs to a positive root. This is the key to all further combinatorial proper-
ties of W relative to the generating set S.

Corollary 1.10 The representation σ : W −→ GL(V ) is faithful.

Proof. Let w ∈ Ker(σ). If w 6= 1 then it has reduced expression s1s2 · · · sr

where r ≥ 1. Since l(wsr) = r− 1 < l(w) then w(αsr) < 0 by theorem 1.9. But
w(αsr) = αsr > 0, which is a contradiction.

Another consequence of Theorem 1.9 is that the length of w ∈ W is com-
pletely determined by how it permutes Φ. For w ∈ W let Π(w) denote the set
of positive roots sent to negative roots by w, i.e Π(w) = {α ∈ Φ+ : w(α) < 0}.
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Theorem 1.11 (a) If s ∈ S, then s sends αs to its negative, but permutes the re-
maining positive roots. That is, Π(s) = {αs}.
(b) For all w ∈ W , l(w) = |Π(w)|.

This theorem provides valuable information about the internal structure
of W , see section 1.5. We refer the reader to Humphreys [Hum72] for the
straightforward proof.

If W is infinite the length function takes on arbitrarily large values (recall
we are assuming S is finite). It follows from theorem 1.11 that Φ is infinite.
One the other hand, if W is finite (Φ is also finite by definition) it contains a
unique element of maximal length . Indeed, clearly W must contain at least
one element of maximal length, say w0. For s ∈ S, l(w0s) < l(w0) so w0(αs) <

0. Thus, w0 sends all positive roots to negative roots, i.e. Π(w0) = Φ+. Sup-
pose that there is another element w1 ∈ W of maximal length, then w−1

1 is also
of maximal length and so Π(w−1

1 ) = Φ+. It follows that w0w
−1
1 (Φ+) = Φ+, so

l(w0w
−1
1 ) = 0. Therefore w0 = w1 so we have uniqueness. Since w0 and w−1

0

have the same length uniqueness of the maximal element implies w0 = w−1
0 ,

moreover it follows from theorem 1.11 that l(w0) = |Φ+|.

1.5 Strong Exchange Condition

We are now in a position to prove some key facts about reduced expressions
in W , which is at the heart of what it means to be a Coxeter group.

Theorem 1.12 (Exchange Condition) Let w = s1 · · · sr (si ∈ S), not necessarily
a reduced expression. Suppose a reflection s ∈ S satisfies l(ws) < l(w). Then there
is an index i for which ws = s1 · · · ŝi · · · sr (omiting si). If the expression for w is
reduced, then i is unique.

There is a stronger version of this theorem, called the Strong Exchange
Condition in which the simple reflection s can be replaced by any element
w ∈ W which acts on V as a reflection, in the sense that there exists a unit
vector α ∈ V for which w(λ) = λ − 2B(λ, α)α. It turns out that the vector
α must be a root for w to act on V in this way. On the other hand, to each
positive root α ∈ Φ+ there is a w ∈ W which acts on V as a reflection along
α. Indeed, take w′ ∈ W , s ∈ S such that α = w′(αs). Then w = w′s(w′)−1 is
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such an element. Thus, there is a one-to-one correspondence between the set
of positive roots Φ+ and the set of reflections in W . For a complete discussion
see Humphreys ([Hum72] sec. 5.7,5.8).

Before we prove theorem 1.12 we need to make the following observa-
tion. If s, s′ ∈ S and w ∈ W satisfy αs′ = w(αs) then wsw−1 = s′. Indeed,
wsw−1(λ) = w(w−1(λ) − 2B(w−1(λ), αs)αs) and since B is W -invariant the
result follows.
Proof. Since l(ws) < l(w) then w(αs) < 0. Because αs > 0 there exists
an index i ≤ r for which si+1 · · · sr(αs) > 0 but sisi+1 · · · sr(αs) < 0. From
theorem 1.11 we have si+1 · · · sr(αs) = αsi , and by the above observation
si+1 · · · srssr · · · si+1 = si, from which it follows ws = s1 · · · ŝi · · · sr.

In case l(w) = r consider what would happen if there were two distinct
indices i < j such that ws = s1 · · · ŝi · · · sr = s1 · · · ŝj · · · sr. After cancelling,
this gives si+1 · · · sj = si · · · sj−1, or si · · · sj = si+1 · · · sj−1, allowing us to
write w = s1 · · · ŝi · · · ŝj · · · sr. This contradicts l(w) = r.

Corollary 1.13 (a) (Deletion Condition) Suppose w = s1 · · · sr (si ∈ S), with
l(w) < r. Then there exists i < j such that w = s1 · · · ŝi · · · ŝj · · · sr.
(b) If w = s1 · · · sr, (si ∈ S), then a reduced expression for w may be obtained by
omitting on even number of si.

Proof. (a) There exists an index j such that l(w′sj) < l(w′) where w′ =
s1 · · · sj−1. Applying the exchange condition gives w′sj = s1 · · · ŝi · · · sj−1,
allowing us to write w = w′sj · · · sr = s1 · · · ŝi · · · ŝj · · · sr.

1.6 Parabolic Subgroups

In this section we show that for a Coxeter system (W,S) the subgroup of W

generated by a subset of S is itself a Coxeter system with the obvious Coxeter
graph.

Let (W,S) be a Coxeter system with values mss′ for s, s′ ∈ S. For a subset
I ⊂ S we define WI to be the subgroup of W generated by I . At the extremes,
W∅ = 1 and WS = W . We call the subgroup WI a parabolic subgroup .
(More generally, we refer to any conjugate of such a subgroup as a parabolic
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subgroup.) Let lI denote the length function on WI in terms of the generators
I .

Theorem 1.14 (a) For each subset I of S, the pair (WI , I) is a Coxeter system with
the given values mss′ .
(b) Let I ⊂ S. If w = s1 · · · sr (si ∈ S) is a reduced expression, and w ∈ WI , then
all si ∈ I . In particular, the function l agrees with the length function lI on WI , and
WI ∩ S = I .
(c) The assignment I 7−→ WI defines a lattice isomorphism between the collection of
subsets of S and the collection of subgroups WI of W .
(d) S is a minimal generating set for W .

Proof. For (a). The set I and the corresponding values mss′ give rise to an
abstractly defined Coxeter group W I , to which our previous results apply. In
particular, W I has a geometric representation of its own. This can obviously
be identified with the action of the group generated by all σs (s ∈ I) on the
subspace VI of V spanned by all αs (s ∈ I), since the bilinear form B restricted
to VI agrees with the form BI defined by W I . The group generated by these
σs is just the restriction to VI of the group σ(WI). On the other hand, WI maps
canonically onto WI , yielding a commutative triangle:

W I −→ GL(V )
↘ ↗

WI

Since the map W I −→ GL(VI) is injective by corollary 1.10, we conclude
that WI is isomorphic to W I and is therefore itself a Coxeter group.

For (b), use induction on l(w), noting that l(1) = 0 = lI(1). Suppose w 6= 1
and let s = sr. Since w ∈ WI it also has a reduced expression w = t1 · · · tq,
where ti ∈ I . Now,

w(αs) = αs +
q∑

i=1

ciαti (ci ∈ R).

According to theorem 1.9 l(ws) < l(w) implies w(αs) < 0, so we must have
ti = s for some i, forcing s ∈ I . Now, ws = s1 · · · sr−1 ∈ WI , and the expres-
sion is reduced. The result follows by induction.
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To prove (c), suppose I, J ⊂ S. If WI ⊂ WJ , then, by (b), I = WI ∩
S ⊂ WJ ∩ S = J Thus I ⊂ J (resp. I = J) if and only if WI ⊂ WJ (resp.
WI = WJ ). It is clear that WI∪J is the subgroup generated by WI and WJ .
On the other hand, (b) implies that WI∩J = WI ∩WJ . This yields the desired
lattice isomorphism. To prove (d), suppose that a subset I of S generates W

then WI = W = WS , so by (c) I = S.

If Γ is the Coxeter graph associated with the Coxeter system (W,S) then
theorem 1.14 tells us that the Coxeter graph associated with (WI , I) is pre-
cisely ΓI : the subgraph induced by I , that is, the subgraph of Γ with vertex
set I and all edges (from Γ) whose endpoints are in I . Another way to view
this result is that every induced subgraph of Γ is a Coxeter graph for some
(parabolic) subgroup of W .

We say that the Coxeter system (W,S) is irreducible if the Coxeter graph
is connected. In general, let Γ1, . . ., Γr be the connected components of Γ,
and let Ii be the corresponding sets of generators from S, i.e. the verticies
of Γi. Thus if s ∈ Ii and s′ ∈ Ij , we have mss′ = 2 and therefore ss′ = s′s.
The following theorem shows that the study of Coxeter groups can be largely
reduced to the case when Γ is connected.

Theorem 1.15 Let (W,S) have Coxeter graph Γ, with connected components Γ1,

. . . , Γr, and let I1, . . . , Ir be the corresponding subsets of S. Then

W = WI1 ⊕ · · · ⊕WIr ,

and each Coxeter system (WIi , Ii) is irreducible.

Proof. Since the elements of Ii commute with the elements of Ij , i 6= j, it is
clear that the indicated parabolic subgroups centralize each other, hence that
each is normal in W . Moreover, the product of these subgroups contains S

and therefore must be all of W . According to theorem 1.14(c), for each 1 ≤
i ≤ r− 1, (WI1WI2 . . . WIi)∩WIi+1 = {1}. It follows that W = WI1 ⊕· · ·⊕WIr

(for example, see [Gal98]).
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1.7 The Word and Conjugacy Problem

Let a group G be given in terms of generators and relations.
(i) For an arbitrary word w in the generators, decide in a finite number of

steps whether w defines the identity element of G, or not.
(ii) For two arbitrary words w1, w2 in the generators, decide in a finite

number of steps, whether w1 and w2 define conjugate elements of G, or not.
The problems (i) and (ii) are called the word problem and the conjugacy

problem, respectively, for the presentation defining G. It is shown in [Nov56],
[Boo55] that there exist presentations of groups in which the word problem is
not solvable, and there exist presentations of groups in which the conjugacy
problem is not solvable [Nov54].

A very nice solution to the word problem for Coxeter groups was found
by Tits [Tit69]. It allows one to transform an arbitrary product of generators
from S into a reduced expression by making only the most obvious types of
modifications coming from the defining relations. Here is a brief description.

Let F be a free group on a set Σ where Σ is in bijection with S, and let
π : F −→ W be the resulting epimorphism. The monoid F+ generated by Σ
already maps onto W . If ω ∈ F+ is a product of various elements σ ∈ Σ, we
can define l(ω) to be the number of factors involved. If m = mst for s, t ∈ S,
the product of m factors of σ and τ ; στσ · · · , maps to the same element of
W as the product of m factors τστ · · · . Replacement of one of them by the
other inside a given ω ∈ F+ is called an elementary simplification of the
first kind; it leaves the length undisturbed. A second kind of elementary
simplification reduces length, by omitting a consecutive pair σσ. Write Σ(ω)
for the set of all elements of F+ obtainable from ω by a sequence of elementary
simplifications. Since no new elements of Σ are introduced and length does
not increase at each step, it is clear that Σ(ω) is finite. It is also effectively
computable. Clearly the image of Σ(ω) under π is a single element of W .

Theorem 1.16 Let ω, ω′ ∈ F+. Then π(ω) = π(ω′) iff Σ(ω) ∩ Σ(ω′) 6= ∅. In
particular, π(ω) = 1 iff 1 ∈ Σ(ω).

One direction is obvious. To go the other way, Tits assumes the contrary
and analyses a minimal counterexample (in terms of lexicographic ordering
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of pairs (ω, ω′)): both elements must have the same length and Σ(ω) consists
of elements of equal length, etc., leading eventually to a contradiction.

Much less seems to be known about the conjugacy problem for Coxeter
groups. Appel and Schupp [AS83] have given a solution for extra large Cox-
eter groups (those for which all mss′ ≥ 4 when s 6= s′.)

1.8 Finite Coxeter Groups

In this section we restrict our attention to finite Coxeter groups. We will clas-
sify all finite irreducible Coxeter groups in terms of their Coxeter graphs, in
fact, we will give a complete list of all Coxeter graphs corresponding to finite
irreducible Coxeter groups. According to theorem 1.15 every finite Coxeter
group is isomorphic to a direct product of groups from this list.

Recall in 1.3 the bilinear form B was not necessarily positive definite, the
next theorem tells us that it is precisly when W is finite.

Theorem 1.17 The following conditions on the Coxeter group W are equivalent:
(a) W is finite.
(b) The bilinear form B is positive definite.

The proof of this theorem is rather involved and so we refer the reader to
Humphreys [Hum72].

If (W,S) is a Coxeter system with Coxeter graph Γ (resp. Coxeter matrix
M ) then we say that Γ (resp. M ) is of finite-type if W is finite. Also, if the
bilinear form B is positive definite then we call Γ positive definite as well.
Theorem 1.17 tells us that Γ is positive definite if and only if it is of finite-
type. Therefore, to classify the irreducible, finite Coxeter groups we just need
to determine all connected, positive definite Coxeter graphs. Classification
of all connected positive definite Coxeter graphs turns out to be relatively
straightforward. For a wonderful discussion and solution of the problem see
Humphreys ([Hum72] sec. 2.3− 2.7). It is shown in [Hum72] that the graphs
in figure 1.1 are precisely all the connected positive definite Coxeter graphs.

The letter beside each of the graphs in figure 1.1 is called the type of the
Coxeter graph, and the subscript denotes the number of vertices. Recall ex-
ample 1.2 shows the symmetric group on (n+1)-letters is a Coxeter group of
type An.
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An (n ≥ 1) u u u r r r u u u

Bn (n ≥ 2) u u u r r r u u u4

Dn (n ≥ 4) u u u r r r u u
u
u

³³³
PPP

E6
u u u u u

u

E7
u u u u u u

u

E8
u u u u u u u

u

F4
u u u u4

H3
u u u5

H4
u u u u5

I2(m) (m ≥ 5) u um

Figure 1.1: All the connected positive definite Coxeter graphs
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WΓ injects into WΓ′

Γ Γ′

An Am (for m ≥ n),
Bm (for m ≥ n + 1),
Dm (for m ≥ n + 2),

E8 (for n ≤ 7),
etc.

B2 Bn (for n ≥ 2),
F4,

I2(4)
B3 Bn (for n ≥ 3),

F4

E6 E7, E8

E7 E8

H3 H4

I2(5) H3, H4

Table 1.1: Inclusions among Coxeter groups

The remarks after theorem 1.14 imply that if Γ is an induced subgraph of
Γ′ then the corresponding Coxeter group WΓ injects into WΓ′ . Table 1.1 lists
some such inclusions for the Coxeter graphs in figure 1.1.



Chapter 2
Basic Theory of Artin Groups

The braid groups, which are the Artin groups of type An, were first intro-
duced by Artin in [Art25], he further developed the theory in [Art47a,b] and
[Art50]. Since their introduction the braid groups have gone through a seri-
ous line of investigation. One of the most influential papers on the subject was
that of Garside [Gar69], in which he solved the word and conjugation prob-
lems. Later, the connection of the braid groups with the fundamental group
of a particular complex hyperplane arrangement lead to a natural general-
ization: the Artin groups. In this chapter we introduce the Artin groups and
discuss some of their basic theory. We follow closely the work of Brieskorn
and Saito [BS72], which is a generalization of the work of Garside.

2.1 Definition

Let M be a Coxeter matrix over S as described in section 1.1, and let Γ be the
corresponding Coxeter graph. Fix a set Σ in one-to-one correspondence with
S. In the following we will often consider words beginning with a ∈ Σ and
in which only letters a and b occur, such a word of length q is denoted 〈ab〉q
so that

〈ab〉q = aba . . .︸ ︷︷ ︸
q factors

The Artin system of type Γ (or M ) is the pair (A,Σ) where A is the group
having presentation

A = 〈a ∈ Σ : 〈ab〉mab = 〈ba〉mab if mab < ∞〉.

18
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The group A is called the Artin group of type Γ (or M ), and is sometimes
denoted by AΓ. So, similar to Coxeter systems, an Artin system is an Artin
group with a prescribed set of generators.

There is a natural map ν : AΓ −→ WΓ sending generator ai ∈ Σ to the cor-
responding generator si ∈ S. This map is indeed a homomorphism since the
equation 〈sisj〉mij = 〈sjsi〉mij follows from s2

i = 1, s2
j = 1 and (sisj)mij = 1.

Since ν is clearly surjective it follows that the Coxeter group WΓ is a quotient
of the Artin group AΓ. The kernel of ν is called the pure Artin group, gener-
alizing the definition of the pure braid group. From the observations in section
1.1 it follows that Σ is a minimal generating set for AΓ. The homomorphism
ν has a natural set section τ : WΓ −→ AΓ defined as follows. Let w ∈ W . We
choose any reduced expression w = s1 · · · sr of w and we set

τ(w) = a1 · · · ar ∈ AΓ.

By Tits’ solution to the word problem for Coxeter groups (sec. 1.7), the defi-
nition of τ(w) does not depend on the choice of the reduced expression of w.
Note that τ is not a homomorphism.

The Artin group of a finite-type Coxeter graph is called an Artin group of
finite-type . In other words, AΓ is of finite-type if and only if the correspond-
ing Coxeter group WΓ is finite. An Artin group AΓ is called irreducible if
the Coxeter graph Γ is connected. In particular, the Artin groups correspond-
ing to the graphs in figure 1.1 are irreducible and of finite-type. These Artin
groups are our main interest in the remaining chapters.

2.2 Positive Artin Monoid

We now introduce the positive Artin monoid associated to the Artin system
(A, Σ). All of the basic properties of Artin groups will follow from the study
of the positive Artin monoid.

Let FΣ be the free group generated by Σ and F+
Σ the free monoid generated

by Σ inside FΣ. We call the elements of FΣ words and the elements of F+
Σ

positive words. The positive words have unique representations as products
of elements of Σ and the number of factors is the length l of a positive word.
In the following we drop the subscript Σ when it is clear from the context. An
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elementary transformation of positive words is a transformation of the form

U〈ab〉mabV −→ U〈ba〉mabV

where U, V ∈ F+ and a, b ∈ Σ. A positive transformation of length t from a
positive word U to a positive word V is a composition of t elementary trans-
formations that begins with U and ends at V . Two words are positive equiv-
alent if there is a positive transformation that takes one into the other. We
indicate positive equivalence of U and V by U =p V . Note, it follows from
the definition that positive equivalent words have the same length. We use =
to denote equality in the group and ≡ to express words which are equivalent
letter by letter.

The monoid of positive equivalence classes of positive words relative to
Γ (or M ) is called the positive Artin monoid (or just the Artin monoid) and
is denoted A+

Γ . The natural map A+
Γ −→ AΓ is a homomorphism. We will

see that for Γ of finite-type this map is injective. Recently, Paris [Par01] has
shown that for arbitrary Artin groups this map is injective.

2.3 Reduction Property

The main result in this section concerns the positive Artin monoid and it ac-
counts for most of the results we will encounter in this chapter. The statement
is as follow.

Lemma 2.1 (Reduction Property) For each Coxeter graph we have the following
rule: If X and Y are positive words and a and b are letters such that aX =p bY then
mab is finite and there exists a positive word U such that

X =p 〈ba〉mab−1U and Y =p 〈ab〉mab−1U.

In other words, if aX =p bY then there is a positive transformation of the
form

aX −→ · · · −→ 〈ab〉mabU
elem.−−−−→ 〈ba〉mabU −→ · · · −→ bY

taking aX to bY .
The proof of this is long and tedious, we refer the reader to [BS72] for

proof.
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An analogous statement holds for reduction on the right side. We see this
as follows. For each positive word

U ≡ ai1 · · · aik

define the positive word rev U by

rev U ≡ aik · · · ai1 ,

called the reverse or reversal of U . Clearly U =p V implies rev U =p rev V

by the symmetry in the relations and the definition of elementary transforma-
tion. It is clear that the application of rev to the words in lemma 2.1 gives the
right-hand analog.

It follows from the reduction propery that the positive Artin monoid is left
and right cancellative.

Theorem 2.2 If U, V and X,Y are positive words with UXV =p UY V then
X =p Y .

Proof. It suffices to show that left cancellativity holds since right cancellativ-
ity follows by applying the reversal map rev . For U a word of length 1, say
a, the reduction property implies that if aX =p aY then a word Z exists such
that

X =p 〈aa〉maa−1Z ≡ Z and Y =p 〈aa〉maa−1Z ≡ Z.

Thus X =p Y . The result follows by induction on the length of U .

Let X , Y and Z be positve words. We say X divides Z (on the left) if

Z ≡ XY (if working in F+),

Z =p XY (if working in A+),

and write X|Z (interpreted in the context of F+ or A+).
The term reduction property, which comes from [BS72], is appropriate as

this property (in conjunction with left cancellativity) allows the problem of
whether a letter divides a given word to be reduced to the same problem for
a word of shorter length. In the following section we describe a method to
determine when a given word is divisible by a given generator.
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2.4 Divisibility Theory

In this section we present an algorithm used to decide whether a given let-
ter divides a positive word (in A+), and to determine the smallest common
multiple of a letter and a word if it exists.

2.4.1 Chains

Let a ∈ Σ be a letter. The simplest positive words which are not multiples
of a are clearly those in which a does not appear, since a letter appearing in
a word must appear in all positive equivalent words by the definition of ele-
mentary transformation and the nature of the defining relations. Further, the
words of the form 〈ba〉q with q < mab are also not divisible by a. This follows
from the reduction property. Of course many other quite simple words have
this property, for example concatenations of the previous types of words in
specific order, called a-chains, which we will now define.

Let C be a non-empty word and let a and b be letters. We say C is a
primitive a-chain with source a and target a if mac = 2 for all letters c in C.
We call C an elementary a-chain if C ≡ 〈ba〉q for some q < mab. The source
is a and the target is b if mab even and a if mab odd. An a-chain is a product
C ≡ C1 · · ·Ck where for each i = 1, . . . , k, Ci is a primitive or elementary
ai-chain for some ai ∈ Σ, such that a1 = a and the target of Ci is the source of
Ci+1. This may be expressed as:

a = a1
C1−−−−→ a2

C2−−−−→ a3 · · · Ck−1−−−−→ ak
Ck−−−−→ ak+1 = b,

The source of C is a and the target of C is the target of Ck. If this target is b

then we say: C is a chain from a to b.

Example 2.3 Let Σ = {a, b, c, d} and M be defined by mac = mad = mbd = 2,
mab = mbc = 3, mcd = 4.

• c, d, cd2c7 are primitive a-chains with target a,
• b, ba are elementary a-chains with targets a and b, respectively
• a, ab, c, cb are elementary b-chains with targets b, a, b, c, respectively,

The word

ab︸︷︷︸
C1

cd︸︷︷︸
C2

bc︸︷︷︸
C3

ab︸︷︷︸
C4

dcc︸︷︷︸
C5

ba︸︷︷︸
C6
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is a d-chain with target b, since C1 is a primitive d-chain with target d, C2 is an
elementary d-chain with target c, C3 is an elementry c-chain with target b, C4 is an
elementary b-chain with target a, C5 is a primitive a-chain with target a, and finally
C6 is a simple a-chain with target b. The chain diagram for this example is:

d
C1−−−−→ d

C2−−−−→ c
C3−−−−→ b

C4−−−−→ a
C5−−−−→ a

C6−−−−→ b.

As the example 2.3 indicates there is a unique decomposition of a given a-
chain into primitive and elementary factors if one demands that the primitive
factors are a large as possible. The number of elementary factors is the length
of the chain.
Remark. If C is a chain from a to b then rev C is a chain from b to a.

We have already noted that primitive and elementary a-chains are not
divisible by a, the next lemma shows that this is also the case for a-chains.

Lemma 2.4 Let C = C1 · · ·Ck be a chain from a to b (where Ci is a primitive or
elementary chain from ai to ai+1 for i = 1, . . . , k) and D is a positive word such that
a divides CD. Then b divides D, and in particular a does not divide C.

Proof. We prove this by induction on k. Suppose k = 1.
Suppose C = x1 · · ·xm is primitive, so maxi = 2 for all i. Then x1 · · ·xmD

=p aV for some positive word V . By the reduction property there exists a
word U such that x2 · · ·xmD =p 〈ax1〉max1−1U = aU . Continuing in this way
we get that a divides D, where a is the target of C.

Supppose C = 〈ba〉q is elementary, where mab > 2 and 0 < q < mab. Then

〈ba〉qD =p aV

for some positive word V . By the reduction property, 〈ab〉q−1D=p〈ab〉ma,b−1U

for some positive word U . So by cancellation, theorem 2.2,

D =p

{
〈ab〉mab−qU if q is odd,

〈ba〉mab−qU if q is even.

so D is divisible by a if q is odd, and b if q is even, which in each case is the
target of C.

This begins the induction. Suppose now k > 1. By the inductive hypothe-
sis ak divides CkD, and by the base case, b ≡ ak+1 divides D.

The last claim follows by taking D equal to the empty word.
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Corollary 2.5 If C is an a-chain such that a divides Cb, then b is the target of C.

2.4.2 Chain Operators Ka

An arbitrary word will in general not be an a-chain, for any particular a, and
so we need to know firstly whether, given an arbitrary word U , there exists
an a-chain C which is positive equivlent to U , and secondly how to calculate
it and its target. We define operators Ka for each generator a which take as
input a word U and output either

• a word beginning with a if U is divisible by a, or
• an a-chain equivalent to U if U is not divisible by a.

Ka is called a chain operator (the K stands for Kette, German for chain).
To state the precise definition of Ka, we need some preliminary definitions

and notation. We call a primitive a-chain of length one or an elementary a-
chain a simple a-chain, that is, a simple a-chain is a word of the form 〈ba〉q
where q < mab (where mab = 2 is allowed). For a simple a-chain of the form
C = 〈ba〉mab−1 we call C imminent and let C+ denote 〈ab〉mab , so C+ =p Cc

where c is the target of C. If D is any positive nonempty word denote by D−

the word obtained by deleting the first letter of D. For every letter a ∈ Σ, we
define a function

Ka : F+ −→ F+

recursively. Let U be a word. If U is empty, begins with a or is a simple
a-chain then

Ka(U) :≡ U.

Otherwise, write U ≡ CaDa where Ca and Da are non-empty words, and Ca

is the largest prefix of W which is a simple a-chain, with target b, say. The rest
of the definition of Ka(U) is recursive on the lengths of U and Da:

Ka(U) :≡





CaKb(Da) if Kb(Da) does not begin with b; or

C+
a Kb(Da)− if Ca imminent and Kb(Da) begins with b; or

Ka(CabKb(Da)−) otherwise

Observe that Ka(U) is calculable.
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Example 2.6 Computing Ka(U). Let Σ and M be as defined in example 2.3. First
we will compute Ka of the word U = bcbabdc (notice U is not an a-chain). By the
recursive nature of the definition of Ka we first need to decompose U as follows:

U = b︸︷︷︸
C1

· c︸︷︷︸
C2

· ba︸︷︷︸
C3

· bdc︸︷︷︸
D

where C1 is an a-chain with target a, C2 is an a-chain with target a, and C3 is an
a-chain with target b. Since D begins with the letter b then Kb(D) ≡ D. Since C3 is
imminent, Ka(C3 ·D) ≡ C+

3 D− ≡ abadc. Since C2 is imminent, and Ka(C3 ·D)
begins with the letter a,

Ka(C2 · C3D) ≡ C+
2 ·Ka(C3 ·D)−

≡ ac · badc.

Now Ka(C2C3D) begins with a but C1 is not imminent, so

Ka(U) ≡ Ka(C1 · C2C3D)

≡ Ka(C1 · acbadc) since Ka(C2C3D) ≡ acbadc

≡ Ka(ba · cbadc) by definition of Ka.

Applying the definition of Ka to the word bacbadc just returns the same word (try
it!). Therefore,

Ka(U) ≡ bacbadc,

which can be seen to be an a-chain positive equivalent to U , with target d.
For our second example we will compute Ka of the word W ≡ bacbacab. Again

we need to decompose W as follows:

W ≡ ba︸︷︷︸ · cb︸︷︷︸ · a︸︷︷︸ · cab︸︷︷︸
C1 C2 C3 D,

where C1 is an a-chain with target b, C2 is an b-chain with target c, and C3 is
a c-chain with target c. Since D begins with the letter c then Kc(D) ≡ D, so
Kc(C3D) ≡ C+

3 D− ≡ ca · ab. Since C2 is imminent, Kc(C2 · C3D) ≡ bcb · aab.
Finally, since C1 is imminent, Ka(W ) ≡ aba · cbaab.
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Lemma 2.7 Let U be positive and a ∈ Σ. Then
(a) Ka(U) =p U and Ka(U) is either empty, begins with a or is an a-chain,
(b) Ka(U) ≡ U if and only if U is empty, begins with a, or is an a-chain,
(c) a divides U if and only if Ka(U) begins with a.

Proof. (a) If U is empty, begins with a or is a simple a-chain then Ka(U) ≡ U

and we are done. Otherwise, write U ≡ CaDa where Ca and Da are nonempty
and Ca is the longest prefix of U which is a simple a-chain. Let c denote the
target of Ca. Since l(Da) < l(U) then by induction on length, Kc(D) =p Da

and Kc(D) is either a c-chain or begins with c. If Kc(D) is a c-chain then
it cannot begin with c (lemma 2.4), so Ka(U) ≡ CaKc(Ds) which is an a-
chain, and moreover Ka(U) =p CaDa ≡ U . Otherwise Kc(D) begins with
c. Considering first when Ca is imminent, we have Ka(U) ≡ C+

a Kb(Da)−,
which begins with a, and moreover,

Ka(U) =p CacKc(Da)− ≡ CaKc(D) =p CaDa ≡ U .

Otherwise se have Kc(Da) =p Da, Kc(Da) begins with c and Ca is not immi-
nent; so

Ka(U) ≡ Ka(CacKc(Da)−).

Now Cac is a simple a-chain of length greater than the length of Ca so by
another induction, Ka(CacKb(Da)) begins with a or is an a-chain, and

Ka(CacKc(Da)−) =p CacKc(Da)− ≡ CaKc(Da) =p CaDa ≡ U .

(b) The direction (⇒) follows from (a). To see the other direction notice the
result is clear if U is empty, begins with a or is a simple a-chain. Suppose U is
a nonempty a-chain, so U ≡ CaDa where Ca is a simple a-chain with target c,
say and Da is a c-chain. By induction since l(Da) < l(U),

Kc(Da) ≡ Da.

Since Da is a c-chain it does not begin with the letter c thus by definition of
Ka,

Ka(U) ≡ CaKc(Da) ≡ CaDa ≡ U .

(c) This follows from (a) and lemma 2.4
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2.4.3 Division Algorithm

Let U and V be words. We present an algorithm to determine whether U

divides V (in A+
Γ ) and in the case U divides V it returns the cofactor, i.e. the

word X such that V =p UX . This can be done relatively easily using the
chain operators Ka.

Write U ≡ a1 · · · ak. If U is to divide V then certainly a1 must divide
V , this can be determined by calculating Ka1(V ) and checking if a1 is the
first letter. If a1 is not the first letter then a1, and hence U , cannot divide
V . Otherwise, we have Ka1(V ) ≡ a1Ka1(V )−. If U ≡ a1 · · · ak were to divide
V =p Ka1(V ) ≡ a1Ka1(V )− then it is necessary for a2 to divide Ka1(V )−. This
can be determined by checking the first letter of Ka2(Ka1(V )−). Continuing
this way we either get that some ai does not divide

Kai(Kai−1 · · ·Ka2(Ka1(V )−)− · · · )−)

in which case U does not divide V , or ai divides the above word for each
1 ≤ i ≤ k, in which case U divides V and the cofactor X is

Kak
(Kak−1

· · ·Ka2(Ka1(V )−)− · · · )−)−.

We reformulate the above observations into the following definition. Let
U and V be words. If U is empty then define (V : U) :≡ V . Otherwise
write U ≡ Wa for some word W and some letter a. We make the recursive
definition:

(V : U) ≡





∞ if (V : W ) = ∞, or if

Ka(V : W ) does not begin with a; or

Ka(V : W )− otherwise.

Some remarks on the definition.
1. By induction of the length of U , if X is any word then (UX : U) ≡ X .
2. Since Ka(X) is calculable for any word X , then (V : U) is also calcula-

ble, for any pair of words V and U . Thus the following result gives a solution
to the division problem in A+

Γ .

Lemma 2.8 The word U divides V precisely when (V : U) 6= ∞, in which case

V =p U(V : U).
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Proof. If U is empty then the result clearly holds. so we may write U ≡ Wa

for some word W and some letter a. Suppose U divides V , so there is a word
X such that UX ≡ WaX =p V . By induction (V : W ) 6= ∞ and V =p W (V :
W ). By cancellation, aX =p (V : W ), so a divides (V : W ). By lemma 2.7,
Ka(V : W ) begins with a, so (V : U) 6= ∞ and (V : U) =p X .

On the other hand, suppose (V : U) 6= ∞. Then (V : W ) 6= ∞, and in fact
Ka(V : W ) has to begin with a. By induction V =p W (V : W ), so

V =p W (V : W ) =p WKa(V : W ) =p WaKa(V : W )− =p U(V : U)

by the definition of (V : U).

Since we have a solution to the division problem in A+
Γ we get a solution

to the word problem in A+
Γ for free.

Corollary 2.9 Two positive words U and V are positive equivalent precisely when
(V : U) is the empty word.

In section 2.6 we will show how to use this to solve the word problem in
finite-type Artin groups AΓ.

2.4.4 Common Multiples and Divisors

Given a set of words Vi ∈ A+
Γ where i runs over some indexing set I , a com-

mon multiple of {Vi : i ∈ I} is a word U ∈ A+
Γ such that every Vi divides U

(on the left). A least common multiple is a common multiple which divides
all other common multiples. If U and U ′ are both least common multiples
then they divide one another, it follows by cancellativity and the fact that
equivalent words have the same length that U =p U ′. Thus, when a common
multiple exists, it is unique. By a common divisor of {Vi : i ∈ I} we mean a
word W which divides every Vi. A greatest common divisor of {Vi : i ∈ I}
is a common divisor into which all other common divisors divide. Similarly,
greatest common divisors, when they exist, are unique.

With the help of the chain operators Ka defined in 2.4.2 we get a simple
algorithm for producing a common multiple of a letter a and a word U , if one
exists.

The essence of the method lies in lemma 2.4 which can be rewritten to say:
If C is an a-chain to b, and U is a common multiple of a and C then U is a common
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multiple of a and Cb.
Given an arbitrary word X , to calculate a common multiple with a generator
a, we begin by applying Ka to X . If Ka(X) begins with a then we are done (X
is divisible by a and so itself is a common multiple of a and X). Otherwise,
Ka(X) is an a-chain, we determine its target b, and then concatenate it to
get Ka(X)b ≡ X ′. If Ka(X ′) begins with a then we may stop; otherwise we
repeat the process. If a common multiple exists, then the process will hault,
producing a word which is in fact the least common multiple of a and X .

Let a be a letter and W a word. The a-sequence of W is a sequence
W a

0 ,W a
1 , . . . over F+ defined as follows. Set W a

0 :≡ Ka(W ), so by lemma 2.7,
either W a

0 is empty, an a-chain or begins with a. Then for i ≥ 1, define recur-
sively

W a
i :≡





a if W a
i−1 is empty;

W a
i−1 if W a

i−1 begins with a;

Ka(W a
i−1b) if W a

i−1 is an a-chain to b.

By lemma 2.7, W a
i is either an a-chain of begins with a (or if i = 0, W a

i may be
empty). The a-sequence converges to a word W a

k precisely when W a
k begins

with a. The following definition is intended to capture a notion of the limit of
the a-sequence of W .

L(a,W ) :≡
{

W a
k if W a

k ≡ W a
k+1 ; or

∞ otherwise.

The following example illustrates the way in which L(a, W ) ≡ ∞
Example 2.10 Let Σ = {a, b, c} and M , the Coxeter matrix, be defined by mab =
mac = mbc = 3. (Note, by the results in 1.8 AΓ is not of finite type.) Consider the
word W ≡ bc. Observe that for any k ≥ 1, Uk ≡ (bacbac)k is an a-chain with target
a. The first member of the a-sequence of W is W a

0 ≡ bc ≡ U0bc, and then for all
k ≥ 0,

W a
6k ≡ Ukbc, W a

6k+1 ≡ Ukbca, W a
6k+2 ≡ Ukbaca,

W a
6k+3 ≡ Ukbacab, W a

6k+4 ≡ Ukbacbab, W a
6k+5 ≡ Ukbacbabc,

and so W a
6k+6 ≡ Ukbacbacbc ≡ Uk+1bc and so on. Thus, the a-sequence never

converges to a word, and so L(a, bc) ≡ ∞.
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The following result characterizes the situation when L(a,W ) 6= ∞.

Lemma 2.11 L(a,W ) 6= ∞ precisely when a and W have a common multiple, in
which case L(a,W ) is a least common multiple of a and W begins with a.

Proof. If W is empty then W a
0 ≡ W and W a

i ≡ a for all i ≥ 1. Thus
L(a,W ) ≡ a, and so the result holds trivially. So we may that suppose W is
nonempty.

Suppose that a and W have a common multiple M . By lemma 2.7, we
know that W a

0 ≡ Ka(W ) =p W and so divides M . Since W is nonempty, W a
0

either begins with a or is an a-chain, is a multiple of W and divides M . We
will show that the same is true of all W a

i , using induction on i. Suppose that,
for a given i ≥ 0, W a

i is a multiple of W and divides M . If W a
i begins with a,

then W a
j ≡ W a

i for all j ≥ i, and so we are done. Otherwise, W a
i is an a-chain

to b and, by lemma 2.4, M is a common multiple of W a
i b =p Ka(W a

i b) ≡ W a
i+1

and a. Since W divides W a
i then W must also divide W a

i+1. Thus we have
shown that when a and W have a common multiple, every element of the
a-sequence of W is a multiple of W , and divides M . Since elements of the a-
sequence increase in length until an element begins with a, and since divisors
of M cannot exceed M in length, eventually there is a first W a

k which begins
with a. Hence L(a,W ) ≡ W a

k . Futhermore, we have shown that L(a,W )
divides every common multiple M of a and W , making it a least common
multiple.

On the other hand, suppose L(a,W ) 6= ∞. Then there is a first number
k ≥ 0 such that W a

k begins with a. If k = 0, then L(a,W ) ≡ W a
0 =p W . If

k > 0 then by definition of the a-sequence, there are letters b1, . . . , bk which
are targets of the a-chains W a

0 , . . . , W a
k−1, respectively, and for each i < k,

W a
i bi+1 =p W a

i+1, so L(a,W ) ≡ W a
k =p W a

0 b1 · · · bk =p Wb1 · · · bk. hence
L(a,W ) is a common multiple of a and W .

Thus we have in L(a,W ) a calculator of least common multiples of a gen-
erator and a word. By repeated application of this operation, we can obtain
least common multiples of arbitrary pairs of words.
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Let V and W be words. Define recursively:

Ł(V, W ) :≡





W if V is empty; or

aL(U,L(a,W )−) if V ≡ aU , L(a, W ) 6= ∞ and

L(U,L(a,W )−) 6= ∞; or

∞ otherwise.

Similar to lemma 2.11 we get the following lemma.

Lemma 2.12 L(V, W ) 6= ∞ precisely when V and W have a common multiple, in
which case L(V, W ) begins with V and is a least common multiple of V and W .
Moreover, L(V, W ) 6= ∞ precisely when L(W,V ) 6= ∞, in which case L(V,W ) =p

L(W,V ).

We can also compute the least common multiple of any finite collection of
words by induction on the number of words. In particular, let V1, . . . , Vm be
words and let 1 denote the empty word. Define recursively:

Ł(V1, . . . , Vm) :≡





1 m = 0; or

V1 if m = 1; or

∞ m ≥ 2 and L(V2, . . . , Vm) = ∞; or

L(V1, L(V2, . . . , Vm)) if m ≥ 2 and L(V2, . . . , Vm) 6= ∞.

The next result follows by induction on m using lemma 2.12.

Lemma 2.13 L(V1, . . . , Vm) 6= ∞ precisely when V1, . . . , Vm have a common mul-
tiple, in which case L(V1, . . . , Vm) begins with V1 and is a least common multiple of
V1, . . . , Vm. Moreover, for any permutation σ of {1, . . . m}, L(V1, . . . , Vm) 6= ∞ if
and only if L(Vσ(1), . . . , Vσ(m)) 6= ∞, in which case L(V1, . . . , Vm) =p

L(Vσ(1), . . . , Vσ(m)).

Corollary 2.14 Let Ω be a finite set of words. Then Ω has a common multiple if and
only if it has a least common multiple. ¤

Since Σ is finite then an infinite set of words in F+ must have elements
of arbitrary length. Since positive equivalent words have the same length it
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follows that a common multiple must be at least as long as any of the factors.
So an infinite set of words can have no common multiples. On the other hand,
the empty word divides every other word, so an arbitrary nonempty set Ω of
words has a common divisor. If D denotes the set of all common divisors of
Ω, then D is finite by the preceding discussion. Since every element of Ω is a
comon multiple of D, then by corollary 2.14, D has a least common multiple,
which is a greastest common divisor of Ω. Thus, greatest common divisors
for nonempty sets of words always exist.
Remark. The only letters arising in the greatest common divisor and the least
common multiple of a set of words are those occurring in the words them-
selves.
Proof. For the greatest common divisor it is clear, because in any pair of
positive words exactly the same letters occur. For the least common multiple,
recall how we found L(a,W ): W a

0 ≡ Ka(W ), and W a
i+1 ≡ W a

i if W a
i starts

with a, or W a
i+1 ≡ Ka(W a

i b) if W a
i is an a-chain from a to b. But if b 6= a, then

the only way we can have an a-chain from a to b is if there is an elementary
subchain somewhere in the a-chain containing b. So W a

i+1 only contain letters
which are already in W a

i .

2.4.5 Square-Free Positive Words

When a positive word U is of the form U ≡ XaaY where X and Y are posi-
tive words and a is a letter then we say U has a quadratic factor. A word is
square-free relative to a Coxeter graph Γ when U is not positive equivalent
to a word with a quadratic factor. The image of a square-free word in A+

Γ is
called square-free.

Lemma 2.15 Let V be a positive word which is divisible by a and contains a square.
Then there is a positive word Ṽ with Ṽ =p V which contains a square and which
begins with a. Thus, if W is a square-free positive word and a is a letter such that
aW is not square free then a divides W .

Proof. The proof is by induction on the length of V . Decompose V , as

V ≡ Ca(V )Da(V )



Chapter 2. Basic Theory of Artin Groups 33

where Ca(V ) and Da(V ) are non-empty words, and Ca(V ) is the largest prefix
of V which is a simple a-chain. Without loss of generality we may assume that
V is a representative of its positive equivalence class which contains a square
and is such that l(Ca(V )) is maximal.

When Ca(V ) is the empty word it follows naturally that Ṽ ≡ V satisfies
the conditions for Ṽ . For nonempty Ca(V ) we have two cases:

(i) Da(V ) contains a square. By the induction assumption, one can assume,
without loss of generality that Da(V ) begins with the target of the simple a-
chain Ca(V ). Thus, since the length of Ca(V ) is maximal, Ca(V ) is of the
form 〈ba〉mab−1. From this it follows that when Da(V )− contains a square
then Ṽ ≡ aCa(V )Da(V )− satisfies the conditions for Ṽ , and otherwise Ṽ ≡
a2Ca(V )Da(V )−− does.

(ii) Neither Ca(V ) nor Da(V ) contains a square. Then V is of the form
V ≡ 〈ba〉qDa(V ) where q ≥ 1, and Da(V ) begins with a if q is even, and b if q

is odd. If q even then 〈ba〉q is a simple a-chain with target b so, by lemma 2.4,
since a divides 〈ba〉qDa(V ), b divide Da(V ). But Da(V ) begins with a so by
an application of the reduction property there exists E such that

Da(V ) =p 〈ba〉mabE.

Similarly, for q odd. Then

Ṽ ≡ a〈ba〉mab−1〈ba〉qE if mab is even,

Ṽ ≡ a〈ba〉mab−1〈ab〉qE if mab is odd.

satisfies the conditions.
To prove the second statement, we have that there exists a positive word

U , such that aU contains a square and aW =p aU from the first statement. It
follow from cancellativity that U =p W and, since W is square free, that U

does not contain a square. So U begins with a and W is divisible by a.

From this lemma we get the following result concerning the a-sequence of
a square-free word W , which will be needed in the next section.

Lemma 2.16 If W is a square-free positive word and a is a letter then each word W a
i

in the a-sequence of W is also square-free.
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Proof. W a
0 is square-free since W a

0 =p W . Assume W a
i is square-free. Then

either W a
i+1 ≡ W a

i or W a
i+1 =p W a

i bi where bi is the target of the chain W a
i . If

W a
i bi is not square-free then birev W a

i is not square-free and by lemma 2.15,
the bi-chain rev W a

i is divisible by bi, in contradiction to lemma 2.4.

Let QFA+
Γ be the set of square-free elements of A+

Γ . Consider the canon-
ical map of QFA+

Γ into the Coxeter group WΓ defined by the composition of
the canonical maps A+

Γ −→ AΓ −→ WΓ. It follows from theorem 3 of Tits
[Tit69] that

QFA+
Γ −→ WΓ is bijective.

Thus, QFA+
Γ is finite precisely when AΓ is of finite type (i.e. WΓ is finite).

This result is needed in the next section.

2.5 The Fundamental Element

Let M be a Coxeter matrix over Σ, and let I ⊂ Σ such that the letters of I in
A+

Γ have a common multiple. Then the uniquely determined least common
multiple (which exists by lemma 2.13) of the letters of I in A+

Γ is called the
fundamental element ∆I for I ∈ A+

Γ .
The word ”fundamental”, introduced by Garside [Gar69], refers to the

fundamental role which these elements play. It is shown in [BS72] that when
AΓ is irreducible (i.e. Γ connected) and there exists a fundamental element
∆Σ, then ∆Σ or ∆2

Σ generates the center of AΓ. The conditions for the exis-
tence of ∆Σ are very strong and are outlined in the following two theorems,
which appear in [BS72].

Theorem 2.17 For a Coxeter graph Γ the following statements are equivalent:
(i) There is a fundamental element ∆Σ in A+

Γ .
(ii) Every finite subset of A+

Γ has a least common multiple.
(iii) The canonical map A+

Γ −→ AΓ is injective, and for each Z ∈ AΓ there exist
X, Y ∈ A+

Γ with Z = XY −1.
(iv) The canonical map A+

Γ −→ AΓ is injective, and for each Z ∈ AΓ there exist
X, Y ∈ A+

Γ with Z = XY −1, where the image of Y lies in the center of AΓ.

Theorem 2.18 Let Γ be a Coxeter graph. There exists a fundamental element ∆Σ in
A+

Γ if and only if Γ is of finite-type (i.e. WΓ is finite).
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To prove theorem 2.18 we need to recall the theorem of Tits we discussed
at the end of section 2.4.5 on page 34: Γ is of finite-type if and only if QFA+

Γ

is finite. It is shown in [BS72] that every element of QFA+
Γ divides ∆Σ thus

if ∆Σ exists then QFA+
Γ must be finite. To prove the converse suppose that

∆Σ does not exist in A+
Γ . Let J = {a1, . . . , ak} ⊂ Σ be such that ∆J exists

but ∆J∪{ak+1} does not exist (here we have assumed Σ has been ordered).
Then the ak+1-sequence of ∆J does not terminate. Since ∆J is square-free
(see [BS72]) then by lemma 2.16 every element of the ak+1-sequence of ∆J is
square free (and distinct). Thus QFA+

Γ is infinite.
It is important to note that in theorem 2.17 the positive words X and Y

such that Z = XY −1 are calculable. This can be seen from the proof given in
[BS72]. We use this fact in 2.6 to solve the word problem for finite-type Artin
groups.

For a complete discussion on properties of the fundamental element see
[BS72]. There it is shown that the image of the fundamental element ofA+

Γ in
the Coxeter group WΓ is precisely the longest element. Also they give formu-
lae for the fundamental elements of irreducible finite-type Artin groups, i.e.
the Artin groups corresponding to the Coxeter graphs in figure 1.1.

2.6 The Word and Conjugacy Problem

In this section we use the machinary developed thus far to give a quick solu-
tion to the word problem for finite-type Artin groups. The conjugacy problem
is also discussed.

Let U, V ∈ AΓ, where Γ is of finite-type. We want to decide if U = V . By
theorem 2.17 we know there exists (calculable) positive words X1, X2, Y1, Y2 ∈
A+

Γ such that

U = X1Y
−1
1 and V = X2Y

−1
2

where the images of Y1 and Y2 are central in AΓ. To decide if U = V it is
equivalent to decide if X1Y2 = X2Y1, but since the canonical map A+

Γ −→ AΓ

is injective this is equivalent to deciding if X1Y2 =p X2Y1. In 2.4.3 we gave a
solution to the word problem forA+

Γ , thus a solution to the word problem for
AΓ follows.

In [BS72] it is shown elements of A+
Γ and AΓ can be put into a normal

form using the fundamental element. This also gives a solution to the word
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problem in both A+
Γ and AΓ. Brieskorn and Saito also give a solution to the

conjugacy problem in finite type Artin groups.
Another solution to the word and conjugacy problems appears in [Cha92].

It is shown that finite-type Artin groups are biautomatic in which case they are
known to have solvable word and conjugacy problems.

Some infinite-type Artin groups have been shown to have solvable word
and conjugacy problems. Appel and Schupp [AS83] solve these problems for
Artin groups of extra-large type (i.e. mab ≥ 4 for all a, b ∈ Σ).

2.7 Parabolic Subgroups

Let (AΓ, Σ) be an Artin system with values mab for a, b ∈ Σ. For a subset I ⊂ Σ
we defineAΓI

to be the subgroup ofAΓ generated by I . We call the subgroup
AΓI

a parabolic subgroup. (More generally, we refer to any conjugate of such
a subgroup as a parabolic subgroup.)

Van der Lek [Lek83] has shown that for each I ⊂ Σ the pair (AΓI
, I) is an

Artin system associated with ΓI . That is, parabolic subgroups of Artin groups
are indeed Artin groups. A proof of this fact also appears in [Pa97]. Thus
the inclusions among Coxeter groups in table 1.1 also hold for the associated
Artin groups. Crisp [Cri99] shows quite a few more inclusions hold among
the irreducible finite-type Artin groups. Table 2.1 lists these inclusions. Notice
that every irreducible finite-type Artin group embeds into an Artin group of
type A, D or E.

Similar to that of Coxeter groups we have that the study of Artin groups
can be largely reduced to the case when Γ is connected.

Theorem 2.19 Let (AΓ, Σ) have Coxeter graph Γ, with connected components Γ1,
. . ., Γr, and let I1, . . . , Ir be the corresponding subsets of Σ. Then

AΓ = AΓI1
⊕ · · · ⊕ AΓIr

,

and each Artin system (AΓIi
, Ii) is irreducible.

Cohen and Wales [CW01] use this fact and the fact that irreducible finite
type Artin groups embed into an Artin group of type A, D or E to show all
Artin groups of finite-type are linear (have a faithful linear representation) by
showing Artin groups of type D, and E are linear, thus generalizing the recent
result that the braid groups (Artin groups of type A) are linear [Bi01], [Kr02].
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AΓ injects into AΓ′

Γ Γ′

An Am (m ≥ n),
Bn+1 (n ≥ 2),

Dn+2,
E6 (1 ≤ n ≤ 5),
E7 (1 ≤ n ≤ 6),
E8 (1 ≤ n ≤ 7),

F4, H3 (1 ≤ n ≤ 2),
H4 (1 ≤ n ≤ 3)

I2(3) (1 ≤ n ≤ 2)
Bn An, A2n−1, A2n, Dn+1

E6 E7, E8

E7 E8

F4 E6, E7, E8

H3 D6

H4 E8

I2(m) Am−1

Table 2.1: Inclusions among Artin groups
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2.8 Geometric Realization of Artin Groups

In this section we discuss how finite-type Artin groups appear as fundamen-
tal groups of complex hyperplane arrangements. From this point of view we
can see that finite-type Artin groups are torsion free.

Let (WΓ, S) be a Coxeter system where WΓ is finite and |S| = n. Let V be
the associated (real) n-dimensional vector space, and B the bilinear form on
V introduced in section 1.3. We know from theorem 1.17 that V is a Euclidean
space. Let T denote the set of reflections in W . For each t ∈ T let Ht denote
the hyperplane in V (pointwise) fixed by t. Let H = {Ht}t∈T be the collection
of such hyperplanes. The complement of H in V is defined by

M(H) = V \
⋃

H∈H
H.

Note that since V is a real vector space M(H) is not connected. However, if we
”complexify” V and the arrangement of hyperplanes H we get a connected
space. This is done as follows. The complexification of V is VC = Cn. The
complexification of a hyperplane H is the hyperplane HC of VC having the same
equation as H . The complexification of H is the arrangement HC = {HC : H ∈
H} in VC. The topological space

M(HC) = VC \
⋃

H∈HC
H.

is our primary interest.
Before we proceed any futher we need to make some definitions. A collec-

tion of hyperplanesH in a (real) vector space is called a (real) arrangement of
hyperplanes. We say H is central if all the hyperplanes of H contain the ori-
gin. We say further thatH is essential if the intersection of all the elements of
H is {0}. CallH simplicial if it is central and essential, and if all the chambers
of H (i.e. connected components of V \ ⋃

H∈HH) are cones over simplices.
The following theorem indicates the importance of knowing an arrangement
is simplicial.

Theorem 2.20 (Deligne [Del72]). Let H be a simplicial arrangement of hyper-
planes. Then M(HC) is an Eilenberg-Maclane space (i.e. its universal cover is con-
tractible).
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The importance of this theorem lies in the fact that if M(G) is a finite dimen-
sional Eilenberg-Maclean space for a group G then G has finite cohomological
dimension and so, from a result in homological algebra, G is torsion-free.

Let us return now to our particular hyperplane arrangement H defined
above. It follows from our work in chapter 1 that the arrangement of hy-
perplanes H = {Ht}t∈T is central and essential. Futhermore, Deligne [Del72]
showed thatH is simplicial. Thus, it follows from theorem 2.20 that M(HC) is
an Eilenberg-Maclean space. Deligne has shown that the fundamental group
of M(HC) is precisely the pure Artin group associated with Γ. Moreover,
Deligne showed that WΓ acts freely on M(HC) so that M(HC)/WΓ is also an
Eilenberg-Maclean space and π1(M(HC)/WΓ) is the Artin group AΓ. Thus,
AΓ is torsion-free.

For arbitrary Artin groupsAΓ (not necessarily of finite-type) more general
constructions of K(AΓ, 1)-spaces have been done, for example see [CD95].

An algebraic argument showing finite-type Artin groups are torsion free
was discovered by Dehornoy [Deh98]. The proof uses the divisibility theory
we developed in this chapter.



Chapter 3
Commutator Subgroups of Finite-Type
Artin Groups

Gorin and Lin [GL69] gave a presentation for the commutator subgroup B′
n

of the braid group Bn, n ≥ 3, which showed B′
n is finitely generated and

perfect for n ≥ 5. This has some interesting consequences concerning Bn

and ”orderability”, which we discuss in chapter 5. In this chapter we extend
the work of Gorin and Lin and compute presentations for the commutator
subgroups of all the other irreducible finite-type Artin groups; those corre-
sponding to the Coxeter graphs in figure 1.1. This will be applied in chapter
4 to ”local indicability” of finite-type Artin groups.

3.1 Reidemeister-Schreier Method

We will use the Reidemeister-Schreier method to compute the presentation for
the commutator subgroups so we give a brief overview of this method in this
section. For a complete discussion of the Reidemeister-Schreier method see
[MKS76].

Let G be an arbitrary group with presentation 〈a1, . . . , an : Rµ(aν), . . . 〉
and H a subgroup of G. A system of words R in the generators a1, . . . , an

is called a Schreier system for G modulo H if (i) every right coset of H in G

contains exactly one word of R (i.e. R forms a system of right coset repre-
sentatives), (ii) for each word in R any initial segment is also in R (i.e. initial
segments of right coset representatives are again right coset representatives).
Such a Schreier system always exists, see for example [MKS76]. Suppose now
that we have fixed a Schreier system R. For each word W in the generators

40
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a1, . . . , an we let W denote the unique representative in R of the right coset
HW . Denote

sK,av = Kav ·Kav
−1

, (3.1)

for each K ∈ R and generator av. A theorem of Reidemeister-Schreier (theo-
rem 2.9 in [MKS76]) states that H has presentation

〈sK,aν , . . . : sM,aλ
, . . . , τ(KRµK−1), . . . 〉 (3.2)

where K is an arbitrary Schreier representative, av is an arbitrary generator
and Rµ is an arbitrary defining relator in the presentation of G, and M is a
Schreier representative and aλ a generator such that

Maλ ≈Maλ,

where ≈ means ”freely equal”, i.e. equal in the free group generated by
{a1, . . . , an}. The function τ is a Reidemeister rewriting function and is de-
fined according to the rule

τ(aε1
i1
· · · aεp

ip
) = sε1

Ki1
,ai1

· · · sε1
Kip ,aip

(3.3)

where Kij = aε1
i1
· · · aεj−1

ij−1
, if εj = 1, and Kij = aε1

i1
· · · aεj

ij
, if εj = −1. It should

be noted that computation of τ(U) can be carried out by replacing a symbol
aε

v of U by the appropriate s-symbol sε
K,aν

. The main property of a Reide-
meister rewriting function is that for an element U ∈ H given in terms of the
generators aν the word τ(U) is the same element of H rewritten in terms of
the generators sK,aν .

3.2 A Characterization of the Commutator Subgroups

The commutator subgroup G′ of a group G is the subgroup generated by the
elements [g1, g2] := g1g2g

−1
1 g−1

2 for all g1, g2 ∈ G. Such elements are called
commutators. It is an elementary fact in group theory that G′ is a normal
subgroup in G and the quotient group G/G′ is abelian. In fact, for any normal
subgroup N CG the quotient group G/N is abelian if and only if G′ < N . If G
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is given in terms of a presentation 〈G : R〉 where G is a set of generators and
R is a set of relations, then a presentation for G/G′ is obtained by abelianizing
the presentation for G, that is, by adding relations gh = hg for all g, h ∈ G.
This is denoted by 〈G : R〉Ab.

Let U ∈ AΓ, and write U = aε1
i1
· · · aεr

ir
, where εi = ±1. The degree of U is

defined to be

deg(U) :=
∑r

j=1 εj .

Since each defining relator in the presentation forAΓ has degree equal to zero
the map deg is a well defined homomorphism from AΓ into Z. Let ZΓ denote
the kernel of deg; ZΓ = {U ∈ AΓ : deg(U) = 0}. It is a well known fact that
for the braid group (i.e. Γ = An) ZAn is precisely the commutator subgroup.
In this section we generalize this fact for all Artin groups.

Let Γodd denote the graph obtained from Γ by removing all the even-
labelled edges and the edges labelled ∞. The following theorem tells us ex-
actly when the commutator subgroup A′Γ is equal to ZΓ.

Theorem 3.1 For an Artin group AΓ, Γodd is connected if and only if the commu-
tator subgroup A′Γ is equal to ZΓ.

Proof. For the direction (=⇒) the hypothesis implies

AΓ/A′Γ ' Z.

Indeed, start with any generator ai, for any other generator aj there is a path
from ai to aj in Γodd:

ai = aii −→ ai2 −→ · · · −→ aim = aj .

Since mikik+1
is odd the relation

〈aikaik+1
〉mikik+1 = 〈aik+1

aik〉mikik+1

becomes aik = aik+1
in AΓ/A′Γ. Hence, ai = aj in AΓ/A′Γ. It follows that,

AΓ/A′Γ ' 〈a1, . . . , an : a1 = · · · = an〉
' Z,

where the isomorphism φ : AΓ/A′Γ −→ Z is given by
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UA′Γ 7−→ deg(U).

Therefore, A′Γ = kerφ = ZΓ.
We leave the proof of the other direction to theorem 3.2, where a more

general result is stated.

For the case when Γodd is not connected we can get a more general de-
scription of A′Γ as follows. Let Γodd have m connected components; Γodd =
Γ1 t . . . t Γm. Let Σi ⊂ Σ be the corresponding sets of vertices. For each
1 ≤ k ≤ m define the map

degk : AΓ −→ Z

as follows: If U = aε1
i1
· · · aεr

ir
∈ AΓ take

degk(U) =
∑

1≤j≤r where aij
∈Σk

εj .

It is straight forward to check that for each 1 ≤ k ≤ m the map degk agrees
on 〈ab〉mab and 〈ba〉mab for all a, b ∈ Σ. Hence, degk : AΓ −→ Z is a homomor-
phism for each 1 ≤ k ≤ m. Let

ZΓ
(m) :=

⋂

1≤k≤m

ker(degk).

The following theorem tells us that this is precisely the commutator subgroup
of AΓ.

Theorem 3.2 Let Γ be a Coxeter graph such that Γodd has m connected components.
Then A′Γ = ZΓ

(m).

Proof. Clearly A′Γ ⊂ ZΓ
(m) since commutators certainly lie in the kernel of

degk for each k. To show the opposite inclusion let W ∈ ZΓ
(m), i.e. degk(W ) =

0 for all 1 ≤ k ≤ m. Since

AΓ/A′Γ ' 〈a1, . . . , an : 〈aiaj〉maiaj = 〈ajai〉maiaj 〉Ab

' 〈a1, . . . , an : ai = aj iff i and j lie in the same connected

component of Γodd〉,
' Zm,

with the isomorphism given by
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UA′Γ 7−→ (deg1(U), . . . , degm(U)),

then WA′Γ must be the identity in AΓ/A′Γ (since it is in the kernel). In which
case W ∈ A′Γ.

It is this characterization of the commutator subgroup which allows us to
use the Reidemeister-Schreier method to compute its presentation. In partic-
ular, we can find a relatively simple set of Schreier right coset representatives.

3.3 Computing the Presentations

In this section we compute presentations for the commutator subgroups of
the irreducible finite-type Artin groups. We will show that, for the most part,
the commutator subgroups are finitely generated and perfect (equal to its com-
mutator subgroup).

Figure 3.1 shows that each irreducible finite-type Artin group falls into
one of two classes; (i) those in which Γodd is connected and (ii) those in which
Γodd has two components. Within a given class the arguments are quite sim-
ilar. Thus, we will only show the complete details of the computations for
types An and Bn. The rest of the types have similar computations.

3.3.1 Two Lemmas

We will encounter two sets of relations quite often in our computations and
it will be necessary to replace them with sets of simpler but equivalent re-
lations. In this section we give two lemmas which allow us to make these
replacements.

Let {pk}k∈Z , a, b, and q be letters. In the following keep in mind that the
relators pk+1p

−1
k+2p

−1
k split up into the two types of relations pk+2 = p−1

k pk+1

(for k ≥ 0), and pk = pk+1p
−1
k+2 (for k < 0). The two lemmas are:

Lemma 3.3 The set of relations

pk+1p
−1
k+2p

−1
k = 1, pkapk+2a

−1p−1
k+1a

−1 = 1, b = p0ap−1
0 , (3.4)
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(An)odd (n ≥ 1) u u u r r r u u u
a1 a2 a3 an−2 an−1 an

(Bn)odd (n ≥ 2) u u u r r r u u u
a1 a2 a3 an−2 an−1 an

(Dn)odd (n ≥ 4) u u u r r r u u
u
u

³³³
PPPa1 a2 a3 an−3 an−2

an−1

an

(E6)odd
u u u u u

u

a1 a2 a3 a4 a5

a6

(E7)odd
u u u u u u

u

a1 a2 a3 a4 a5 a6

a7

(E8)odd
u u u u u u u

u

a1 a2 a3 a4 a5 a6 a7

a8

(F4)odd
u u u u

a1 a2 a3 a4

(H3)odd
u u u5

a1 a2 a3

(H4)odd
u u u u5

a1 a2 a3 a4

(I2(m))odd (m ≥ 5) u um
a1 a2

m odd

u u
a1 a2

m even

Figure 3.1: Γodd for the irreducible finite-type Coxeter graphs Γ
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is equivalent to the set

pk+1p
−1
k+2p

−1
k = 1, (3.5)

p0ap−1
0 = b, (3.6)

p0bp
−1
0 = b2a−1b (3.7)

p1ap−1
1 = a−1b, (3.8)

p1bp
−1
1 = (a−1b)3a−2b. (3.9)

Lemma 3.4 The set of relations:

pk+1p
−1
k+2p

−1
k = 1, pkq = qpk+1,

is equivalent to the set

pk+1p
−1
k+2p

−1
k = 1, p0q = qp1, p1q = qp−1

0 p1.

The proof of lemma 3.4 is straightforward. On the other hand, the proof
of the lemma 3.3 is somewhat long and tedious.
Proof. [Lemma 3.4] Clearly the second set of relations follows from the first
set of relations since p2 = p−1

0 p1. To prove the converse we first prove that
pkq = qpk+1 (k ≥ 0) follows from the second set of relations by induction on
k. It is easy to see then that the same is true for k < 0. For k = 0, 1 the result
clearly holds. Now, for k = m + 2;

pm+2qp
−1
m+3q

−1 = pm+2qp
−1
m+2pm+1q

−1,

= pm+2(p−1
m+1q)pm+1q

−1 by IH (k = m + 1),

= pm+2p
−1
m+1(qpm+1)q−1,

= pm+2p
−1
m+1(pmq)q−1 by IH (k = m),

= pm+2p
−1
m+1pm,

= 1.

Proof. [Lemma 3.3] First we show the second set of relations follows from the
first set. Taking k = 0 in the second relation in (3.4) we get the relation

p0ap2a
−1p−1

1 a−1 = 1,
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and, using the relations p2 = p−1
0 p1 and b = p0ap−1

0 , (3.8) easily follows. Tak-
ing k = 1 in the second relation in (3.4) we get the relation

p1ap3a
−1p−1

2 a−1 = 1.

Using the relations p3 = p−1
1 p2 and p2 = p−1

0 p1 this becomes

p1ap−1
1 p−1

0 p1a
−1p−1

1 p0a
−1 = 1.

But p1ap−1
1 = a−1b (by (3.8)) so this reduces to

a−1bp−1
0 b−1ap0a

−1 = 1.

Isolating bp−1
0 on one side of the equation gives

bp−1
0 = a2p−1

0 a−1b.

Multiplying both sides on the left by p0 and using the relation p0ap−1
0 = b it

easily follows p0bp
−1
0 = b2a−1b, which is (3.7). Finally, taking k = 2 in the

second relation in (3.4) we get the relation

p2ap4a
−1p−1

3 a−1 = 1.

Using the relation p4 = p−1
2 p3 this becomes

p2ap−1
2 p3a

−1p−1
3 a−1 = 1. (3.10)

Note that

p2ap−1
2 = p−1

0 p1ap−1
1 p0 by p2 = p−1

0 p1

= p−1
0 a−1bp0 by (3.8)

= a−2ba−1a using (3.4) and (3.7)

= a−2b

and

p3ap−1
3 = p−1

1 p2ap−1
2 p1 by p3 = p−1

1 p2

= p−1
1 a−2bp1,
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where the second equality follows from the previous statement. Thus, (3.10)
becomes

a−2bp−1
1 b−1a2p1a

−1 = 1

Isolating the factor bp−1
1 on one side of the equation, multiplying both sides

by p1, and using the relation (3.8) we easily get the relation (3.9). Therefore
we have that the second set of relations (3.5)-(3.9) follows from the first set of
relations (3.4).

In order to show the relations in (3.4) follow from the relations in (3.5)-
(3.9) it suffices to just show that the second relation in (3.4) follows from the
relations in (3.5)-(3.9). To do this we need the following fact: The relations

pkap−1
k = akb, (3.11)

pkbp
−1
k = (a−kb)k+2a−(k+1)b, (3.12)

p−1
k apk = ab−1ak+2, (3.13)

p−1
k bpk = (ab−1ak+2)ka, (3.14)

follow from the relations in (3.5)-(3.9). The proof of this fact is left to lemma
3.5 below. From the relations (3.11)-(3.14) we obtain

pk+1ap−1
k+1 = a−(k+1)b = a−1 · a−kb = a−1pkap−1

k , (3.15)

and

p−1
k+1apk+1 = ab−1ak+3 = ab−1ak+2a = p−1

k apka. (3.16)

Now we are in a position to show that that the second relation in (3.4) follows
from the relations in (3.5)-(3.9). For k ≥ 0

pkapk+2a
−1p−1

k+1a
−1 = pkap−1

k pk+1a
−1p−1

k+1︸ ︷︷ ︸ a−1 by (3.5)

= pkap−1
k (a−1pkap−1

k )−1a−1 by (3.15)

= 1.

and for k < 0

pkapk+2a
−1p−1

k+1a
−1 = pk+1 p−1

k+2apk+2︸ ︷︷ ︸ a−1p−1
k+1a

−1 by (3.5)

= pk+1(p−1
k+1apk+1a)a−1p−1

k+1a
−1 by (3.16)

= 1.
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Therefore, the relations

pkapk+2a
−1p−1

k+1a
−1 = 1, k ∈ Z

follow from the relations in (3.5)-(3.9).

To complete the proof of lemma 3.3 we need to prove the following.

Lemma 3.5 The relations

pkap−1
k = akb

pkbp
−1
k = (a−kb)k+2a−(k+1)b

p−1
k apk = ab−1ak+2

p−1
k bpk = (ab−1ak+2)ka

follow from the relations in (3.5)-(3.9).

Proof. We will use induction to prove the result for nonnegative indices k,
the result for negative indices k is similar. Clearly this holds for k = 0, 1. For
k = m + 2 we have

pm+2ap−1
m+2 = p−1

m pm+1ap−1
m+1pm by (3.5),

= p−1
m a−(m+1)bpm by induction hypothesis (IH),

= (p−1
m a−(m+1)pm)(p−1

m bpm),

= (p−1
m apm)−(m+1)(p−1

m bpm),

= (ab−1am+2)−(m+1)(ab−1am+2)ma by IH,

= (ab−1am+2)−1a,

= a−(m+2)b,

pm+2bp
−1
m+2 = p−1

m pm+1bp
−1
m+1pm by (3.5),

= p−1
m (a−(m+1)b)m+3a−(m+2)bpm by IH,

= ((p−1
m apm)−(m+1)(p−1

m bpm))m+3(p−1
m apm)−(m+2)p−1

m bpm,

= ((ab−1am+2)−(m+1)(ab−1am+2)ma)(m+3)

· (ab−1am+2)−(m+2)(ab−1am+2)ma by IH,

= (a−(m+2)b)m+3(ab−1am+2)−2a,

= (a−(m+2)b)m+4a−(m+3)b,
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Similarly for the other two equations. Thus, the result follows by induction.

3.3.2 Type A

The first presentation for the commutator subgroup B′
n+1 = A′An

of the braid
group Bn+1 = AAn appeared in [GL69] but the details of the computation
were minimal. Here we fill in the details of Gorin and Lin’s computation.

The presentation of AAn is

AAn = 〈a1, ..., an : aiaj = ajai for |i− j| ≥ 2,

aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ n− 1 〉.

Since (An)odd is connected then by theorem 3.1 A′An
= ZAn . To simplify no-

tation in the following let Zn denote A′An
= ZAn . Elements U, V ∈ AAn lie in

the same right coset precisely when they have the same degree:

ZnU = ZnV ⇐⇒ UV −1 ∈ Zn

⇐⇒ deg(U) = deg(V ),

thus a Schreier system of right coset representatives for AAn modulo Zn is

R = {ak
1 : k ∈ Z}

By the Reidemeister-Schreier method, in particular equation (3.2),Zn has gen-
erators sak

1 ,aj
:= ak

1aj(ak
1aj)−1 with presentation

〈sak
1 ,aj

, . . . : sam
1 ,aλ

, . . . , τ(a`
1Ria

−`
1 ), . . . , τ(a`

1Ti,ja
−`
1 ), . . . 〉, (3.17)

where j ∈ {1, . . . , n}, k, ` ∈ Z, and m ∈ Z, λ ∈ {1, . . . , n} such that am
1 aλ ≈

am
1 aλ (”freely equal”), and Ti,j , Ri represent the relators aiaja

−1
i a−1

j , |i−j| ≥ 2,
and aiai+1aia

−1
i+1a

−1
i a−1

i+1, respectively. Our goal is to clean up this presenta-
tion.

The first thing to notice is that

am
1 aλ ≈ am

1 aλ = am+1
1 ⇐⇒ λ = 1

Thus, the first type of relation in (3.17) is precisly sam
1 ,a1 = 1, for all m ∈ Z.
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Next, we use the definition of the Reidemeister rewriting function (3.3)
to express the second and third types of relations in (3.17) in terms of the
generators sak

1 ,aj
:

τ(ak
1Ti,ja

−k
1 ) = sak

1 ,ai
sak+1

1 ,aj
s−1

ak+1
1 ,ai

s−1
ak
1 ,aj

(3.18)

τ(ak
1Ria

−k
1 ) = sak

1 ,ai
sak+1

1 ,ai+1
sak+2

1 ,ai
s−1

ak+2
1 ,ai+1

s−1

ak+1
1 ,ai

s−1
ak
1 ,ai+1

(3.19)

Taking i = 1, j ≥ 3 in (3.18) we get

sak+1
1 ,aj

= sak
1 ,aj

Thus, by induction on k,

sak
1 ,aj

= s1,aj (3.20)

for j ≥ 3 and for all k ∈ Z.
Therefore, Zn is generated by sak

1 ,a2
= ak

1a2a
−(k+1)
1 and s1,a`

= a`a
−1
1 ,

where k ∈ Z , 3 ≤ ` ≤ n. To simplify notation let us rename the genera-
tors; let pk := ak

1a2a
−(k+1)
1 and q` := a`a

−1
1 , for k ∈ Z , 3 ≤ ` ≤ n. We now

investigate the relations in (3.18) and (3.19).
The relations in (3.19) break up into the following three types (using 3.20):

pk+1p
−1
k+2p

−1
k (taking i = 1) (3.21)

pkq3pk+2q
−1
3 p−1

k+1q
−1
3 (taking i = 2) (3.22)

qiqi+1qiq
−1
i+1q

−1
i q−1

i+1 for 3 ≤ i ≤ n− 1. (3.23)

The relations in ( 3.18) break up into the following two types:

pkqjp
−1
k+1q

−1
j for 4 ≤ j ≤ n, (taking i = 2) (3.24)

qiqjq
−1
i q−1

j for 3 ≤ i < j ≤ n, |i− j| ≥ 2. (3.25)

We now have a presentation for Zn consisting of the generators pk, q`,
where k ∈ Z, 3 ≤ ` ≤ n − 1, and defining relations (3.21) -(3.25). However,
notice that relation (3.21) splits up into the two relations

pk+2 = p−1
k pk+1 for k ≥ 0, (3.26)

pk = pk+1p
−1
k+2 for k < 0. (3.27)
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Thus, for k 6= 0, 1, pk can be expressed in terms of p0 and p1. It follows that
Zn is finitely generated. In order to show Zn is finitely presented we need to
be able to replace the infinitly many relations in (3.22) and (3.24) with finitely
many relations. This can be done using lemmas 3.3 and 3.4, but this requires
us to add a new letter b to the generating set with a new relation b = p0q3p

−1
0 .

Thus Zn is generated by p0, p1, q`, b, where 3 ≤ ` ≤ n − 1, with defining
relations:

p0q3p
−1
0 = b, p0bp

−1
0 = b2q−1

3 b, p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

qiqi+1qiq
−1
i+1q

−1
i q−1

i+1 (3 ≤ i ≤ n− 1),

p0qj = qjp1 (4 ≤ j ≤ n), p1qj = qjp
−1
0 p1 (4 ≤ j ≤ n).

qiqjq
−1
i q−1

j (3 ≤ i < j ≤ n, |i− j| ≥ 2).

Noticing that for n = 2 the generators qk (3 ≤ k ≤ n), and b do not exist,
and for n = 3 the generators qk (4 ≤ k ≤ n) do not exist, we have proved the
following theorem.

Theorem 3.6 For every n ≥ 2 the commutator subgroup A′An
of the Artin group

AAn is a finitely presented group. A′A2
is a free group with two free generators

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 .

A′A3
is the group generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 , q = a3a

−1
1 , b = a2a

−1
1 a3a

−1
2 ,

with defining relations

b = p0qp
−1
0 , p0bp

−1
0 = b2q−1b,

p1qp
−1
1 = q−1b, p1bp

−1
1 = (q−1b)3q−2b.

For n ≥ 4 the group A′An
is generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 , q3 = a3a

−1
1 ,

b = a2a
−1
1 a3a

−1
2 , q` = a`a

−1
1 (4 ≤ ` ≤ n− 1),
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with defining relations

b = p0q3p
−1
0 , p0bp

−1
0 = b2q−1

3 b,

p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

p0qi = qip1 (4 ≤ i ≤ n), p1qi = qip
−1
0 p1 (4 ≤ i ≤ n)

q3qi = qiq3 (5 ≤ i ≤ n), q3q4q3 = q4q3q4,

qiqj = qjqi (4 ≤ i < j − 1 ≤ n− 1), qiqi+1qi = qi+1qiqi+1 (4 ≤ i ≤ n− 1).

¤

Corollary 3.7 For n ≥ 4 the commutator subgroup A′An
of the Artin group of type

An is finitely generated and perfect (i.e. A′′An
= A′An

).

Proof. Abelianizing the presentation of A′An
in the theorem results in a pre-

sentation of the trivial group. Hence A′′An
= A′An

.

Now we study in greater detail the group A′A3
, the results of which will

be used in section 4.2.1. From the presentation of A′A3
given in theorem 3.6

one can easily deduce the relations:

p−1
0 qp0 = qb−1q2, p−1

0 bp0 = q,

p−1
1 qp1 = qb−1q3, p−1

1 bp1 = qb−1q4.

Let T be the subgroup of A′A3
generated by q and b. The above relations and

the defining relations in the presentation for A′A3
tell us that T is a normal

subgroup of A′A3
. To obtain a representation of the factor group A′A3

/T it
is sufficient to add to the defining relations in the presentation for A′A3

the
relations q = 1 and b = 1. It is easy to see this results in the presentation of
the free group generated by p0 and p1. Thus, A′A3

/T is a free group of rank 2,
F2. We have the exact sequence

1 −→ T −→ A′A3
−→ A′A3

/T −→ 1.

Since A′A3
/T is free then the exact sequence is actually split so

A′A3
' T oA′A3

/T ' T o F2,

where the action of F2 on T is defined by the defining relations in the presen-
tation of A′A3

and the relations above. In [GL69] it is shown (theorem 2.6) the
group T is also free of rank 2, so we have the following theorem.
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Theorem 3.8 The commutator subgroup A′A3
of the Artin group of type A3 is the

semidirect product of two free groups each of rank 2;

A′A3
' F2 o F2.

¤

3.3.3 Type B

The presentation of ABn is

ABn = 〈a1, ..., an : aiaj = ajai for |i− j| ≥ 2,

aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ n− 2

an−1anan−1an = anan−1anan−1〉.
Let Ti,j , Ri (1 ≤ i ≤ n−2), and Rn−1 denote the associated relators aiaja

−1
i a−1

j ,
aiai+1aia

−1
i+1a

−1
i a−1

i+1, and an−1anan−1ana−1
n−1a

−1
n a−1

n−1a
−1
n , respectively.

As seen in figure 3.1 the graph (Bn)odd has two components: Γ1 and Γ2,
where Γ2 denotes the component containing the single vertiex an. Let deg1

and deg2 denote the associated degree maps, respectively, so from theorem
3.2

A′Bn
= Z(2)

Bn
= {U ∈ ABn : deg1(U) = 0 and deg2(U) = 0}.

For simplicity of notation let Z(2)
Bn

be denoted by Zn.
For elements U, V ∈ AAn ,

ZnU = ZnV ⇔ UV −1 ∈ Zn

⇔ deg1(U) = deg1(V ), and

deg2(U) = deg2(V ),

thus a Schreier system of right coset representatives for ABn modulo Zn is

R = {ak
1a

`
n : k, ` ∈ Z}

By the Reidemeister-Schreier method, in particular equation (3.2), Zn is gen-
erated by

sak
1ak

n,aj
:= ak

1a
`
naj(ak

1a
`
naj)−1

=

{
ak

1a
`
naja

−`
n a

−(k+1)
1 if j 6= n

1 if j = n.
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with presentation

Zn = 〈sak
1a`

n,aj
, . . . : sap

1aq
n,aλ

, . . . ,

τ(ak
1a

`
nTi,j(ak

1a
`
n)−1), . . . , (1 ≤ i < j ≤ n, |i− j| ≥ 2),

τ(ak
1a

`
nRi(ak

1a
`
n)−1), . . . , (1 ≤ i ≤ n− 2),

τ(ak
1a

`
nRn−1(ak

1a
`
n)−1), . . . 〉,

(3.28)

where p, q ∈ Z, λ ∈ {1, . . . , n− 1} such that ap
1a

q
naλ ≈ ap

1a
q
naλ (”freely equal”).

Again, our goal is to clean up this presentation.
The cases n = 2, 3, and 4 are straightforward after one sees the computa-

tion for the general case n ≥ 5, so we will not include the computations for
these cases. The results are included in theorem 3.9. From now on it will be
assumed that n ≥ 5.

Since

ap
1a

q
naλ ≈ ap

1a
q
naλ =

{
ap+1

1 aq
n λ 6= n

ap
1a

q+1
n λ = n

⇐⇒ λ = n or; λ = 1 and q = 0,

the first type of relations in (3.28) are precisely

sak
1a`

n,an
= 1, and sak

1 ,a1
= 1. (3.29)

The second type of relations in (3.28), after rewriting using equation (3.3),
are

sak
1a`

n,ai
s
ak
1a`

nai,aj
s−1

ak
1a`

naiaja−1
i ,ai

s−1

ak
1a`

naiaja−1
i a−1

j ,aj

. (3.30)

where 1 ≤ i < j ≤ n, |i − j| ≥ 2. Taking i = 1 and 3 ≤ j ≤ n − 1 gives: for
` = 0 (using (3.29));

sak+1
1 ,aj

= sak
1 ,aj

, (3.31)

so by induction on k,

sak
1 ,aj

= s1,aj for 3 ≤ j ≤ n− 1, (3.32)

and for ` 6= 0;
sak

1a`
n,a1

sak+1
1 a`

n,aj
s−1

ak+1
1 a`

n,a1
s−1
ak
1a`

n,aj
. (3.33)
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We will come back to relation (3.33) in a bit.
Taking i = 1 and j = n in (3.30) (and using (3.29)) gives

sak
1a`

n,a1
s−1

ak
1a`+1

n ,a1
. (3.34)

So, by induction on ` (and (3.29)) we get

sak
1a`

n,a1
= 1 for k, ` ∈ Z. (3.35)

Taking 2 ≤ i ≤ n− 2, i + 2 ≤ j ≤ n in (3.30) gives




sak
1a`

n,ai
sak+1

1 a`
n,aj

s−1

ak+1
1 a`

n,ai
s−1
ak
1a`

n,aj
for j ≤ n− 1,

sak
1a`

n,ai
s−1

ak
1a`+1

n ,ai
for j = n.

(3.36)

In the case j = n induction on ` gives

sak
1a`

n,ai
= sak

1 ,ai
(2 ≤ i ≤ n− 2). (3.37)

So from (3.32) it follows

sak
1a`

n,ai
=

{
s1,ai 3 ≤ i ≤ n− 2

sak
1 ,a2

i = 2.
(3.38)

We come back to the case j ≤ n− 1 later.
Returning now to (3.33), we can use (3.35) to get

sak+1
1 a`

n,aj
= sak

1a`
n.aj

(3 ≤ j ≤ n− 1).

Thus, by induction on k

sak
1a`

n,aj
= sa`

n,aj
(3 ≤ j ≤ n− 1). (3.39)

For 3 ≤ j ≤ n − 2 we already know this (equation (3.38)), so the only new
information we get from (3.33) is

sak
1a`

n,an−1
= sa`

n,an−1
(k ∈ Z). (3.40)
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Collecting all the information we have obtained from τ(ak
1a

`
nTi,j(ak

1a
`
n)−1),

1 ≤ i < j ≤ n, |i− j| ≥ 2, we get:

sak
1a`

n,a1
= 1 (k, ` ∈ Z),

sak
1a`

n,ai
=

{
s1,ai 3 ≤ i ≤ n− 2,

sak
1 ,a2

i = 2,

sak
1a`

n,an−1
= sa`

n,an−1
,

(3.41)

and (from (3.36)), for 2 ≤ i ≤ n− 3 and i + 2 ≤ j ≤ n− 1,

sak
1a`

n,ai
sak+1

1 a`
n,aj

s−1

ak+1
1 a`

n,ai
s−1
ak
1a`

n,aj
. (3.42)

This relation breaks up into the following cases (using (3.41))




sak
1 ,a2

s1,ajs
−1

ak+1
1 ,a2

s−1
1,aj

for i = 2, 4 ≤ j ≤ n− 2,

sak
1 ,a2

sa`
n,an−1

s−1

ak+1
1 ,a2

s−1
a`

n,an−1
for i = 2, j = n− 1,

s1,ais1,ajs
−1
1,ai

s−1
1,aj

for 3 ≤ i ≤ n− 3, i + 2 ≤ j ≤ n− 2,

s1,aisa`
n,an−1

s−1
1,ai

s−1
a`

n,an−1
for 3 ≤ i ≤ n− 3, j = n− 1,

(3.43)

The third type of relations in (3.28); τ(ak
1a

`
nRi(ak

1a
`
n)−1), after rewriting

using equation (3.3), are

sak
1a`

n,ai
sak+1

1 a`
n,ai+1

sak+2
1 a`

n,ai
s−1

ak+2
1 a`

n,ai+1
s−1

ak+1
1 a`

n,ai
s−1
ak
1a`

n,ai+1
, (3.44)

which break down as follows (using (3.41)):




sak+1
1 ,a2

s−1

ak+2
1 ,a2

s−1
ak
1 ,a2

(i = 1),

sak
1 ,a2

s1,a3sak+2
1 ,a2

s−1
1,a3

s−1

ak+1
1 ,a2

s−1
1,a3

(i = 2),

s1,ais1,ai+1s1,ais
−1
1,ai+1

s−1
1,ai

s−1
1,ai+1

, for 3 ≤ i ≤ n− 3,

s1,an−2sa`
n,an−1

s1,an−2s
−1
a`

n,an−1
s−1
1,an−2

s−1
a`

n,an−1
, (i = n− 2),

(3.45)

The fourth type of relations in (3.28); τ(ak
1a

`
nRn−1(ak

1a
`
n)−1), after rewriting

using equation (3.3), is

sa`
n,an−1

sa`+1
n ,an−1

s−1

a`+2
n ,an−1

s−1

a`+1
n ,an−1

, (3.46)
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where we have made extensive use of the relations (3.41).
From (3.41) it follows that Zn is generated by sak

1 ,a2
, s1,ai , and sa`

n,an−1
for

k, ` ∈ Z and 3 ≤ i ≤ n − 2. For simplicity of notation let these generators
be denoted by pk, qi, and r`, respectively. Thus, we have shown that the
following is a set of defining relations for Zn:

pkqj = qjpk+1 (4 ≤ j ≤ n− 2, k ∈ Z),

pkr` = r`pk+1 (k, ` ∈ Z),

qiqj = qjqi (3 ≤ i < j ≤ n− 2, |i = j| ≥ 2),

qir` = r`qi (3 ≤ i ≤ n− 3),

pk+1p
−1
k+2p

−1
k (k ∈ Z),

pkq3pk+2q
−1
3 p−1

k+1q
−1
3 (k ∈ Z),

qiqi+1qi = qi+1qiqi+1 (3 ≤ i ≤ n− 3),

qn−2r`qn−2 = r`qn−2r` (` ∈ Z),

r`r`+1r
−1
`+2r

−1
`+1 (` ∈ Z),

(3.47)

The first four relations are from (3.43), the next four are from (3.45), and the
last one is from (3.46).

The fifth relation tells us that for k 6= 0, 1, pk can be expressed in terms of p0

and p1. Similarly the last relation tells us that for ` 6= 0, 1, r` can be expressed
in terms of r0 and r1. From this it follows that Zn is finitely generated. Using
lemmas 3.3 and 3.4 to replace the first, second and sixth relations, assuming
we have added a new generator b and relation b = p0q3p

−1
0 , we arrive at the

following theorem.

Theorem 3.9 For every n ≥ 3 the commutator subgroup A′Bn
of the Artin group

ABn is a finitely generated group. Presentations for A′Bn
, n ≥ 2 are as follows:

A′B2
is a free group on countably many generators:

[a`
2, a1] (` ∈ Z \ {0,±1}), [ak

1a2, a1] (k ∈ Z \ {0}).

A′B3
is a free group on four generators:

[a−1
1 , a−1

2 ], [a3, a2][a−1
1 , a−1

2 ], [a1, a2][a−1
1 , a−1

2 ], [a1a3, a2][a−1
1 , a−1

2 ].
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A′B4
is the group generated by

pk = ak
1a2a

−(k+1)
1 = [ak

1, a2][a−1
1 , a−1

2 ], (k ∈ Z)

q` = a`
4a3(a1a

`
4)
−1 = [a`

4, a3][a−1
2 , a−1

3 ][a−1
1 , a−1

2 ], (` ∈ Z),

with defining relations

pk+1p
−1
k+2p

−1
k (k ∈ Z),

pkq`pk+2 = q`pk+1q` (k, ` ∈ Z),

q`q`+1 = q`+1q`+2 (3 ≤ i ≤ n− 3).

For n ≥ 5 the group A′Bn
is generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 , q3 = a3a

−1
1 , r` = a`

nan−1(a1a
`
n)−1 (` ∈ Z),

b = a2a
−1
1 a3a

−1
2 , qi = aia

−1
1 (4 ≤ i ≤ n− 2),

with defining relations

p0qj = qjp1, p1qj = qjp
−1
o p1 (4 ≤ j ≤ n− 2),

p0r` = r`p1, p1r` = r`p
−1
0 p1 (` ∈ Z),

qiqj = qjqi (3 ≤ i < j ≤ n− 2, |i = j| ≥ 2),

qir` = r`qi (3 ≤ i ≤ n− 3),

p0q3p
−1
0 = b, p0bp

−1
0 = b2q−1

3 b,

p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

qiqi+1qi = qi+1qiqi+1 (3 ≤ i ≤ n− 3),

qn−2r`qn−2 = r`qn−2r` (` ∈ Z),

r`r`+1r
−1
`+2r

−1
`+1 (` ∈ Z),

¤

Corollary 3.10 For n ≥ 5 the commutator subgroupA′Bn
of the Artin group of type

Bn is finitely generated and perfect.

Proof. Abelianizing the presentation of A′Bn
in the theorem results in a pre-

sentation of the trivial group. Hence A′′Bn
= A′Bn

.
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3.3.4 Type D

The presentation of ADn is

ADn = 〈a1, ..., an : aiaj = ajai for 1 ≤ i < j ≤ n− 1,|i− j| ≥ 2,

anaj = ajan for j 6= n− 2,

aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ n− 2

an−2anan−2 = anan−2an〉.

As seen in figure 3.1 the graph (Dn)odd is connected. So by theorem 3.1

A′Dn
= ZDn = {U ∈ ADn : deg(U) = 0}.

The computation of the presentation of A′Dn
is similar to that of A′An

, so we
will not include it.

Theorem 3.11 For every n ≥ 4 the commutator subgroup A′Dn
of the Artin group

ADn is a finitely presented group. A′D4
is the group generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 , q3 = a3a

−1
1 ,

q4 = a4a
−1
1 , b = a2a

−1
1 a3a

−1
2 , c = a2a

−1
1 a4a

−1
2 ,

with defining relations

b = p0q3p
−1
0 , p0bp

−1
0 = b2q−1

3 b,

p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

c = p0q4p
−1
0 , p0cp

−1
0 = c2q−1

4 c,

p1q4p
−1
1 = q−1

4 c, p1cp
−1
1 = (q−1

4 c)3q−2
4 c,

q3q4 = q4q3.

For n ≥ 5 the group A′Dn
is generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 ,

q` = a`a
−1
1 (3 ≤ ` ≤ n), b = a2a

−1
1 a3a

−1
2 ,
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with defining relations

b = p0q3p
−1
0 , p0bp

−1
0 = b2q−1

3 b,

p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

p0qj = qjp1, p1qj = qjp
−1
0 p1 (4 ≤ j ≤ n),

qiqi+1qi = qi+1qiqi+1 (3 ≤ i ≤ n− 2),

qnqn−2qn = qn−2qnqn−2,

qiqj = qjqi (3 ≤ i < j ≤ n− 1, |i− j| ≥ 2),

qnqj = qjqn (j 6= n− 2).

¤

Corollary 3.12 For n ≥ 5 the commutator subgroupA′Dn
of the Artin group of type

Dn is finitely presented and perfect. ¤

3.3.5 Type E

The presentation of AEn , n = 6, 7, or 8, is

AEn = 〈a1, ..., an : aiaj = ajai for 1 ≤ i < j ≤ n− 1,|i− j| ≥ 2,

aian = anai for i 6= 3,

aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ n− 2

a3ana3 = ana3an〉.

As seen in figure 3.1 the graph (En)odd is connected. So by theorem 3.1

A′En
= ZEn = {U ∈ AEn : deg(U) = 0}.

The computation of the presentation of A′En
is similar to that of A′An

.

Theorem 3.13 For n = 6, 7, or 8 the commutator subgroupA′En
of the Artin group

AEn is a finitely presented group. A′En
is the group generated by

p0 = a2a
−1
1 , p1 = a1a2a

−2
1 , q` = a`a

−1
1 (3 ≤ ` ≤ n), b = a2a

−1
1 a3a

−1
2 ,
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with defining relations

b = p0q3p
−1
0 , p0bp

−1
0 = b2q−1

3 b,

p1q3p
−1
1 = q−1

3 b, p1bp
−1
1 = (q−1

3 b)3q−2
3 b,

p0qj = qjp1, p1qj = qjp
−1
0 p1 (4 ≤ j ≤ n),

qiqi+1qi = qi+1qiqi+1 (3 ≤ i ≤ n− 2),

qnq3qn = q3qnq3,

qiqj = qjqi (3 ≤ i < j ≤ n− 1, |i− j| ≥ 2),

qiqn = qnqi (4 ≤ i ≤ n− 1).

¤

Corollary 3.14 For n = 6, 7, or 8 the commutator subgroupA′En
of the Artin group

of type En is finitely presented and perfect. ¤

3.3.6 Type F

The presentation of AF4 is

AFn = 〈a1, a2, a3, a4 : aiaj = ajai for |i− j| ≥ 2,

a1a2a1 = a2a1a2,

a2a3a2a3 = a3a2a3a2,

a3a4a3 = a4a3a4〉.
As seen in figure 3.1 the graph (En)odd has two components: Γ1 and Γ2,

where Γ1 denotes the component containing the vertices a1, a2, and Γ2 the
component containing the vertices a3, a4. Let deg1 and deg2 denote the asso-
ciated degree maps, respectively, so from theorem 3.2

A′F4
= Z(2)

F4
= {U ∈ AF4 : deg1(U) = 0 and deg2(U) = 0}.

By a computation similar to that of Bn we get the following.

Theorem 3.15 The commutator subgroup A′F4
of the Artin group of type F4 is the

group generated by

pk = ak
1a2a

−(k+1)
1 = [ak

1, a2][a−1
1 , a−1

2 ] (k ∈ Z),

q` = a`
4a3a

−(`+1)
4 = [a`

4, a3][a−1
4 , a−1

3 ] (` ∈ Z),
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with defining relations

pk+1p
−1
k+2p

−1
k (k ∈ Z), q`+1q

−1
`+2q

−1
` (` ∈ Z),

pkq`pk+1q`+1 = q`pkq`+1pk+1 (k, ` ∈ Z).

The first two types of relations in the above presentation tell us that for
k 6= 0, 1, pk can be expressed in terms of p0 and p1, and similarly for q`. Thus
A′F4

is finitely generated. However, A′F4
is not perfect since abelianizing the

above presentation gives A′F4
/A′′F4

' Z4.

3.3.7 Type H

The presentation of AHn , n = 3 or 4, is

AHn = 〈a1, ..., an : aiaj = ajai for |i− j| ≥ 2,

a1a2a1a2a1 = a2a1a2a1a2,

aiai+1ai = ai+1aiai+1 for 2 ≤ i ≤ n− 1 〉.

As seen in figure 3.1 the graph (Hn)odd is connected. So by theorem 3.1

A′Hn
= ZHn = {U ∈ AHn : deg(U) = 0}.

The computation of the presentation of A′Hn
is similar to that of A′An

.

Theorem 3.16 For n = 3 or 4 the commutator subgroup A′Hn
of the Artin group

AHn is the group generated by

pk = ak
1a2a

−(k+1)
1 (k ∈ Z), q` = a`a

−`
1 (3 ≤ ` ≤ n),

with defining relations

pkqj = qjpk+1 (4 ≤ j ≤ n),

pk+1pk+3p
−1
k+4p

−1
k+2p

−1
k (k ∈ Z),

pkq3pk+2q
−1
3 p−1

k+1q
−1
3

qiqi+1qi = qi+1qiqi+1 (3 ≤ i ≤ n− 1).

¤
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The second relation tells us that for k 6= 0, 1, 2, 3, pk can be expressed in
terms of p0, p1, p2, and p3. Thus, A′Hn

is finitely generated. Abelianizing the
above presentation results in the trivial group. Thus, we have the following.

Corollary 3.17 For n = 3 or 4 the commutator subgroupA′Hn
of the Artin group of

type Hn is finitely generated and perfect. ¤

3.3.8 Type I

The presentation of I2(m), m ≥ 5, is

AI2(m) = 〈a1, a2 : 〈a1a2〉m = 〈a2a1〉m〉.

In figure 3.1 the graph (I2(m))odd is connected for m odd and disconnected
for m even. Thus, different computations must be done for these two cases.
We have the following.

Theorem 3.18 The commutator subgroup A′I2(m) of the Artin group of type I2(m),
m ≥ 5, is the free group generated by the (m− 1)-generators

ak
1a2a

−(k+1)
1 (k ∈ {0, 1, 2, . . . , m− 2}),

when m is odd, and is the free group with countably many generators

[a`
2, a1] (` ∈ Z \ {−(m/2− 1)}), [aj

1a
`
2, a1] (` ∈ Z, j = 1, 2, . . . , m/2− 3),

[am/2−2
1 a`

2, a1] (` ∈ Z \ {m/2− 1}), [ak
1a2, a1] (k ∈ Z).

when m is even.

3.3.9 Summary of Results

Table 3.1 summarizes the results in this section. The question marks (?) in
the table indicate that it is unknown whether the commutator subgroup is
finitely presented. However, we do know that for these cases the group is
finitely generated. If one finds more general relation equivalences along the
lines of lemmas 3.3 and 3.4 then we may be able to show that these groups
are indeed finitely presented.
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Type Γ finitely generated/presented perfect

An yes/yes n = 1, 2, 3 : no,
n ≥ 4 : yes

n = 2 : no, n ≥ 3 : yes n = 2, 3, 4 : no,
Bn / n ≥ 5 : yes

n = 3 : yes, n ≥ 3 : ?
Dn yes/yes n = 4 : no,

n ≥ 5 : yes
En yes/yes yes
F4 yes/? no
Hn yes/? yes

I2(m) (m even) no/no no
(m odd) yes/yes no

Table 3.1: Properties of the commutator subgroups



Chapter 4
Local Indicability of Finite-Type
Artin Groups

Locally indicable groups first appeared in Higman’s thesis [Hig40a] on group
rings. He showed that if G is a locally indicable group and R an integral
domain then the group ring RG has no zero divisors, no idempotents other
than 0 and 1, and no units other than those of the form ug (u a unit in R,
g ∈ G). Higman’s results have subsequently been extended to larger classes
of groups, for example right-orderable groups. Our primary interest in local
indicability is its application to the theory of right-orderability which is the
topic of chapter 5.

4.1 Definitions

A group G is indicable if there exists a nontrivial homomorphism G −→ Z
(called an indexing function). A group G is locally indicable if every nontriv-
ial, finitely generated subgroup is indicable. Notice, finite groups cannot be
indicable, so locally indicable groups must be torsion-free.

Every free group is locally indicable. Indeed, it is well known that ev-
ery subgroup of a free group is itself free, and since free groups are clearly
indicable the result follows.

Local indicability is clearly inherited by subgroups. The following simple
theorem shows that the category of locally indicable groups is preseved under
extensions.

Theorem 4.1 If K, H and G are groups such that K and H are locally indicable and

66
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fit into a short exact sequence

1 −→ K
φ−−−−→ G

ψ−−−−→ H −→ 1,

then G is locally indicable.

Proof. Let g1, . . . , gn ∈ G, and let 〈g1, . . . , gn〉 denote the subgroup of G which
they generate. If ψ(〈g1, . . . , gn〉) 6= {1} then by the local indicability of H there
exists a nontrivial homomorphism f : ψ(〈g1, . . . , gn〉) −→ Z. Thus, the map

f ◦ ψ : 〈g1, . . . , gn〉 −→ Z

is nontrivial. Else, if ψ(〈g1, . . . , gn〉) = {1} then g1, . . . , gn ∈ kerψ = Imφ (by
exactness), so there exist k1, . . . , kn ∈ K such that φ(ki) = gi, for all i. Since
φ is one-to-one (short exact sequence) then φ : 〈k1, . . . , kn〉 −→ 〈g1, . . . , gn〉
is an isomorphism. By the local indicability of K there exists a nontrivial
homomorphism h : 〈k1, . . . , kn〉 −→ Z, therefore the map

h ◦ φ−1 : 〈g1, . . . , gn〉 −→ Z

is nontrivial.

Corollary 4.2 If G and H are locally indicable then so is G⊕H .

Proof. The sequence

1 −→ H
φ−−−−→ G⊕H

ψ−−−−→ G −→ 1

where φ(h) = (1, h) and ψ(g, h) = g is exact, so the theorem applies.

If G and H are groups and φ : G −→ Aut(H). The semidirect product of
G and H is defined to be the set H ×G with binary operation

(h1, g1) · (h2, g2) = (h1 · g1 ∗ h2, g1g2)

where g ∗ h denotes the action of G on H determined by φ, i.e. g ∗ h :=
φ(g)(h) ∈ H . This group is denoted by H oφ G.

Corollary 4.3 If G and H are locally indicable then so is H oφ G.
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Proof. If ψ : H oφ G −→ G denotes the map (h, g) 7−→ g then kerψ = H and
the groups fit into the exact sequence

1 −→ H
incl.−−−−→ H oφ G

ψ−−−−→ G −→ 1

The following theorem of Brodskii [Bro80], [Bro84], which was discovered
independently by Howie [How82], [How00], tells us that the class of torsion-
free 1-relator groups lies inside the class of locally indicable groups. Also, for
1-relator groups: locally indicable ⇔ torsion free.

Theorem 4.4 A torsion-free 1-relator group is locally indicable.

To show a group is not locally indicable we need to show there exists a
finitely generated subgroup in which the only homomorphism into Z is the
trivial homomorphism.

Theorem 4.5 If G contains a finitely generated perfect sugroup then G is not locally
indicable.

Proof. The image of a commutator [a, b] := aba−1b−1 under a homomor-
phism into Z is 0, thus the image of a perfect group is trivial.

4.2 The Local Indicability of Finite-Type Artin Groups

Since finite-type Artin groups are torsion-free (see section 2.8), theorem 4.4
implies that the Artin groups of type A2, B2, and I2(m) (m ≥ 5) are locally
indicable. In this section we determine the local indicability of all1 irreducible
finite-type Artin groups.

It is of interest to note that the discussion in section 3.2, in particular the-
orem 3.2, shows that an Artin group AΓ and its commutator subgroup A′Γ fit
into a short exact sequence:

1 −→ A′Γ −→ AΓ
φ−−−−→ Zm −→ 1,

1with the exception of type F4 which at this time remains undetermined.
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where m is the number of connected components in Γodd, and φ can be iden-
tified with the abelianization map. Thus, the local indicability of an Artin
group AΓ is completely determined by the local indicability of its commuta-
tor subgroup A′Γ (by theorem 4.1). In other words,

AΓ is locally indicable ⇐⇒ A′Γ is locally indicable.

This gives another proof that the Artin groups of type A2, B2, and I2(m) (m ≥
5) are locally indicable, since their corresponding commutator subgroups are
free groups as shown in Chapter 3.

4.2.1 Type A

AA1 is clearly locally indicable since AA1 ' Z, and, as noted above, AA2 is
also locally indicable.

For AA3 , theorem 3.8 tells us A′A3
is the semidirect product of two free

groups, thus A′A3
is locally indicable. It follows from our remarks above that

AA3 is also locally indicable.
As for AAn , n ≥ 4, corollary 3.7 and theorem 4.5 imply that AAn is not

locally indicable.
Thus, we have the following theorem.

Theorem 4.6 AAn is locally indicable if and only if n = 1, 2, or 3.

4.2.2 Type B

We saw above AB2 is locally indicable. For n = 3 and 4 we argue as follows.
Let Pn+1

n+1 denote the (n + 1)-pure braids in Bn+1 = AAn , that is the braids
which only permute the first n-strings. Letting b1, . . . , bn denote the genera-
tors of ABn a theorem of Crisp [Cri99] states

Theorem 4.7 The map
φ : ABn −→ AAn

defined by
bi 7−→ ai, bn 7−→ a2

n

is an injective homomorphism onto Pn+1
n+1 . That is, ABn ' Pn+1

n+1 < Bn+1 = AAn .
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By ”forgetting the nth-strand” we get a homomorphism f : Pn+1
n+1 −→ Bn

which fits into the short exact sequence

1 −→ K −→ Pn+1
n+1

f−−−−→ Bn −→ 1,

where K = ker f = {β ∈ Pn+1
n+1 : the first n strings of β are trivial}. It is

known that K ' Fn, the free group of rank n. Since Fn is locally indicable
and Bn (n = 3, 4) is locally indicable then so isABn , for n = 3, 4. Futhermore,
the above exact sequence is actually a split exact sequence so ABn ' Pn+1

n+1 '
Fn oBn.

As for ABn , n ≥ 5, corollary 3.10 and theorem 4.5 imply that ABn is not
locally indicable, for n ≥ 5.

Thus, we have the following theorem.

Theorem 4.8 ABn is locally indicable if and only if n = 2, 3, or 4.

4.2.3 Type D

It follows corollary 3.12 and 4.5 thatADn is not locally indicable for n ≥ 5. As
for AD4 , we will show it is locally indicable as follows.

A theorem of Crisp and Paris [CP02] says:

Theorem 4.9 Let Fn−1 denote the free group of rank n − 1. There is an action
ρ : AAn−1 −→ Aut(Fn−1) such that ADn ' Fn−1 oAAn−1 and ρ is faithful.

Since AA3 and F3 are locally indicable, then so is AD4 . Thus, we have the
following theorem.

Theorem 4.10 ADn is locally indicable if and only if n = 4.

4.2.4 Type E

Since the commutator subgroups of AEn , n = 6, 7, 8, are finitely generated
and perfect (corollary 3.14) then AEn is not locally indicable.

4.2.5 Type F

Unfortunately, we have yet to determine the local indicability of the Artin
group AF4 .
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4.2.6 Type H

Since the commutator subgroups of AHn , n = 3, 4, are finitely generated and
perfect (corollary 3.17) then AHn is not locally indicable.

4.2.7 Type I

As noted above, since the commutator subgroup A′I2(m) of AI2(m) (m ≥ 5) is
a free group (theorem 3.18) thenA′I2(m) is locally indicable and therefore so is
AI2(m). One could also apply theorem 4.4 to conclude the same result.



Chapter 5
Open Questions: Orderability

In this chapter we discuss the connection between the theory of orderable
groups and the theory of locally indicable groups. Then we discuss the current
state of the orderability of the irreducible finite-type Artin groups.

5.1 Orderable Groups

A group or monoid G is right-orderable if there exists a strict linear ordering
< of its elements which is right-invariant: g < h implies gk < hk for all g, h, k

in G. If there is an ordering of G which is invariant under multiplication on
both sides, we say that G is orderable or for emphasis bi-orderable .

Theorem 5.1 G is right-orderable if and only if there exists a subset P ⊂ G such
that:

P · P ⊂ P (subsemigroup),
G \ {1} = P t P−1.

Proof. Given P define < by: g < h iff hg−1 ∈ P . Given < take P = {g ∈ G :
1 < g}.

In addition, the ordering is a bi-ordering if and only if also

gPg−1 ⊂ P, ∀g ∈ G.

The setP ⊂ G in the previous theorem is called the positive cone with respect
to the ordering <.
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The class of right-orderable groups is closed under: subgroups, direct
products, free products, semidirect products, and extension. The class of or-
derable groups is closed under: subgroups, direct products, free products, but
not necessarily extensions. Both left-orderability and bi-orderability are local
properties: a group has the property if and only if every finitely-generated
subgroup has it.

Knowing a group is right-orderable or bi-orderable provides useful infor-
mation about the internal structure of the group. For example, if G is right-
orderable then it must be torsion-free: for 1 < g implies g < g2 < g3 <

· · · < gn < · · · . Moreover, if G is bi-orderable then G has no generalised torsion
(products of conjugates of a nontrivial element being trivial), G has unique
roots: gn = hn ⇒ g = h, and if [gn, h] = 1 in G then [g, h] = 1. Further con-
sequences of orderablility are as follows. For any group G, let ZG denote the
group ring of formal linear combinations n1g1 + · · ·nkgk.

Theorem 5.2 If G is right-orderable, then ZG has no zero divisors.

Theorem 5.3 (Malcev, Neumann) If G is bi-orderable, thenZG embeds in a division
ring.

Theorem 5.4 (LaGrange, Rhemtulla) If G is right orderable and H is any grooup,
then ZG ' ZH implies G ' H

It may be of interest of note that theorem 5.2 has been conjectured to hold for
a more general class of groups: the class of torsion-free groups. This is known
as the Zero Divisor Conjecture. At this time the Zero Divisor Conjecture is
still an open question.

The theory of orderable groups is well over a hundred years old. For a
general exposition on the theory of orderable groups see [MR77] or [KK74].

Conrad [Con59] investigated the structure of arbitrary right-orderable
groups, and defined a useful concept which lies between right-invariance and
bi-invariance. A right-ordered group (G,<) is said to be of Conrad type if for
all a, b ∈ G, with 1 < a, 1 < b there exists a positive integer N such that
a < aNb. The following theorems gives the connection between orderable
groups and locally indicable groups (see [RR02]).

Theorem 5.5 For a group G we have
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bi-orderable ⇒ locally indicable ⇒ right-orderable.

Theorem 5.6 A group is locally indicable if and only if it admits a right-ordering of
Conrad type.

One final connection between local indicability and right-orderability was
given by Rhemtulla and Rolfsen [RR02].

Theorem 5.7 (Rhemtulla, Rolfsen) Suppose (G,<) is right-ordered and there is a
finite-index subgroup H of G such that (H,<) is a bi-ordered group. Then G is
locally indicable.

An application of this theorem is as follows. It is known that the braid
groups Bn = AAn−1 are right orderable [DDRW02] and that the pure braids
Pn are bi-orderable [KR02]. However, theorem 4.6 tells us that Bn is not lo-
cally indicable for n ≥ 5 therefore, by theorem 5.7, the bi-ordering on Pn and
the right-ordering on Bn are incompatible for n ≥ 5.

5.2 Finite-Type Artin Groups

The first proof the that braid groups Bn enjoy a right-invariant total ordering
was given in [Deh92], [Deh94]. Since then several quite different approaches
have been applied to understand this phenomenon.1 However, it is unknown
whether all the irreducible finite-type Artin groups are right-orderable. For
a few cases one can use theorem 5.6 along with the results of chapter 4 to
conclude right-orderability.

One approach is to reduce the problem to showing that the positive Artin
monoid is right-orderable.

5.2.1 Ordering the Monoid is Sufficient

We will show that for a Coxeter graph Γ of finite-type the Artin group AΓ

is right-orderable (resp. bi-orderable) if and only if the Artin monoid A+
Γ is

right-orderable (resp. bi-orderable). One direction is of course trivial.

1For a wonderful look at this problem and all the differents approaches used to un-
derstand it see the book [DDRW02].
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LetAΓ be an Artin group of finite-type. Recall that theorems 2.17 and 2.18
tell us that:

For each U ∈ AΓ there exist U1, U2 ∈ A+
Γ , where U2 is central in AΓ such that

U = U1U
−1
2 .

All decompositions of elements ofAΓ in this section are assumed to be of this
form.

Suppose A+
Γ is right-orderable, let <+ be such a right-invariant linear or-

dering. We wish to prove that AΓ is right-orderable.
The following lemma indicates how we should extend the ordering on the

monoid to the entire group.

Lemma 5.8 If U ∈ AΓ has two decompositions;

U = U1U
−1
2 = U1U

−1
2 ,

where Ui, U i ∈ A+
Γ and U2, U2 central in AΓ, then

U1 <+ U2 ⇐⇒ U1 <+ U2.

Proof. U = U1U
−1
2 = U1U

−1
2 implies U1U2 =p U1U2, since U2, U2 central and

A+
Γ canonically injects in AΓ.

If U1 <+ U2 then

⇒ U1U2 <+ U2U2 since <+ right-invariant,

⇒ U1U2 <+ U2U2 since U2 central,

⇒ U1U2 <+ U2U2 since U1U2 =p U1U2,

⇒ U1 <+ U2,

where the last implication follows from the fact that if U1
+ ≥ U2 then either:

(i) U1 = U2, in which case U = 1 and so U1 = U2. Contradiction. (ii)
U1

+ ≥ U2, in which case U1U2
+ ≥ U2U2. Again, a contradiction.

The reverse implication follows by symmetry.

This lemma shows that the following set is well defined:

P = {U ∈ AΓ : U has decomposition U = U1U
−1
2 where U2 <+ U1}.
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It is an easy exercise to check that P is a positive cone in AΓ which con-
tains P+: the positive cone in A+

Γ with respect to the order <+. Thus, the
right-invariant order <+ on A+

Γ extends to a right-invariant order < on AΓ.
Furthermore, one can check that if <+ is a bi-invariant order on A+

Γ then P
satisfies:

UPU−1 ⊂ P, ∀U ∈ AΓ.

Thus, the bi-invariant order <+ on A+
Γ extends to a bi-invariant order < on

AΓ.
Open question. Determine the orderability of the finite-type Artin monoids
by giving an explicit order condition.

5.2.2 Reduction to Type E8

Table 2.1 shows that every irreducible finite-type Artin group injects into one
type A, D, or E. Thus, if Artin groups of these three types are right-orderable
then every finite-type Artin group is right-orderable. It is know that Artin
groups of type A, i.e. the braid groups, are right orderable. Also, by theorem
4.9, and the fact that free groups are right-orderable, it follows that ADn is
right-orderable. Finally, the Artin group of types E6 and E7 naturally live
inside AE8 , so it suffices to show AE8 is right-orderable. At this point in time
it is unknown whether AE8 is right-orderable. As section 5.2.1 indicates it is
enough to decide whether the Artin monoid A+

E8
is right-orderable.
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Hermann, Paris, 1972.

[Bou02] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6.
Springer-Verlag, Berlin, 2002.

[Bro80] S. D. Brodskiı̆. Equations over groups and groups with one
defining relation. Uspekhi Mat. Nauk, 35(4):183, 1980.

[Bro84] S. D. Brodskiı̆. Equations over groups, and groups with one
defining relation. Sibirsk. Mat. Zh., 25(2):84–103, 1984.

[BS72] Egbert Brieskorn and Kyoji Saito. Artin-Gruppen und
Coxeter-Gruppen. Invent. Math., 17:245–271, 1972.

[BS96] Egbert Brieskorn and Kyoji Saito. Artin-Gruppen und
Coxeter-Gruppen. A translation, with notes - by C. Coleman, R.

77



Bibliography 78

Corran, J. Crisp, D. Easdown, R. Howlett, D. Jackson and A.
Ram, 1996.

[CD95] Ruth Charney and M. Davis. Finite K(π, 1)’s for Artin Groups, in
Prospects in Topology. Annals of Math Study, 183:110–124, 1995.

[Cha92] Ruth Charney. Artin groups of finite type are biautomatic. Math.
Ann., 292(4):671–683, 1992.

[Con59] Paul Conrad. Right-ordered groups. Michigan Math. J.,
6:267–275, 1959.

[Cor00] Ruth Corran. On Monoids Related to Braid Groups. PhD thesis,
University of Sydney, 2000.

[Cox34] H.S.M. Coxeter. Discrete groups generated by reflections. Ann.
Math, 35:588–621, 1934.

[Cox63] H. S. M. Coxeter. Regular polytopes. Macmillian, New York, 2nd
edition, 1963.

[CP02] John Crisp and Luis Paris. Artin groups of type B and D. in
preparation, 2002.

[Cri99] John Crisp. Injective maps between Artin groups. In Geometric
group theory down under (Canberra, 1996), pages 119–137. de
Gruyter, Berlin, 1999.

[CW01] Arjeh M Cohen and David B. Wales. Linearity of Artin Groups of
Finite Type. preprint, 2001.

[DDRW02] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest.
Why Are Braids Orderable? Book in preparation., 2002.

[Deh92] Patrick Dehornoy. Deux propriétés des groupes de tresses. C. R.
Acad. Sci. Paris Sér. I Math., 315(6):633–638, 1992.

[Deh94] Patrick Dehornoy. Braid groups and left distributive operations.
Trans. Amer. Math. Soc., 345(1):115–150, 1994.

[Deh98] Patrick Dehornoy. Gaussian groups are torsion free. J. of Algebra,
210:291–297, 1998.



Bibliography 79

[Del72] Pierre Deligne. Les immeubles des groupes de tresses
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a-chain, see chain,a-chain

abelianize, 42
Artin

extra large type, 36
finite-type, 19
group, 19

degree, 42
pure Artin group, 19

irreducible, 19, 34
monoid, 20

length, 20
parabolic subgroup, 36
system, 18

bilinear form B, 7

chain
a-chain, 22

source, 22
target, 22

elementary, 22
source, 22
target, 22

imminent, 24
length, 23
primitive, 22

source, 22
target, 22

simple, 24
chain operator, 24
common divisor, 28
common multiple, 28

commutator, 41
commutator subgroup, 41
conjugacy problem, 14
Coxeter

element
maximal length, 10

extra large type, 15
graph, 5

finite-type, 15
positive definite, 15
type, 15

group, 5
universal, 5

length, 6
matrix, 4

finite-type, 15
parabolic subgroup, 11
system, 5

rank, 5

deletion condition, 11
divides, 21

on the left, 21

elementary simplification
first kind, 14
second kind, 14

elementary transformation, 20
exchange condition, 10

strong, 10
extension, 66

freely equal, 41
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fundamental element, 34

greatest common divisor, 28
group

Artin, see Artin, group
Coxeter, see Coxeter, group
perfect, 44
symmetric, 5

group ring, 73

hyperplane
arrangement of, 38

central, 38
simplicial, 38

indicable, 66
irreducible, 13

least common multiple, 28
length, 19
linear, 36
locally indicable, 1, 66

matrix
Artin, see Artin, matrix
Coxeter, see Coxeter, matrix

orderable, 1, 72
bi-orderable, 1, 72
Conrad type, 73
right, 1, 72

positive cone, 72
positive definite, 7
positive equivalent, 20
positive semidefinite, 8
positive transformation, 20

quadratic factor, 32

reduced expression, 6
reduction property, 20, 21
reflection, 7, 38
Reidemeister

rewriting function, 41
Reidemeister-Schreier method, 40
reverse, 21
root, 9

negative, 9
positive, 9
simple, 9

root system, 8

Schreier-system, 40
semidirect product, 67
sequence

a-sequence, 29
square-free, 32
subgraph

induced, 13
system

Artin, see Artin, system
Coxeter, see Coxeter, system

word problem, 14

Zero Divisor Conjecture, 73


