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Abstract

Our main result is a classification of elliptic curves with rational 2-torsion and
good reduction outside 2, 3 and a prime p. This extends the work of Hadano
and, more recently, Ivorra. A key factor in doing this is to have a method for
efficiently computing the conductor of an elliptic curve with 2-torsion. We
specialize the work of Papadopolous to provide such a method.

Next, we determine all the rational points on the hyper-elliptic curves
y2 = x5 ± 2a3b. This information is required in providing the classification
mentioned above. We show how the commercial mathematical software pack-
age MAGMA can be used in solving this problem.

As an application, we turn our attention to the ternary Diophantine equa-
tions xn +yn = 2apz2 and x3 +y3 = ±pmzn, where p denotes a fixed prime. In
the first equation, we show that for p = 5 or p > 7 the equation is unsolvable
in integers (x, y, z) for all suitably large primes n. In the second equation, we
show the same conclusion holds for an infinite collection of primes p. To do
this, we use the connections between Galois representations, modular forms,
and elliptic curves which were discovered by Frey, Hellegouarch, Serre, and
Wiles.
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Chapter 1
Introduction

1.1 Introduction to Diophantine Equations

The study of Diophantine equations has a long and rich history, dating to the
”Arithmetica” of Diophantus, written in the middle of the 3rd century, and
dealing with the solution of algebraic equations and the theory of numbers.
Much of modern number theory, as we know it, stems from tools developed
to solve Diophantine equations.

By a Diophantine equation, we mean, intuitively, an equation where we
are interested only in integer and/or rational solutions. For example the equa-
tion

x2 + y2 = z2

has the following solutions in positive integers (x, y, z):

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25).

In fact, there are infinitely many solutions in positive integers to this equation,
and they can be parametrized: any solution (with y even, say) is of the form

(d(u2 − v2), 2uvd, d(u2 + v2))

where u, v, d ∈ Z and gcd(u, v) = 1. On the other hand, the equations

x3 + y3 = z3, x4 + y4 = z4, and x5 + y5 = z5

have only the trivial solutions; solutions where one of the values is 0. Fermat1

11601 - 1665.

1



Chapter 1. Introduction 2

wrote in the margin of his copy of Arithmetica that, in fact, the equation

xn + yn = zn

has no nontrivial solutions for any n ≥ 3, and commented that he had a mar-
velous proof of this fact but the margin was too small to contain it. This be-
came known as Fermat’s ”Last Theorem” 2. The quest to prove (or disprove,
for that matter) Fermat’s Last Theorem became the driving force for modern
number theory over the last three hundred years. Amateurs and profession-
als alike all had their crack at a proof. Their attempts gave birth to many new
beautiful ideas and tools that are used in number theory today, though, for
more than three centuries, none were enough to resolve Fermat’s enigma. Af-
ter the work of Godel on ”undecidability” in formal systems, many wondered
whether the truth of Fermat’s Last Theorem was even decidable. Ten years
ago, Andrew Wiles announced a proof verifying Fermat’s Last Theorem and
finally putting to rest Fermat’s challenge. Wiles attacked the problem by treat-
ing a more general question regarding the connection between elliptic curves
and modular forms. We’ll say more on this in our final two chapters.

Consider the Diophantine equation

y2 = x3 + 1.

The only integer solutions are

(−1, 0), (0,±1), (2,±3).

These are, in fact, the only rational solutions. On the other hand, the Diophan-
tine equation

y2 = x3 + 17

has 16 integer solutions

(−2,±3), (−1,±4), (2,±5), (4,±9), (8,±23),

(43,±282), (52,±375), (5234,±378661),

2”Last” because it was the remaining conjecture of his that needed resolving.
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and infinitely many rational solutions. Both of these curves are examples of
elliptic curves. A curve of the form

E : y2 + a1xy + a3y = x3 + a3y = x3 + a2x
2 + a4x + a6

with ai ∈ Z is called an elliptic curve (provided it is nonsingular). For curves
in Weierstrass form

y2 = x3 + a2x
2 + a4x + a6

the condition of being nonsingular is equivalent to the cubic on the right-hand
side having distinct roots (i.e. nonzero discriminant). For elliptic curves it is
known that the number of integral points is finite (Siegel’s theorem, see [69]),
but the number of rational points could possibly be infinite. Though the proof
of Siegel’s theorem was not effective (i.e. did not give a method to find all the
integral points) de Weger [30], using Baker’s work on bounding linear forms
in logarithms, was able to give an algorithm for finding all the integral points
on an elliptic curve.

The set of rational points E(Q) on an elliptic curve carry an abelian group
structure, the identity being the point at infinity which we denote by O (or
sometimes ∞). That is, there is a natural way to add two rational points
P1, P2 ∈ E(Q) to obtain a third rational point P3 = P1 + P2. Geometrically,
this is done by taking the (rational) line through P1 and P2 and letting P4 be
the third point of intersection of the line with E. Next, take the vertical line
through P4 (i.e. the line through P4 and O) and let P3 be the other point of in-
tersection with E, and set P1 + P2 = P3. Mordell showed that E(Q) is finitely
generated and abelian so it is of the form

E(Q) ' E(Q)tors × Zr

where E(Q)tors is a finite group consisting of the torsion elements and r is an
integer called the rank of E. E(Q)tors is straightforward to compute; a theo-
rem of Nagell and Lutz gives a method for computing its points. Moreover,
a general result of Mazur ([50], [51]) states that it can only be one of 15 pos-
sible groups (see for example [69], p. 223). However, there is no known al-
gorithm for computing the rank of an elliptic curve. There are methods (i.e. a
2-descent) that work on bounding the rank. One can then hope to find enough
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independent points to meet this bound to obtain the rank exactly. In practice
this works quite well. For our two examples above we have

E1 : y2 = x3 + 1, E1(Q) ' Z/6Z
E2 : y2 = x3 + 17, E2(Q) ' Z2.

A hyperelliptic curve is a curve of the form

y2 = f(x)

where, for our purpose, f ∈ Z[x] of degree 2g + 1. The integer g is called the
genus of the curve. For example, an elliptic curve is a genus 1 hyperelliptic
curve. However, unlike the situation for elliptic curves, a celebrated theorem
of Faltings states that C(Q) is finite when g ≥ 2. Unfortunately, Faltings the-
orem is not effective, but older work of Chabauty has recently been revived
and in practice often works very well in determining C(Q). For a hyperelliptic
curve C the set of rational points do not form a group, but C(Q) does embed
into a finitely generated abelian group called the Jacobian of C, denoted J(Q).
The work of Chabauty requires calculation in the Jacobian. In Chapter 5 we
occupy ourselves with determining the rational points on curves of the form
y2 = x5 ± 2a3b. Chapter 5 can be read independently of all other chapters.
It provides an introduction to the theory and practice of computing all ratio-
nal points on genus 2 curves, with a heavy emphasis on using MAGMA as
a computational tool, something the current literature is somewhat lacking.
The results of this chapter are used in proofs of the Diophantine lemmata of
Chapter 4.

1.2 Generalized Fermat Equations

In relation with Fermat’s last theorem the equation

xp + yq = zr (1.1)

has a long history. For a very fine survey on this topic see [45]. Here, we will
provide a very brief outline of what is known.



Chapter 1. Introduction 5

The characteristic of equation (1.1) is defined to be χ(p, q, r) = 1
p + 1

q +
1
r − 1, and the study of these equations has been broken up into three cases:
χ(p, q, r) > 0 (spherical case), χ(p, q, r) = 0 (euclidean case), and χ(p, q, r) < 0
(hyperbolic case). Let S(p, q, r) be the set of nontrivial proper solutions to
equation (1.1).

In the spherical case, S(p, q, r) is infinite and there are in fact parametized
solutions. In this case the possible sets of {p, q, r} are {2, 2, r} with r ≥ 2,
{2, 3, 3}, {2, 3, 4}, and {2, 3, 5}, and the proper solutions correspond to ratio-
nal points on genus 0 curves.

In the euclidean case, possible sets of {p, q, r} are {3, 3, 3}, {2, 4, 4}, and
{2, 3, 6}, and the points in S(p, q, r) corresponds to rational points on genus 1
curves. It is known that the only proper nontrivial solution corresponds to the
equality 1+23 = 32. We have already mentioned that S(3, 3, 3) was empty and
the fact that S(2, 4, 4) is empty was first proven by Fermat using an argument
of infinite descent.

In the hyperbolic case there are only ten known solutions to date:

1p + 24 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072,

338 + 15490342 = 156133.

Notice that an exponent of 2 appears in each solution. This leads to the fol-
lowing conjecture.

Conjecture 1.1 If min{p, q, r} ≥ 2 and S(p, q, r) 6= ∅ then min{p, q, r} = 2.

A number of names can be associated with this conjecture, including Beukers,
Zagier (who incidently found the five larger solutions above in 1993), Tijde-
man, Granville and Beal.

The first known result in the hyperbolic case is due to Darmon and Gran-
ville [27]. They used Faltings’ theorem to show that S(p, q, r) is finite. Next
was Wiles’ proof of Fermat’s last theorem; S(n, n, n) = ∅. Since then a num-
ber of specific cases have been tackled using the modularity of elliptic curves
(Wiles, et al), and Chabauty techniques. Some cases are as follows.
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(p, q, r)
(n, n, 2) Darmon, Merel (Poonen for n ∈ {5, 6, 9})
(n, n, 3) Darmon, Merel (Lucas n = 4, Poonen for n = 5)
(3, 3, n) Kraus for 17 ≤ n ≤ 10000, Bruin for n = 4, 5
(2, 4, n) Ellenberg for n ≥ 211, Bruin for n = 5, 6,

Bennett, Ellenberg, Ng for n ≥ 7
(2, n, 4) Bennett, Skinner
(2, 3, 7) Poonen, Schaefer, Stoll
(2, 3, 8) Bruin
(2, 3, 9) Bruin
(2, 2n, 3) Chen for 7 ≤ n ≤ 1000, n 6= 31

(5, 5, n), (7, 7, n) Darmon and Kraus (partial results)
(2n, 2n, 5) Bennett
(4, 2n, 3) Bennett, Chen

1.3 Statement of Principal Results

Modularity techniques have since been applied to generalized Fermat equa-
tions with coefficients:

Axp + Byq = Czr.

Here, A, B, C, p, q, and r are fixed integers and we are interested in integral
solutions for x, y and z. If p = q = r, then results have been obtained by Serre
[64] for A = B = 1 and C = Nα, α ≥ 1, with

N ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, N 6= p, p ≥ 11,

Kraus [41] for ABC = 15, Darmon and Merel [28] for ABC = 2, and Ribet [61]
for ABC = 2α, α ≥ 2. If (p, q, r) = (p, p, 2) then results have been obtained
by Bennett and Skinner [5] for various A, B, C, Ivorra [36] for ABC = 2β ,
and Ivorra and Kraus [38] for various A, B, and C. If (p, q, r) = (p, p, 3) then
Bennett, Vatsal and Yazdani [6] have shown

Theorem 1.2 (Bennett, Vatsal, Yazdani) If p and n are prime, and α is a nonneg-
ative integer, then the Diophantine equation

xn + yn = pαz3

has no solutions in coprime integers x, y and z with |xy| > 1 and n > p4p2 .
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Their proof of this proceeds as follows. Attach to a supposed solution
(a, b, c) an elliptic curve E = Ea,b,c with a 3-torsion point, and to this a Galois
representation ρE,n on the n-torsion points. To ρE,n there corresponds a cuspi-
dal newform fE,n of weight 2 and level Nn(E), where Nn(E) can be explicitly
determined. It then remains to show that such a newform f cannot exist. In
doing this, it is shown that the existence of f implies either n is bounded by
p4p2

or that there exists an elliptic curve over Q with rational 3-torsion and
conductor 3τpω. Hence a classification of such curves is needed to finish the
argument.

In Chapter 8, we apply a similar argument to the equation

xn + yn = 2αpz2

and prove the following

Theorem 1.3 (Bennett, Mulholland) Let p 6= 7 be prime. Then the equation

xn + yn = 2αpz2

has no solutions in coprime nonzero integers x and y, positive integers z and α, and
prime n satisfying n > p27p2 .

A key ingredient in the proof is a classification of the elliptic curves with
conductor 2Mp2 and possessing a rational 2-torsion point. In Chapter 6, we
provide such a classification.

In Chapter 9, we study the equation

x3 + y3 = ±pmzn,

where p is prime and prove the following,

Theorem 1.4 (Mulholland) Let p ∈ T and m ≥ 1 an integer. Then the equation

x3 + y3 = ±pmzn

has no solutions in coprime nonzero integers x, y and z, and prime n satisfying
n ≥ p8p and n - m.
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Here T denotes the set of primes p for which there does not exist an elliptic
curve with rational 2-torsion and conductor 2M32p, 1 ≤ M ≤ 3. Thus, in this
case we need a classification of the elliptic curves with conductor 2M32p, 1 ≤
M ≤ 3, and possessing a rational 2-torsion point. In Chapter 7, we provide
such a classification.

Since we are interested in elliptic curves of conductor 2Mp2 or 2M3Lp and
possessing a rational point of order 2 we start by considering the following
more general question.

Problem 1 Determine all the Q-isomorphism classes for elliptic curves over Q of
conductor 2M3LpN and having at least one rational point of order 2.

As is well-known, there do not exist any elliptic curves defined over Q
with conductor divisible by 29, 36, or q3 for q ≥ 5 prime (see e.g. Papadopou-
los [57]). Furthermore, as we show in Chapter 2, the existence of rational 2-
torsion implies the conductor is not divisible by 33. Therefore, we can suppose
in the statement of problem 1 that

0 ≤ M ≤ 8 and 0 ≤ L,N ≤ 2.

In addition, a theorem of Shafarevich states that there are only finitely many
isomorphism classes, for fixed p (see [69] p. 263).

The first work on Problem 1 appears to have be done by Ogg in 1966,
[55], [56]. He determined the elliptic curves defined over Q with conductor
of the form 2M3L or 2M3. Coghlan in his dissertation [17] also studied the
curves of conductor 2M3L independently of Ogg. Vélu [78] classified curves
of conductor 11, and in general Setzer [66] answers Problem 1 for any prime
conductor. He shows that there are two distinct isomorphism classes when
p − 64 is a square, and four when p = 17. Hadano [34] begins treatment of
conductors pN and 2MpN , and Ivorra, in his dissertion [37], classifies those of
conductor 2Mp.

There has been other work in classifying elliptic curves with conductors of
a particular form and specified torsion structure. Most notable are the works
of Hadano [35] and Miyawaki [53].

In Chapter 3, we take up Problem 1 in general. In Section 3.1, we obtain re-
sults analogous to those of Ivorra for conductor 2Np2. In Sections 3.2 and 3.3
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we obtain results for conductor 2N3Lp and 2N3Lp2, respectively, thus com-
pleting the remaining cases of Problem 1. As seen from glancing at the table
of contents, the tables presented account for 120+ pages of this work (not to
mention the 30+ pages of refined tables in Chapter 6, and the 40+ pages of
technical case by case analysis in Appendix A). We have tried to tidy this
work up as best we can and make it readable but, unfortunately, there is no
way to fully condense it; the tables are what they are – long and technical. But
we believe the determination of these tables provides a useful public service.

As seen from glancing at the tables in Chapter 3, one is mainly confronted,
as in [66] and [37], with the problem of determining the integer solutions of
certain ternary Diophantine equations. In Chapter 4, we take up the problem
of resolving these Diophantine equations. We then come back the tables of
Chapter 3 with these solutions at hand. This allows us to simplify the tables,
these results appear in Chapters 6 and 7.

Some of the works mentioned above regarding Problem 1 treat the follow-
ing more general problem, which we do not know how to attack in general.

Problem 2 Determine all the Q-isomorphism classes for elliptic curves over Q of
conductor 2M3LpN .

Let us note that Brumer and McGuinness have determined the elliptic
curves of conductor p < 108. The definitive web source for tables of all the
elliptic curves of conductor < 130000 is John Cremona’s home page 3. These
tables are constantly being expanded so the reader should check the web page
to determine their extent at this time. The techniques Cremona uses for con-
structing his tables (and, indeed, a fine introduction to the arithmetic of el-
liptic curves) can be found in his excellent book [26] which is available for
download from his web page. In addition, Cremona has prepared tables for
conductor 2km2 with m ≤ 23 prime and also m = 15 and 21.

1.4 Overview of chapters

A brief outline of the contents of each chapter is as follows.
In Chapter 2, we specialize the results of Papadopolous [57] to the problem

of computing the conductor of an elliptic curve with a rational 2 torsion point,

3www.maths.nottingham.ac.uk/personal/jec/
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i.e. curves of the form
y2 = x3 + ax2 + bx.

There we present an easy criterion for computing the conductor. The results
of this section are used throughout the rest of this work.

Chapter 3 is the first step toward our classifying problem. Here we present
twenty-seven theorems, one for each value of 2M3LpN , listing the Q-isomor-
phism classes of the elliptic curves with that conductor. The proof is long and
tedious but not that technical, it depends on two main lemmata which are
proven in Appendix A. It is in these tables that we are confronted with the
problem of determining the integer solutions to certain ternary Diophantine
equations. In order to get a useful classification theorem we need to resolve
these Diophantine equations. This is taken up in Chapter 4.

In order to solve some of the Diophantine equations, it is sufficient to find
all {2, 3,∞}-integral points on the genus 1 curves

y2 = x3 ± 2α3β ,

and the genus 2 curves
y2 = x5 ± 2α3β .

We deal with the former in Appendix B and the latter in Chapter 5.
Having these Diophantine results at hand, we come back to the tables of

Chapter 3. In Chapter 6, we present nine theorems classifying elliptic curves
of conductor 2Mp2 possessing a rational 2-torsion point. These table are anal-
ogous to those of Ivorra [37]. In Chapter 7, we investigate the admissible p

for which there exist curves of conductor 2M32p, 1 ≤ M ≤ 3, with rational
2-torsion. These results will be used in Chapter 9.

In Chapters 8 and 9, we look at what can be said about the generalized
Fermat equations

xn + yn = 2αpz2 and x3 + y3 = ±pmzn,

respectively. A modified version of Chapter 8 has appeared in print [4].



Chapter 2
The Conductor of an Elliptic Curve over Q
with 2-torsion

In this chapter, we specialize the work of Papadopolous [57] to elliptic curves
over Q with nontrivial 2-torsion:

y2 = x3 + ax2 + bx,

and show that the exponent of 2 in the conductor of the curve is determined
by the values v2(a) and v2(b) and some simple congruences of a and b modulo
2, 4 and 8. Here vp denotes the p-adic valuation on Q.

2.1 Introduction

Let E be the elliptic curve over Q defined by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

with ai ∈ Z. Let b2, b4, b6, b8, c4, c6, and ∆ be the standard invariants associated
with E:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a2, b6 = a2

3 + 4a6 (2.1)

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4 (2.2)

c4 = b2
2 − 24b4, c6 = −b3

2 + 36b2b4 − 216b6 (2.3)

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6. (2.4)

The conductor of an elliptic curve over Q is defined to be

N =
∏
p

pfp

11



Chapter 2. The Conductor of an Elliptic Curve over Q with 2-torsion 12

where fp = vp(∆)+1−np. Here np is the number of irreducible components of
the special fibre of the minimal Néron model at the prime p (see [69]). Essen-
tially, N is an encoding of the primes for which E has bad reduction and the
reduction types at these primes. E has bad reduction at a prime p if and only
if p | N , and the reduction type of E at p is multiplicative (E has a node over
Fp) or additive (E has a cusp over Fp) depending on whether fp = 1 or ≥ 2,
respectively. It is well known that for p 6= 2, 3, the value of fp is completely
determined by the values of vp(c4), vp(c6) and vp(∆). This is not always the
case when p = 2 or 3. Papadopolous [57] has determined when the triple
(v2(c4), v2(c6), v2(∆)) (resp. (v3(c4), v3(c6), v3(∆))) is not sufficient to deter-
mine the value of f2 (resp. f3) and in these cases he has given supplementary
conditions involving the values of a1, a2, a3, a4, a6, b2, b4, b6 and b8. In the
case of the prime 3 these supplementary conditions involve checking a sin-
gle congruence involving c4 and c6 modulo 9. However, for the prime 2 the
supplementary conditions are a little more complicated. One usually needs to
check a number of congruences in sequence for solutions. Furthermore, in the
case when (v2(c4), v2(c6), v2(∆)) = (6,≥ 9, 12) one is unable to decide from
Table IV in [57] whether f2 is 5 or 6 (whereby one is forced to apply Tate’s
algorithm directly).

If E is an elliptic curve over Q with nontrivial 2-torsion then E is isomor-
phic to a curve of the form

y2 = x3 + ax2 + bx,

where a, b ∈ Z are such that vp(a) ≥ 2 and vp(b) ≥ 4 do not both hold for all
p. The discriminant in this case is

∆ = 24b2(a2 − 4b).

In this chapter, we show that for such curves the conditions one needs to
check in [57] simplify greatly. In fact, the value of f2 is completely determined
by the values of v2(a), v2(b) and the congruence classes of a and b modulo 4,
with one exception. In this exceptional case, v2(∆) = 8, one needs to check a
congruence involving a and b modulo 8 (see Theorem 2.1).

2.2 Statement of Results.

Let p denote a prime ≥ 5. We will prove the following theorems.
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Theorem 2.1 If a, b ∈ Z are such that not both v2(a) ≥ 2 and v2(b) ≥ 4 hold,
then the Néron type at 2 of the elliptic curve y2 = x3 + ax2 + bx is given by Tables
2.1 and 2.2 on pages 15 and 16. In the cases where f2 = 0 or 1 the model y2 =
x3 + ax2 + bx is non-minimal at 2, this is indicated in Table 2.1 by the appearance of
”non-minimal” in the corresponding column. In the cases where f2 6= 0, 1 the model
y2 = x3 + ax2 + bx is minimal at 2.

During the course of the proof of Theorem 2.1 we will also deduce the
following.

Corollary 2.2 In the case that the model E(a, b) : y2 = x3 + ax2 + bx is non-
minimal at 2 we have the following:

1. If v2(a) = 0, v2(b) ≥ 4 and a ≡ 1 (mod 4) then

y2 + xy = x3 +
(

a− 1
4

)
x2 +

(
b

16

)
x

is a minimal model for E(a, b) at 2.

2. If v2(a) = 1, v2(b) = 0, v2(∆) ≥ 12 and a
2 ≡ −1 (mod 4) then

y2 + xy = x3 +
(
−(a + 2)

8

)
x2 +

(
−(a2 − 4b)

64

)
x +

(
a(a2 − 4b)

512

)
is a minimal model for E(a, b) at 2.

Theorem 2.3 If a, b ∈ Z are such that not both v3(a) ≥ 2 and v3(b) ≥ 4 hold, then
the Néron type at 3 of the elliptic curve y2 = x3 + ax2 + bx is given by Table 2.3 on
page 16. In all cases the model y2 = x3 + ax2 + bx is minimal at 3.

Theorem 2.4 Let p be a prime ≥ 5. If a, b ∈ Z are such that not both vp(a) ≥ 2 and
vp(b) ≥ 4 hold, then the Néron type at p of the elliptic curve y2 = x3 + ax2 + bx is
given by Table 2.4 on page 16. In all cases the model y2 = x3 + ax2 + bx is minimal
at p.

We have the following corollary to Theorems 2.3 and 2.4.

Corollary 2.5 Let q be an odd prime. If a, b ∈ Z such that not both vq(a) ≥ 2 and
vq(b) ≥ 4 hold and N(a,b) is the conductor of the elliptic curve y2 = x3 + ax2 + bx

then:
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(i) q | N(a,b) if and only if q | ∆ = 24b2(a2 − 4b),

(ii) if q ‖ N(a,b) then q does not divide a,

(iii) q2 ‖ N(a,b) if and only if q divides a and b.
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2.3 The Proof of Theorem 2.1.

We prove this theorem using the work of Papadopolous [57]1 except in cases
(ix) v2(a) = 1, v2(b) = 2 and (xiv) v2(a) = 2, v2(b) = 2 where we will need to
apply Tate’s algorithm directly. The seventeen cases we consider are labeled
as follows:

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
v2(a) 0 0 0 0 0 0 1 1 1
v2(b) 0 1 2 3 4 ≥ 5 0 1 2

(x) (xi) (xii) (xiii) (xiv) (xv) (xvi) (xvii)
v2(a) 1 1 ≥ 2 ≥ 2 2 2 ≥ 3 ≥ 3
v2(b) 3 ≥ 4 0 1 2 3 2 3

The standard invariants for the curve

y2 = x3 + ax2 + bx

are (see (2.1))
a1 = 0, a2 = a, a3 = 0, a4 = b, a6 = 0,

b2 = 4a, b4 = 2b, b6 = 0, b8 = −b2,

c4 = 24(a2 − 3b), c6 = 25a(9b− 2a2), ∆ = 24b2(a2 − 4b).

Some of the cases immediately follow from Table IV of [57] so we quickly
deal with these first. We have the following table.

Case of
v2(a) v2(b) v2(c4) v2(c6) v2(∆) Tate Kodaira f2

(viii) 1 1 5 7 8 4 III 7
(ix) 1 2 ≥ 6 8 10 6 I∗0 6
(xi) 1 ≥ 4 6 9 ≥ 14 7 I∗v2(∆)−10 6

(xiii) ≥ 2 1 5 ≥ 8 9 4 III 8
(xv) 2 3 7 10 14 9 III∗ 7

(xvii) ≥ 3 3 7 ≥ 11 15 9 III∗ 8

1Errata: In the column labeled Equation non minimale of table IV in [57] the first column
should read [4, 6,≥ 12] not [4, 6, 12].
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As for the remaining cases, we must check the supplementary conditions
in [57].

(i) When v2(a) = 0 and v2(b) = 0 we have

v2(c4) =

{
5 if b ≡ 1 (mod 4),

≥ 6 if b ≡ −1 (mod 4),
v2(c6) = 5, v2(∆) = 4.

If b ≡ 1 (mod 4) then from Table IV of [57] we are in case 3 or 4 of Tate. We
use Proposition 1 of loc. cit. with r = t = 1. The congruence

a4 + a2 = b + a ≡

{
2 (mod 4) if a ≡ 1 (mod 4),

0 (mod 4) if a ≡ −1 (mod 4),

implies that if a ≡ 1 (mod 4) we are in case 3 of Tate and f2 = 4. So assume
a ≡ −1 (mod 4), whence we are in case≥ 4 of Tate. Using Proposition 2 of loc.
cit. with r = 1 and since

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 2(1 + 2a) 6≡ 0 (mod 8),

we are in case 4 of Tate and f2 = 3.
On the other hand, if b ≡ −1 (mod 4) then from Table IV of [57], we are in

case 3 or 5 of Tate. Take r = t = 1 in Proposition 1 of loc. cit.. It follows from
the congruence

a4 + a2 = b + a ≡

{
0 (mod 4) if a ≡ 1 (mod 4),

2 (mod 4) if a ≡ −1 (mod 4),

that if a ≡ −1 (mod 4), we are in case 3 of Tate and f2 = 4, whereas if a ≡
1 (mod 4), we are in case 5 of Tate and f2 = 2 .

(ii) When v2(a) = 0 and v2(b) = 1 we have

v2(c4) = 4, v2(c6) ≥ 7, v2(∆) = 6,

so, from Table IV of [57], we are in case 3 or 4 of Tate. Using r = t = 0 in
Proposition 1 of loc. cit., it follows that we are in case 4 of Tate and f2 = 5.

(iii) When v2(a) = 0 and v2(b) = 2 we have

v2(c4) = 4, v2(c6) = 6, v2(∆) = 8.
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and, from Table IV of [57], we are in case 6, 7 or 8 of Tate. We use Proposition
3 of [57]. The integer r = 2 satisfies the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32).

The integer t = 2 satisfies the congruence

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ 0 (mod 8).

Moreover, for r = t = 2 we have the congruence

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ 2b + 4a + 4 ≡ 0 (mod 16).

if and only if a ≡ 1 (mod 4). It follows from Proposition 3 of loc. cit. that if
a ≡ −1 (mod 4) we are in case 6 of Tate and f2 = 4, whereas if a ≡ 1 (mod 4)
then we are in case ≥ 7 of Tate. So assume a ≡ 1 (mod 4) and that we are in
case ≥ 7 of Tate. Take r = 2 in Proposition 4 of loc. cit.. The congruence

0 ≡ a2 + 3r − ta1 − t2 ≡ 3− t2 (mod 4)

has no solutions for t thus it follows that we are in case 7 of Tate and f2 = 3.
(iv) When v2(a) = 0 and v2(b) = 3 we have

v2(c4) = 4, v2(c6) = 6, v2(∆) = 10,

and, from Table IV of [57], we are in case 7 or 9 of Tate. The integer r = 0
satisfies the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32).

Moreover, we have the congruence

0 ≡ a2 + 3r − ta1 − t2 ≡

{
1− t2 (mod 4) if a ≡ 1 (mod 4),

3− t2 (mod 4) if a ≡ −1 (mod 4),

has a solution for t if and only if a ≡ 1 (mod 4). It follows from Proposition 4
of loc. cit. that if a ≡ −1 (mod 4), we are in case 7 of Tate and f2 = 4, whereas
if a ≡ 1 (mod 4), we are in case 9 of Tate and f2 = 3.



Chapter 2. The Conductor of an Elliptic Curve over Q with 2-torsion 20

(v) When v2(a) = 0 and v2(b) = 4 we have

v2(c4) = 4, v2(c6) = 6, v2(∆) = 12,

and, from Table IV of [57], we are in case 7 of Tate or the model is non-
minimal. The integer r = 0 satisfies the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32).

Moreover, the congruence

0 ≡ a2 + 3r − ta1 − t2 ≡

{
1− t2 (mod 4) if a ≡ 1 (mod 4),

3− t2 (mod 4) if a ≡ −1 (mod 4),

has a solution for t if and only if a ≡ 1 (mod 4). It follows from Proposition 4
of loc. cit. that if a ≡ −1 (mod 4), we are in case 7 of Tate and f2 = 4, whereas
if a ≡ 1 (mod 4) the model is non-minimal. In the latter case, consider the
change of variables

x = 4X, y = 8Y + 4X.

We obtain the new model with integer coefficients

(a′1, a
′
2, a

′
3, a

′
4, a

′
6) = (1,

a− 1
4

, 0,
b

16
, 0),

and such that v2(c′4) = 0, v2(c′6) = 0, and v2(∆′) = 0. Hence we are in case 1
of Tate and f2 = 0.

(vi) When v2(a) = 0 and v2(b) ≥ 5 we have

v2(c4) = 4, v2(c6) = 6, v2(∆) ≥ 14,

and, from Table IV of [57], we are in case 7 of Tate or the model is non-
minimal. The integer r = 0 satisfies the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32).

Moreover, the congruence

0 ≡ a2 + 3r − ta1 − t2 ≡

{
1− t2 (mod 4) if a ≡ 1 (mod 4),

3− t2 (mod 4) if a ≡ −1 (mod 4),
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has a solution for t if and only if a ≡ 1 (mod 4). It follows from Proposition 4
of loc. cit. that if a ≡ −1 (mod 4), we are in case 7 of Tate and f2 = 4, whereas
if a ≡ 1 (mod 4) the model is non-minimal. In the latter case, take the change
of variables

x = 4X, y = 8Y + 4X

to obtain the new model with integer coefficients

(a′1, a
′
2, a

′
3, a

′
4, a

′
6) = (1,

a− 1
4

, 0,
b

16
, 0).

Then v2(c′4) = 0, v2(c′6) = 0, and v2(∆′) ≥ 2, whence we are in case 2 of Tate
and f2 = 1.

(vii) When v2(a) = 1 and v2(b) = 0 we have

v2(c4) = 3, v2(c6) = 6, v2(∆) ≥ 7.

We consider the cases v2(∆) = 7, 8, 9, 10, 11, 12, ≥ 13 separately.
If v2(∆) = 7 then from Table IV of [57] we are in case 3 of Tate and f2 = 7.
If v2(∆) = 9 then from Table IV of [57] we are in case 6 of Tate and f2 = 5.
In the remaining cases; v2(∆) = 8, 10, 11, 12, ≥ 13, some work is required

to determine f2. We defer the proof for these cases until Section 2.4.
(x) When v2(a) = 1 and v2(b) = 3 we have

v2(c4) = 6, v2(c6) ≥ 9, v2(∆) = 12,

and from Table IV of [57] we are in case 7 of Tate. There are, however, two
possibilities for f2. We need to apply Tate’s algorithm directly in this case.

We will use the pseudocode for Tate’s algorithm given in [26]. It is straight-
forward to check that we may pass directly to line 42 in loc. cit. without hav-
ing to make any changes to our model. Furthermore, in the notation of loc. cit.
since xa3 = a3

4 = 0 is even, xa6 = a6
16 = 0 is even, and xa4 = a4

8 = b
8 is odd

we exit the loop after line 54, with m = 2. Thus f2 = v2(∆) − 6 = 6 and the
Kodaira symbol is I∗2 .

(xii) When v2(a) ≥ 2 and v2(b) = 0 we have

v2(c4) = 4, v2(c6) ≥ 7, v2(∆) = 6,
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so, from Table IV of [57], we are in case 3 or 4 of Tate. Take r = 1 and t = 0 in
Proposition 1 of loc. cit.. It follows from the congruence

a6+ra4+r2a2+r3−ta3−t2−rta1 = b+a+1 ≡

{
2 (mod 4) if b ≡ 1 (mod 4),

0 (mod 4) if b ≡ −1 (mod 4),

that if b ≡ 1 (mod 4), we are in case 3 of Tate and f2 = 6, whereas if b ≡
−1 (mod 4), we are in case 4 of Tate and f2 = 5.

(xiv) When v2(a) = 2 and v2(b) = 2 we have

v2(c4) = 6, v2(c6) = 9, v2(∆) ≥ 13,

so, from Table IV of [57], we are in case 7 of Tate. There are, however, two
possibilities for f2 depending on whether v2(∆) = 13 or v2(∆) ≥ 14. We claim
v2(∆) = 13 if and only if b/4 ≡ −1 (mod 16). Indeed, since ∆ = 16b2(a2 − 4b),
the hypothesis on a and b imply

v2(∆) = 13 ⇐⇒ v2

((a

4

)2
− b

4

)
= 1.

But (a/4)2 ≡ 1 (mod 4), from which the claim follows. Thus, f2 = 7 if b/4 ≡
−1 (mod 4) and f2 = 6 if b/4 ≡ 1 (mod 4).

(xvi) When v2(a) ≥ 3 and v2(b) = 2 we have

v2(c4) = 6, v2(c6) ≥ 10, v2(∆) = 12,

and, from Table IV of [57], we are in case 7 of Tate. There are, however, two
possibilities for f2. We need to apply Tate’s algorithm directly in this case.

Again, we will use the pseudocode for Tate’s algorithm given in [26]. We
consider the cases b/4 ≡ −1 (mod 4) and b/4 ≡ 1 (mod 4) separately.

Suppose b/4 ≡ −1 (mod 4). Before starting the algorithm let us first make
the change of variables

x = X + 2, y = Y

so our new model has coefficients

a1 = 0, a2 = a + 6, a3 = 0, a4 = b + 4a + 12, a6 = 2b + 4a + 8.

It follows that
v2(a2) = 1, v2(a4) = 3, v2(a6) ≥ 5,
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where we’ve used the fact that b/4 ≡ −1 (mod 4). It is straight forward to
check that we may pass directly to line 42 in loc. cit. without having to make
any changes to our model. Furthermore, in the notation of loc. cit. since xa3 =
a3
4 = 0 is even, xa6 = a6

16 is even, and xa4 = a4
8 is odd, we exit the loop after

line 54, with m = 2. Thus f2 = v2(∆)− 6 = 6 and the Kodaira symbol is I∗2 .
Suppose b/4 ≡ 1 (mod 4). Similar to above, we first make the change of

variables
x = X + 6, y = Y + 4

to obtain a new model with coefficients

a1 = 0, a2 = a + 18, a3 = 8, a4 = b + 12a + 108, a6 = 6b + 36a + 200,

and find
v2(a2) = 1, v2(a3) = 3, v2(a4) ≥ 4, v2(a6) ≥ 5,

(here we’ve used the fact that b/4 ≡ 1 (mod 4)). Moreover,

v2(b2) = 3, v2(b4) ≥ 5, v2(b6) = 3, v2(b8) ≥ 7.

It is straightforward to check that we may pass directly to line 42 in loc. cit.
without having to make any changes to our model. Furthermore, in the nota-
tion of loc. cit. since xa3 = a3

4 = 0, xa6 = a6
16 , and xa4 = a4

8 are all even, we
have from line 56 that

r =

{
4 if a6

32 is odd,

0 if a6
32 is even.

We then must apply the change of variables transcoord(r, 0, 0, 1) at line 59. In
either case the change of variables leads to a curve (a′1, a

′
2, a

′
3, a

′
4, a

′
6) such that

a′1 = 0, v2(a′2) = 1, v2(a′3) = 3, v2(a′4) ≥ 4, v2(a′6) ≥ 5.

We have now reached the end of the loop and return back to line 45. Since
xa3 = a′3

8 is odd we exit the loop after line 47 with m = 3. Thus f2 = v2(∆)−
7 = 5 and the Kodaira symbol is I∗3 .

To finish the proof it remains to verify the cases when v2(a) = 1, v2(b) = 0,
and v2(∆) = 8, 10, 11, 12, and ≥ 13. We do this in the next section.
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2.4 The case when v2(a) = 1, v2(b) = 0.

We have already determined in part (iv) of the proof of Theorem 2.1 the values
of f2 when v2(∆) = 7 or 9. In this section we determine the value of f2 for the
remaining cases: v2(∆) = 8, 10, 11, 12, ≥ 13. First we make two observations.

Lemma 2.6 If a, b ∈ Z such that v2(a) = 1, v2(b) = 0 and v2(∆) = v2(16b2(a2 −
4b)) ≥ 8 then b ≡ 1 (mod 4). Furthermore, if v2(∆) = 8 then b ≡ 5 (mod 8).

Proof. If v2(∆) = v2(16b2(a2 − 4b)) ≥ 8 then v2((a
2 )2 − b)) ≥ 2. It follows that

b ≡ 1 (mod 4) since a/2 is odd. Moreover, if v2(∆) = 8 then v2((a
2 )2 − b) = 2

thus b 6= 1 (mod 8).

We will use the next lemma when applying Proposition 4 of [57].

Lemma 2.7 For a, b ∈ Z such that v2(a) = 1 and v2(b) = 0 the congruence

−b2 + 6r2b + 4r3a + 3r4 ≡ 0 (mod 32)

has no solutions for r if b ≡ −1 (mod 4), whereas for b ≡ 1 (mod 4) it has solutions

r =

{
3 if a ≡ 2 (mod 8),

1 if a ≡ 6 (mod 8).

Proof. If b ≡ −1 (mod 4) then the congruence has no solutions mod 8 (when
a is even). So, it certainly can’t have any solutions mod 32.

Assume b ≡ 1 (mod 4) and write b = 4k + 1 for some k ∈ Z. If a ≡
2 (mod 8) then we may write a = 8` + 2 for some ` ∈ Z. Taking r = 3 we have

−b2 + 6r2b + 4r3a + 3r4 ≡ 16k(k + 1) ≡ 0 (mod 32).

Similarly, one can easily show r = 1 is a solution when a ≡ 6 (mod 8).
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2.4.1 Proof of Theorem 2.1 part (vii) when v2(∆) = 8

It follows from Lemma 2.6 that b ≡ 5 (mod 8). Since v2(c4) = 4, v2(c6) = 6 and
v2(∆) = 8 it follows from Table IV of [57] that we are in case 6, 7 or 8 of Tate.
We use Proposition 3 of loc. cit.. By Lemma 2.7 the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32)

has solutions

r =

{
3 if a ≡ 2 (mod 8),

1 if a ≡ 6 (mod 8).

In either case the integer t = 2 satisfies the congruence

a6 + ra4 + r2a2 + r3− ta3− t2− rta1 ≡ rb+ r2a+ r3− t2 ≡ 4− t2 ≡ 0 (mod 8).

Fix t = 2 and r as above.
Suppose a ≡ 2 (mod 8). We have the congruence

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ 3b + 9a + 7 ≡ 0 (mod 16)

if and only if a− b ≡ 5 (mod 16). Thus, we are in case 6 of Tate (and f2 = 4) if
a− b ≡ 13 (mod 16), and in case ≥ 7 of Tate if a− b ≡ 5 (mod 16). So, suppose
the latter holds. Taking r = 3 in Proposition 4 of loc. cit. the congruence

a2 + 3r − sa1 − s2 ≡ 3− s2 ≡ 0 (mod 4)

has no solution for s, whereby we are in case 7 of Tate and f2 = 3. In the state-
ment of the theorem we do not need to include the condition a ≡ 2 (mod 8)
since this automatically follows from the congruences b ≡ 5 (mod 8) and
a− b ≡ 5 or 13 (mod 16).

Now suppose a ≡ 6 (mod 8). We have the congruence

a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1 ≡ b + a− 3 ≡ 0 (mod 16)

if and only if a− b ≡ 9 (mod 16). Thus, we are in case 6 of Tate (and f2 = 4) if
a − b ≡ 1 (mod 16) and in case ≥ 7 of Tate if a − b ≡ 9 (mod 16). So, suppose
the latter holds. Taking r = 1 in Proposition 4 of loc. cit. the congruence

a2 + 3r − sa1 − s2 ≡ 1− s2 ≡ 0 (mod 4)
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has solution s = 1, whereby we are in case 8 of Tate and f2 = 2. Again, we
do not need to include the condition a ≡ 6 (mod 8) in the statement of the
theorem since it follows automatically from b ≡ 5 (mod 8) and a − b ≡ 1 or
9 (mod 16).

2.4.2 Proof of Theorem 2.1 part (vii) when v2(∆) = 10

In this case we have

v2(c4) = 4, v2(c6) = 6, v2(∆) = 10,

so from Table IV of [57] we are in case 7 or 9 of Tate. We use Proposition 4 of
loc. cit. to distinguish between these two cases. By Lemma 2.7, the congruence

b8 + 3rb6 + 3r2b4 + r3b2 + 3r4 ≡ 0 (mod 32)

has solutions

r =

{
3 if a ≡ 2 (mod 8)),

1 if a ≡ 6 (mod 8)).

Furthermore, the congruence

0 ≡ a2 + 3r − t2 ≡

{
3− t2 (mod 4) if a ≡ 2 (mod 8),

1− t2 (mod 4) if a ≡ 6 (mod 8),

has solution t = 1 if a ≡ 6 (mod 8) and no solution for t otherwise. Thus, we
are in case 9 of Tate if a ≡ 6 (mod 8) and in case 7 of Tate if a ≡ 2 (mod 8). The
assertion follows.

2.4.3 Proof of Theorem 2.1 part (vii) when v2(∆) = 11

In this case
v2(c4) = 4, v2(c6) = 6, v2(∆) = 11,

so, from Table IV of [57], we are in case 7 or 10 of Tate. By exactly the same
argument as in Section 2.4.2, if a ≡ 6 (mod 8), we are in case 10 of Tate and if
a ≡ 2 (mod 8), we are in case 7 of Tate. The assertion follows.
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2.4.4 Proof of Theorem 2.1 part (vii) when v2(∆) = 12

In this case
v2(c4) = 4, v2(c6) = 6, v2(∆) = 12,

so, from Table IV of [57], we are in case 7 of Tate or the model is non-minimal.
By exactly the same argument as in section 2.4.2, if a ≡ 2 (mod 8), we are in
case 7 of Tate and if a ≡ 6 (mod 8), the model is non-minimal. In the case that
the model is non-minimal, we make the change of variables

x = 4X − a/2, y = 8Y + 4X. (2.5)

The new model has coefficients

(a′1, a
′
2, a

′
3, a

′
4, a

′
6) =

(
1,−a + 2

8
, 0,−a2 − 4b

64
,
a(a2 − 4b)

512

)
, (2.6)

which are all integers (by assumptions on a and b). Also, v2(c′4) = 0, v2(c′6) =
0, and v2(∆′) = 0, whence we are in case 1 of Tate and f2 = 0.

2.4.5 Proof of Theorem 2.1 part (vii) when v2(∆) ≥ 13

In this case
v2(c4) = 4, v2(c6) = 6, v2(∆) ≥ 13,

so, from Table IV of [57], we are in case 7 of Tate or the model is non-minimal.
By exactly the same argument as in section 2.4.2, if a ≡ 2 (mod 8), we are in
case 7 of Tate and if a ≡ 6 (mod 8), the model is non-minimal. In the case that
the model is non-minimal we take the change of variables (2.5) which gives us
a new integral model with coefficients as in (2.6). Since v2(c′4) = 0, v2(c′6) = 0,
and v2(∆′) ≥ 1, we are in case 2 of Tate and f2 = 1.

This completes the proof of Theorem 2.1.

2.5 The Proof of Theorem 2.3.

We can quickly deal with the following cases by using Table II of [57].
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Case of
v3(a) v3(b) v3(c4) v3(c6) v3(∆) Tate Kodaira f3

0 ≥ 1 0 0 ≥ 2 2 Iv3(∆) 1
≥ 1 0 1 ≥ 3 0 1 I0 0
1 ≥ 2 2 3 ≥ 6 6 or 7 I∗v3(∆)−6 2
≥ 2 1 2 ≥ 5 3 4 III 2
≥ 2 2 3 ≥ 6 6 6 I∗0 2
≥ 3 3 4 ≥ 8 9 9 III∗ 2

There are only three remaining cases to check: (1) v2(a) = 0, v2(b) = 0; (2)
v2(a) = 1, v2(b) = 1; (3) v2(a) = 2, v2(b) = 3.
(1) Suppose v3(a) = 0 and v3(b) = 0. Then v2(c4) = 0, v3(c6) = 0, and 3 divides
∆ if and only if b ≡ 1 (mod 3). It follows that

f3 =

{
1 if b ≡ 1 (mod 3),

0 if b ≡ −1 (mod 3),

and the Néron type at 3 is Iv3(∆) if b ≡ 1 (mod 3) and I0 if b ≡ −1 (mod 3).
(2) Suppose v3(a) = 1 and v3(b) = 1. Then v2(c4) ≥ 2, v3(c6) = 3, and v3(∆) =
3. We consider the intervening condition P2 in Table II of [57]. P2 is decided if
we have(

25
(a

3

)(
b− 2

(a

3

)2
))2

+ 2 ≡ 3 · 24

((a

3

)2
− b

3

)
(mod 9),

or equivalently (a

3

)4
(

b

3

)
+
(a

3

)2
+ 2

(
b

3

)
− 1 ≡ 0 (mod 9),

Since v3(a) = v3(b) = 1, this is certainly the case. Therefore f3 = 2 and the
Néron type at 3 is III.
(3) Suppose v3(a) = 2 and v3(b) = 3. Then v2(c4) ≥ 4, v3(c6) = 6, and v3(∆) =
9. We consider the intervening condition P5 in Table II of [57]. P5 is decided if
we have(

25
(a

9

)( b

9
− 2

(a

9

)2
))2

+ 2 ≡ 3 · 24

((a

9

)2
− b

27

)
(mod 9),
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or equivalently(a

9

)4
(

b

27

)
+
(a

9

)2
+ 2

(
b

27

)
− 1 ≡ 0 (mod 9),

Since v3(a) = 2 and v3(b) = 3, this is the case. Therefore f3 = 2 and the Néron
type at 3 is III∗.

2.6 The Proof of Theorem 2.4.

We can quickly deal with the following cases by using Table I of [57].

Case of
vp(a) vp(b) vp(c4) vp(c6) vp(∆) Tate Kodaira fp

0 ≥ 1 0 0 ≥ 2 2 I2vp(b) 1
≥ 1 0 0 ≥ 1 0 1 I0 0
≥ 1 1 1 ≥ 2 3 4 III 2
1 ≥ 3 2 3 ≥ 8 7 I∗2vp(b)−4 2

≥ 2 2 2 ≥ 4 6 6 I∗0 2
≥ 2 3 3 ≥ 5 9 9 III∗ 2

There are only two remaining cases to check: (1) v2(a) = 0, v2(b) = 0; (2)
v2(a) = 1, v2(b) = 2.
(1) Suppose v2(a) = 0, v2(b) = 0. In this case, p can divide at most one of c4,
c6 and ∆. If p does not divide ∆ then fp = 0. If p | ∆ then p does not divide c4

or c6, whence f2 = 1 and the Néron type at p is Ivp(∆).
(2) Suppose v2(a) = 1, v2(b) = 2. Then vp(c4) ≥ 2, vp(c6) ≥ 3, and vp(∆) ≥ 6.
Moreover, in this case, p3 can divide at most one of a2 − 3b, 9b − 2a2 and
a2 − 4b. If vp(∆) ≥ 7, i.e. a2 − 4b ≡ 0 (mod p3), then we are in case 7 of Tate,
fp = 2, and the Néron type at p is I∗vp(∆)−6. On the other hand, if vp(∆) = 6,
i.e. a2 − 4b 6≡ 0 (mod p3), then we are in case 6 of Tate, fp = 2, and the Néron
type at p is I∗0.

This proves Theorem 2.4.



Chapter 3
Classification of Elliptic Curves over Q with
2-torsion and conductor 2α3βpδ

Let p be a prime number and L, M and N integers satisfying the inequalities

p ≥ 5, 0 ≤ M ≤ 8, and 0 ≤ L,N ≤ 2.

In what follows we announce twenty-seven theorems which describe, up to
Q-isomorphism, all the elliptic curves over Q, of conductor 2M3LpN , having
a rational point of order 2 over Q. The first nine theorems list curves of con-
ductor 2Mp2. The next nine list curves of conductor 2M3Lp, and the last nine
list those of conductor 2M3Lp2. Together, with the work of Ogg on conductor
2M , Coghlan on conductor 2M3L, Setzer on prime conductor, and Ivorra on
conductor 2Mp, this completes the classification problem of curves with bad
reduction at 2, 3, and p ≥ 5, and having rational 2-torsion.

The results which are obtained are presented in the form of tables anal-
ogous to those of [26] and [37]. Each row consists of an elliptic curve of Q
realizing the desired conditions. The columns of the table consist of the fol-
lowing properties of E:

i. A minimal model of E of the form

y2 + a1xy = x3 + a2x
2 + a4x + a6,

where the ai are in Z; except in the cases when N < 2, in these cases
minimal models could be found using Corollary 2.2 but we choose not
to do this here. All models listed are chosen such that a1 = a3 = a6 = 0,
so in the statements of these theorems we omit the columns correspond-
ing to these coefficients.

30
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ii. The factorization of the discriminant ∆ of E.

Also appearing in the table are letters of identification (A,B,...) for each
elliptic curve. Our usage of such letters is inspired by the tables of Cremona
(and [37]) but one should not attempt to assign any meaning to our labeling
other than the following. The curves which are labeled by the same letter
are linked by an isogeny over Q of degree 2 or a composition of two such
isogenies. For example if two curves are labeled A1 and A2 then they are
linked by a degree 2 isogeny, whereas if four curves are labeled A1, A2, A3,
and A4 then A1 is linked to each of the other three by a two isogeny and A2,
A3, A4, are linked to each other by degree 4 isogenies. Moreover, they are
numbered in the order of how they are to be determined.

Notations

a. For each elliptic curve E over Q, we denote by E′ the elliptic curve over
Q obtained from E by a twist by

√
−1.

b. Given an integer n which is a square in Z we denote, in the rest of this
work, by

√
n the square root of n satisfying the following condition:{√

n ≡ 1 mod 4 if n is odd
√

n ≥ 0 if n is even .
(3.1)

3.1 Curves of Conductor 2αp2

The tables presented here are an intermediate step in the classification prob-
lem for curves of conductor 2αp2. In Chapter 6, we refine these tables by using
the Diophantine lemmata of Chapter 4 to resolve the Diophantine equations
in the tables below. If the reader is interested in a classification of curves of
conductor 2Np2 then it would be best to look at the results in Chapter 6 for
the ”polished” tables. The results here are strictly transitional.

3.1.1 Statement of Results

Theorem 3.1 The elliptic curves E defined over Q, of conductor p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:
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1. p = 7 and E is Q-isomorphic to one of the elliptic curves:

a2 a4 minimal model T2 ∆

A1 7 · 3 24 · 7 [1,−1, 0,−2,−1] 2 73

A2 −72 · 3 24 · 73 [1,−1, 0,−107, 552] 2 79

B1 −2 · 7 · 3 −7 [1,−1, 0,−37,−78] 2 73

B2 2 · 72 · 3 −73 [1,−1, 0,−1822, 30393] 2 79

2. p = 17 and E is Q-isomorphic to one of the elliptic curves:

a2 a4 minimal model T2 ∆

C1 17 · 33 24 · 173 [1,−1, 1,−1644,−24922] 4 178

C2 −2 · 17 · 33 172 [1,−1, 1,−26209,−1626560] 2 177

C3 17 · 9 24 · 172 [1,−1, 1,−199, 510] 4 177

C4 2 · 17 · 15 174 [1,−1, 1,−199,−68272] 2 1710

3. p− 64 is a square and E is Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 |T2| ∆

A1 1 p
√

p−64−1
4 −p2 0 2 p7

A2 1 p
√

p−64−1
4 4p2 p3

√
p− 64 2 −p8

Theorem 3.2 The elliptic curves E defined over Q, of conductor 2p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 7 and n ≥ 0 such that 2mpn + 1 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 εp
√

2mpn + 1 2m−2pn+2 22mp2n+6

A2 −ε2p
√

2mpn + 1 p2 2m+6pn+6

where ε ∈ {±1} is the residue of p modulo 4.

2. there exist integers m ≥ 7 and n ≥ 0 such that 2m + pn is a square and E is
Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

B1 εp
√

2m + pn 2m−2p2 22mpn+6

B2 −ε2p
√

2m + pn pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

3. there exist integers m ≥ 7 and n ≥ 0 such that 2m − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 εp
√

2m − pn 2m−2p2 22mpn+6

C2 −ε2p
√

2m − pn −pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

4. there exist integers m ≥ 7 and n ≥ 0 such that pn − 2m is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 εp
√

pn − 2m −2m−2p2 22mpn+6

D2 −ε2p
√

pn − 2m pn+2 −2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

5. there exist integers m ≥ 7 and t ∈ {0, 1} such that 2m+1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 εpt+1
√

2m+1
p 2m−2p2t+1 22mp3+6t

E2 −ε2pt+1
√

2m+1
p p2t+1 2m+6p3+6t

where ε ∈ {±1} is the residue of pt+1 modulo 4.

6. there exist integers m ≥ 7 and t ∈ {0, 1} such that 2m−1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 εpt+1
√

2m−1
p 2m−2p2t+1 22mp3+6t

F2 −ε2pt+1
√

2m−1
p −p2t+1 2m+6p3+6t
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where ε ∈ {±1} is the residue of pt+1 modulo 4.

Theorem 3.3 The elliptic curves E defined over Q, of conductor 4p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exists an integer n ≥ 0 such that pn−4 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

A1 εp
√

pn − 4 −p2 24pn+6

A2 −ε2p
√

pn − 4 pn+2 28p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

Theorem 3.4 The elliptic curves E defined over Q, of conductor 8p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ∈ {4, 5} and n ≥ 0 such that 2mpn + 1 is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 εp
√

2mpn + 1 2m−2pn+2 22mp2n+6

A2 −ε2p
√

2mpn + 1 p2 2m+6pn+6

where ε ∈ {±1} is the residue of p modulo 4.

2. there exists an integer n ≥ 0 such that 4+pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

B1 −εp
√

4 + pn p2 24pn+6

B2 ε2p
√

4 + pn pn+2 28p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

3. there exist integers m ∈ {4, 5} and n ≥ 0 such that 2m + pn is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

C1 εp
√

2m + pn 2m−2p2 22mpn+6

C2 −ε2p
√

2m + pn pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

4. there exist integers m ∈ {4, 5} and n ≥ 0 such that 2m − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 εp
√

2m − pn 2m−2p2 −22mpn+6

D2 −ε2p
√

2m − pn −pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

5. there exists an integer n ≥ 1 such that pn−4 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

E1 εp
√

pn − 4 −p2 24pn+6

E2 −ε2p
√

pn − 4 pn+2 −28p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

6. there exist integers m ∈ {4, 5} and n ≥ 0 such that pn − 2m is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 εp
√

pn − 2m −2m−2p2 22mpn+6

F2 −ε2p
√

pn − 2m pn+2 −2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

7. there exists an integer t ∈ {0, 1} such that 4+1
p is a square and E is Q-

isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 −εpt+1
√

4+1
p p2t+1 24p3+6t

G2 ε2pt+1
√

4+1
p p2t+1 28p3+6t
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where ε ∈ {±1} is the residue of pt+1 modulo 4.

8. there exist integers m ∈ {4, 5} and t ∈ {0, 1} such that 2m+1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 εpt+1
√

2m+1
p 2m−2p2t+1 22mp3+6t

H2 −ε2pt+1
√

2m+1
p p2t+1 2m+6p3+6t

where ε ∈ {±1} is the residue of pt+1 modulo 4.

9. there exist integers m ∈ {4, 5} and t ∈ {0, 1} such that 2m−1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 εpt+1
√

2m−1
p 2m−2p2t+1 −22mp3+6t

I2 −ε2pt+1
√

2m−1
p −p2t+1 2m+6p3+6t

where ε ∈ {±1} is the residue of pt+1 modulo 4.

Theorem 3.5 The elliptic curves E defined over Q, of conductor 16p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 4 and n ≥ 0 such that 2mpn + 1 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 −εp
√

2mpn + 1 2m−2pn+2 22mp2n+6

A2 ε2p
√

2mpn + 1 p2 2m+6pn+6

where ε ∈ {±1} is the residue of p modulo 4.

2. there exists an integer n ≥ 0 such that 4+pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

B1 εp
√

4 + pn p2 24pn+6

B2 −ε2p
√

4 + pn pn+2 28p2n+6
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where ε ∈ {±1} is the residue of p modulo 4.

3. there exist integers m ≥ 4 and n ≥ 0 such that 2m + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 −εp
√

2m + pn 2m−2p2 22mpn+6

C2 ε2p
√

2m + pn pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

4. there exist integers m ≥ 4 and n ≥ 0 such that 2m − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 −εp
√

2m − pn 2m−2p2 22mpn+6

D2 ε2p
√

2m − pn −pn+2 2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

5. there exists an integer n ≥ 1 such that pn−4 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

E1 εp
√

pn − 4 −p2 24pn+6

E2 −ε2p
√

pn − 4 pn+2 −28p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

6. there exist integers m ≥ 4 and n ≥ 0 such that pn − 2m is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 −εp
√

pn − 2m −2m−2p2 22mpn+6

F2 ε2p
√

pn − 2m pn+2 −2m+6p2n+6

where ε ∈ {±1} is the residue of p modulo 4.

7. there exists an integer t ∈ {0, 1} such that 4+1
p is a square and E is Q-

isomorphic to one of the elliptic curves:
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a2 a4 ∆

G1 εpt+1
√

4+1
p 2mp2t+1 24p3+6t

G2 −ε2pt+1
√

4+1
p p2t+1 28p3+6t

where ε ∈ {±1} is the residue of pt modulo 4.

8. there exist integers m ≥ 4 and t ∈ {0, 1} such that 2m+1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 −εpt+1
√

2m+1
p 2mp2t+1 22mp3+6t

H2 ε2pt+1
√

2m+1
p p2t+1 2m+6p3+6t

where ε ∈ {±1} is the residue of pt+1 modulo 4.

9. there exist integers m ≥ 4 and t ∈ {0, 1} such that 2m−1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 −εpt+1
√

2m−1
p 2mp2t+1 −22mp3+6t

I2 ε2pt+1
√

2m−1
p −p2t+1 2m+6p3+6t

where ε ∈ {±1} is the residue of pt+1 modulo 4.

Theorem 3.6 The elliptic curves E defined over Q, of conductor 32p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exists an integer n ≥ 0 such that pn−1 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

A1 2p
√

pn − 1 −p2 26pn+6

A2 −4p
√

pn − 1 4pn+2 212p2n+6

A1’ −2p
√

pn − 1 −p2 26pn+6

A2’ 4p
√

pn − 1 4pn+2 212p2n+6
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2. there exists an integer t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

(a) p ≡ 1 (mod 4);

a2 a4 ∆

B1 0 −p2t+1 26p3+6t

B2 0 4p2t+1 −212p3+6t

(b) p ≡ −1 (mod 4);

a2 a4 ∆

C1 0 p2t+1 −26p3+6t

C2 0 −4p2t+1 212p3+6t

3. there exists an integer n ≥ 0 such that 8pn + 1 is a square and E is Q-
isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 p
√

8pn + 1 2pn+2 26p2n+6

D2 −2p
√

8pn + 1 p2 29pn+6

D1’ −p
√

8pn + 1 2pn+2 26p2n+6

D2’ 2p
√

8pn + 1 p2 29pn+6

4. there exists an integer n ≥ 0 such that 8+pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

E1 p
√

8 + pn 2p2 26pn+6

E2 −2p
√

8 + pn pn+2 29p2n+6

E1’ −p
√

8 + pn 2p2 26pn+6

E2’ 2p
√

8 + pn pn+2 29p2n+6

5. there exists an integer n ≥ 1 such that 8−pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

F1 p
√

8− pn 2p2 −26pn+6

F2 −2p
√

8− pn −pn+2 29p2n+6

F1’ −p
√

8− pn 2p2 −26pn+6

F2’ 2p
√

8− pn −pn+2 29p2n+6
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6. there exists an integer n ≥ 1 such that pn−8 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

G1 p
√

pn − 8 −2p2 26pn+6

G2 −2p
√

pn − 8 pn+2 −29p2n+6

G1’ −p
√

pn − 8 −2p2 26pn+6

G2’ 2p
√

pn − 8 pn+2 −29p2n+6

7. there exists an integer t ∈ {0, 1} such that 8−1
p is a square and E is Q-

isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 pt+1
√

8−1
p 2p2t+1 26p3+6t

H2 −2pt+1
√

8−1
p −p2t+1 29p3+6t

H1’ −pt+1
√

8−1
p 2p2t+1 26p3+6t

H2’ 2pt+1
√

8−1
p −p2t+1 29p3+6t

Theorem 3.7 The elliptic curves E defined over Q, of conductor 64p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exists an integer n ≥ 0 such that pn−1 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

A1 2p
√

pn − 1 pn+2 −26p2n+6

A2 −4p
√

pn − 1 −4p2 212pn+6

A1’ −2p
√

pn − 1 pn+2 −26p2n+6

A2’ 4p
√

pn − 1 −4p2 212pn+6

2. there exists an integer t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

(a) p ≡ 1 (mod 4);

a2 a4 ∆

B1 0 p2t+1 −26p3+6t

B2 0 −4p2t+1 212p3+6t
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(b) p ≡ −1 (mod 4);

a2 a4 ∆

C1 0 −p2t+1 26p3+6t

C2 0 4p2t+1 −212p3+6t

3. there exist integers m ≥ 3 and n ≥ 0 such that 2mpn + 1 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 2p
√

2mpn + 1 2mpn+2 22m+6p2n+6

D2 −4p
√

2mpn + 1 4p2 2m+12pn+6

D1’ −2p
√

2mpn + 1 2mpn+2 22m+6p2n+6

D2’ 4p
√

2mpn + 1 4p2 2m+12pn+6

4. there exist integers m ≥ 2 and n ≥ 0 such that 2m + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 2p
√

2m + pn 2mp2 22m+6pn+6

E2 −4p
√

2m + pn 4pn+2 2m+12p2n+6

E1’ −2p
√

2m + pn 2mp2 22m+6pn+6

E2’ 4p
√

2m + pn 4pn+2 2m+12p2n+6

5. there exist integers m ≥ 2 and n ≥ 0 such that 2m − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 2p
√

2m − pn 2mp2 −22m+6pn+6

F2 −4p
√

2m − pn −4pn+2 2m+12p2n+6

F1’ −2p
√

2m − pn 2mp2 −22m+6pn+6

F2’ 4p
√

2m − pn −4pn+2 2m+12p2n+6

6. there exist integers m ≥ 2 and n ≥ 0 such that pn − 2m is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 2p
√

3`pn − 2m −2mp2 22m+6pn+6

G2 −4p
√

3`pn − 2m 4pn+2 −2m+12p2n+6

G1’ −2p
√

3`pn − 2m −2mp2 22m+6pn+6

G2’ 4p
√

3`pn − 2m 4pn+2 −2m+12p2n+6
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7. there exist integers m ≥ 2 and t ∈ {0, 1} such that 2m+1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 2pt+1
√

2m+1
p 2mp2t+1 22m+6p3+6t

H2 −4pt+1
√

2m+1
p 4p2t+1 2m+12p3+6t

H1’ −2pt+1
√

2m+1
p 2mp2t+1 22m+6p3+6t

H2’ 4pt+1
√

2m+1
p 4p2t+1 2m+12p3+6t

8. there exist integers m ≥ 2 and t ∈ {0, 1} such that 2m−1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 2pt+1
√

2m−1
p 2mp2t+1 22m+6p3+6t

I2 −4pt+1
√

2m−1
p −4p2t+1 −2m+12p3+6t

I1’ −2pt+1
√

2m−1
p 2mp2t+1 22m+6p3+6t

I2’ 4pt+1
√

2m−1
p −4p2t+1 −2m+12p3+6t

Theorem 3.8 The elliptic curves E defined over Q, of conductor 128p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exists an integer n ≥ 0 such that 2pn − 1 is a square and E is Q-
isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2p
√

2pn − 1 2pn+2 22m+6p2n+6

A2 −4p
√

2pn − 1 −4p2 2m+12pn+6

A1’ −2p
√

2pn − 1 2pn+2 22m+6p2n+6

A2’ 4p
√

2pn − 1 −4p2 2m+12pn+6

B1 2p
√

2pn − 1 −p2 2m+6pn+6

B2 −4p
√

2pn − 1 8pn+2 22m+12p2n+6

B1’ −2p
√

2pn − 1 −p2 2m+6pn+6

B2’ 4p
√

2pn − 1 8pn+2 22m+12p2n+6
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2. there exists an integer n ≥ 0 such that 2+pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

C1 2p
√

2 + pn 2p2 22m+6pn+6

C2 −4p
√

2 + pn 4pn+2 2m+12p2n+6

C1’ −2p
√

2 + pn 2p2 22m+6pn+6

C2’ 4p
√

2 + pn 4pn+2 2m+12p2n+6

D1 2p
√

2 + pn pn+2 2m+6p2n+6

D2 −4p
√

2 + pn 8p2 22m+12pn+6

D1’ −2p
√

2 + pn pn+2 2m+6p2n+6

D2’ 4p
√

2 + pn 8p2 22m+12pn+6

3. there exists an integer n ≥ 0 such that 2−pn is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

E1 2p
√

2− pn 2p2 −22m+6pn+6

E2 −4p
√

2− pn −4pn+2 2m+12p2n+6

E1’ −2p
√

2− pn 2p2 −22m+6pn+6

E2’ 4p
√

2− pn −4pn+2 2m+12p2n+6

F1 2p
√

2− pn −pn+2 2m+6p2n+6

F2 −4p
√

2− pn 8p2 −22m+12pn+6

F1’ −2p
√

2− pn −pn+2 2m+6p2n+6

F2’ 4p
√

2− pn 8p2 −22m+12pn+6

4. there exists an integer n ≥ 0 such that pn−2 is a square and E is Q-isomorphic
to one of the elliptic curves:

a2 a4 ∆

G1 2p
√

pn − 2 pn+2 22m+6pn+6

G2 −4p
√

pn − 2 −8p2 −2m+12p2n+6

G1’ −2p
√

pn − 2 pn+2 22m+6pn+6

G2’ 4p
√

pn − 2 −8p2 −2m+12p2n+6

H1 2p
√

pn − 2 −2p2 −2m+6p2n+6

H2 −4p
√

pn − 2 4pn+2 22m+12pn+6

H1’ −2p
√

pn − 2 −2p2 −2m+6p2n+6

H2’ 4p
√

pn − 2 4pn+2 22m+12pn+6
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Theorem 3.9 The elliptic curves E defined over Q, of conductor 256p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exists an integer and n ≥ 0 such that pn+1
2 is a square and E is Q-

isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 4p
√

pn+1
2 2p2 29p2n+6

A2 −8p
√

pn+1
2 8pn+2 215pn+6

A1’ −4p
√

pn+1
2 2p2 29p2n+6

A2’ 8p
√

pn+1
2 8pn+2 215pn+6

B1 4p
√

pn+1
2 2pn+2 29pn+6

B2 −8p
√

pn+1
2 8p2 215p2n+6

B1’ −4p
√

pn+1
2 2pn+2 29pn+6

B2’ 8p
√

pn+1
2 8p2 215p2n+6

2. there exists an integer n ≥ 0 such that pn−1
2 is a square and E is Q-isomorphic

to one of the elliptic curves:

a2 a4 ∆

C1 4p
√

pn−1
2 2pn+2 −29p2n+6

C2 −8p
√

pn−1
2 −8p2 215pn+6

C1’ −4p
√

pn−1
2 2pn+2 −29p2n+6

C2’ 8p
√

pn−1
2 −8p2 215pn+6

D1 4p
√

pn−1
2 −2p2 29pn+6

D2 −8p
√

pn−1
2 8pn+2 −215p2n+6

D1’ −4p
√

pn−1
2 −2p2 29pn+6

D2’ 8p
√

pn−1
2 8pn+2 −215p2n+6

3. E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

E1 0 2p2 −29p6

E2 0 −8p2 215p6

F1 0 −2p2 29p6

F2 0 8p2 −215p6

4. there exists an integer t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

a2 a4 ∆

G1 0 2p2t+1 29p3+6t

G2 0 −8p2t+1 215p3+6t

H1 0 −2p2t+1 29p3+6t

H2 0 8p2t+1 215p3+6t

3.1.2 The Proof for Conductor 2αp2

3.1.3 List of Q-isomorphism classes

Let E be an elliptic curve over Q of conductor 2Mp2 with 0 ≤ M ≤ 8 and
having at least one rational point of order 2. We may assume that E is given
by a model of the form

y2 = x3 + ax2 + bx,

where a and b are integers both divisible by p, a and b have no other common
odd divisors, and that this model is minimal outside of 2. From the hypothesis
on the conductor of E, there exist two natural numbers α and δ, with δ ≥ 2,
such that

b2(a2 − 4b) = ±2αpδ. (3.2)

It follows that b 6= 0 and its only possible divisors are 2 and p. We consider
the two cases: (i) b > 0, (ii) b < 0.

Lemma 3.10 Suppose b > 0. Then there exists an integer d, and non-negative
integers m and n satisfying one of the equations in the first column and E is Q-
isomorphic to the corresponding curve in the second column, for some r1, r3 ∈ {0, 1};
except in cases 1, 2 and 5, where if m = 1 then r1 ∈ {1, 2}.
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y2 = x3 + a2x
2 + a4x

Diophantine Equation a2 a4

1 d2 − 2mpn = ±1 2r1pd 2m+2r1−2pn+2

2 d2 − 2m = ±pn 2r1pd 2m+2r1−2p2

5 pd2 − 2m = ±1 2r1pr3+1d 2m+2r1−2p2r3+1

10 d2 − pn = ±2m 2r1+1pd 22r1pn+2

11 d2 − 1 = 2mpn 2r1+1pd 22r1p2

14 pd2 − 1 = 2m 2r1+1pr3+1d 22r1p2r3+1

19 2d2 − pn = ±1 2r1+2pd 22r1+1pn+2

20 2d2 − 1 = pn 2r1+2pd 22r1+1p2

23 2pd2 − 1 = ±1 2r1+2pr3+1d 22r1+1p2r3+1

Proof. This lemma follows immediately from Lemma A.1 in Appendix A by
removing the prime factor 3 from all places and setting r3 = 1. Of course
doing this makes a number of the rows identical, so ignoring the redundant
rows we end up with the table above. The numbers in the first column of the
table above are included to indicate which row of the table in Lemma A.1
these rows correspond.

Similarly, from Lemma A.2 we obtain the following.

Lemma 3.11 Suppose b < 0. Then there exists an integer d, and non-negative
integers m and n satisfying one of the equations in the first column and E is Q-
isomorphic to the corresponding curve in the second column, for some r1, r3 ∈ {0, 1};
except in case 2, where if m = 1 then r1 ∈ {1, 2}.

y2 = x3 + a2x
2 + a4x

Diophantine Equation a2 a4

2 d2 + 2m = pn 2r1pd −2m+2r1−2p2

10 d2 + pn = 2m 2r1+1pd −22r1pn+2

11 d2 + 1 = 2mpn 2r1+1pd −22r1p2

14 pd2 + 1 = 2m 2r1+1pr3+1d −22r1p2r3+1

20 2d2 + 1 = pn 2r1+2pd −22r1+1p2

24 2pd2 + 1 = 1 2r1+2pr3+1d −22r1+1p2r3+1

3.1.4 The end of the proof

In this section, we verify that the elliptic curves appearing in Theorems 3.1–
3.9 are the only curves, up to Q isomorphism, having the stated properties.
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Our method of proof is similar to that of Ivorra [37]. It is sufficient to prove
the following.

(?) Let F be an elliptic curve appearing in one of the Lemmata 3.10 or 3.11. Then,
F is Q-isomorphic to one of the elliptic curves appearing in Theorems 1 through 9.

In fact, let N be an integer such that 0 ≤ N ≤ 8 and E and elliptic curve
over Q of conductor 2Np2, having at least one rational point of order 2. Ac-
cording to the work done in the previous section (and Appendix A), E is
Q-isomorphic to an elliptic curve F appearing in Lemmas 3.10 or 3.11. It fol-
lows from assertion (?) that F is thus Q-isomorphic to one of the curves in
Theorems 1 through 9. Furthermore, such is also the case for E. Since E is of
conductor 2Np2, it follows that E is Q-isomorphic to one of the curves in the
tables of the theorem corresponding to the value of N . This finishes the proof
of the theorems.

Assertion (?) is a consequence of the following assertion:

(??) Let F be an elliptic curve appearing in one of the lemmata 3.10 or 3.11. Let
F ′ be the quadratic twist of F by

√
−1. Then, one of the curves F and F ′ is Q-

isomorphic to one of the elliptic curves appearing in Theorems 1 through 9.

In fact, consider an elliptic curve F referenced in Lemma 3.10 or 3.11. From
(??), we can suppose that F ′ is Q-isomorphic to one of the elliptic curves in
Theorems 3.1 through 3.9.

a) If F ′ is isomorphic to a curve in theorem 3.1, then F is isomorphic to a
curve in theorem 3.4.

b) Suppose that F ′ is Q-isomorphic to a curve in Theorems 3.2 through
3.9.

b.1) If F ′ is isomorphic to a curve in Theorems 3.6 through 3.9, we see that
the same must be true of F .

b.2) If F ′ is isomorphic to a curve in Theorems 3.3 or 3.4, then F is isomor-
phic to a curve in Theorem 3.5.

b.3) If F ′ is isomorphic to a curve in Theorem 3.2, then F is isomorphic to
a curve in Theorem 3.5.

b.4) Suppose now that F ′ is Q-isomorphic to an elliptic curve appearing
in Theorem 3.5.
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If F ′ is isomorphic to one of the curves A1 or A2: if m ∈ {4, 5}, then F

is isomorphic to one of the curves A1 or A2 in Theorem 3.4; if m = 6, then
p = 17 and F is isomorphic to one of the curves in 3.1; if m ≥ 7 the curve F is
isomorphic to one to the curves A1 or A2 of Theorem 3.2.

If F ′ is isomorphic to one of the curves B1 or B2 then the curve F is iso-
morphic to one of the curves B1 or B2 in Theorem 3.4.

If F ′ is isomorphic to one of the curves C1 or C2 of Theorem 3.5; if m ∈
{4, 5}, then F is isomorphic to one of the curves C1 or C2 in Theorem 3.4; if
m = 6, then p = 17 and F is isomorphic to one of the curves in 3.1; if m ≥ 7,
then F is isomorphic to one of the curves B1 or B2 in Theorem 3.2.

If F ′ is isomorphic to the curve D1 or D2; if m ∈ {4, 5}, then F is isomor-
phic to the curve D1 or D2 of Theorem 3.4; if m ≥ 7, then F is isomorphic to
one of the curves C1 or C2 in Theorem 3.2.

If F ′ is isomorphic to one of the curves E1 or E2 then the curve F is iso-
morphic to one of the curves E1 or E2 in Theorem 3.4.

If F ′ is isomorphic to one of the curves F1 or F2 of Theorem 3.5; if m ∈
{4, 5}, then F is isomorphic to one of the curves F1 or F2 in Theorem 3.4; if
m = 6, then either p = 17 or p = d2 + 64 and F is isomorphic to one of the
curves in 3.1; if m ≥ 7, then F is isomorphic to one of the curves D1 or D2 in
Theorem 3.2.

If F ′ is isomorphic to one of the curves G1 or G2 then the curve F is iso-
morphic to one of the curves G1 or G2 in Theorem 3.4.

If F ′ is isomorphic to one of the curves H1 or H2 of Theorem 3.5; if m ∈
{4, 5}, then F is isomorphic to one of the curves H1 or H2 in Theorem 3.4; if
m ≥ 7, then F is isomorphic to one of the curves E1 or E2 in Theorem 3.2.

If F ′ is isomorphic to one of the curves I1 or I2 of Theorem 3.5; if m ∈
{4, 5}, then F is isomorphic to one of the curves I1 or I2 in Theorem 3.4; if
m = 6, then p = 7 and F is isomorphic to one of the curves in 3.1; if m ≥ 7,
then F is isomorphic to one of the curves F1 or F2 in Theorem 3.2.

This proves assertion (?) in this case.
All that remains now is to show that assertion (??) holds for Lemmata 3.10

and 3.11.
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Assertion (??) holds for Lemma 3.10:

Since assertion (??) is concerned only with the curves up to quadratic twist
we may choose the sign of a2 which makes calculations most convenient. This
usually involves specifying the congruence class of pd, a factor of a2, modulo
4. We will make extensive use of the tables in Chapter 2 for computing con-
ductors.

In what follows we will refer to the curves appearing in Lemma 3.10 by
their numbers in the first column. In particular, for the Diophantine equations
involving ”±” we would like to consider the curves corresponding to the ”+”
equation separately from the curves corresponding to the ”−” equation. In
the former case, we put a superscript of ”+” on the curve number, and in the
latter, a superscript of ”−”. This is made clear in the first two cases below.

1+) Suppose that (p, d, m, n)1 satisfy d2 = 2mpn + 1, and E is the elliptic
curve with coefficients a2 = 2r1pd and a4 = 2m+2r1−2pn+2. We may assume d

is such that pd ≡ −1 (mod 4). Thus, using the tables in Chapter 2, the conduc-
tor of E is 2f2p2 where

f2 =


5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2.

(Observe how the assumption pd ≡ −1 (mod 4) reduced the number of
possibilities for the value of f2 in the case when r1 = 0 and m ≥ 4.)

Now we can easily see that E is curve D1, A1, or D1 in Theorems 3.6, 3.5,
3.7, respectively.

1−) Suppose that (p, d, m, n) 2 satisfy d2 = 2mpn − 1, and E is the elliptic
curve with coefficients a2 = 2r1pd and a4 = 2m+2r1−2pn+2. We may assume
d is such that pd ≡ −1 (mod 4). The conductor of E is 27p2 and so E is curve
A1, if r1 = 0, and curve B2’, if r1 = 2, of Theorem 3.8.

Notice we could have just written ”E is curve A1, if r1 = 0, and curve B2’,
if r1 = 2” from which it should be clear that the curve A1 and B2’ to which
we refer are the ones in Theorem 3.8, since E is of conductor 27p2. In what

1Then m ≥ 3.
2Then m ∈ {0, 1}.
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follows, we will not explicitly note which of Theorems 3.1 through 3.9 we are
referring; this is clear from the conductors under consideration.

2+) Suppose that (p, d,m, n) satisfy d2 = 2m + pn, and E is the elliptic
curve with coefficients a2 = 2r1pd and a4 = 2m+2r1−2p2. We may assume d

is such that pd ≡ −1 (mod 4). Thus, from Theorem 2.1, the conductor of E is
2f2p2 where

f2 =



3 if r1 = 0,m = 2;

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

7 if r1 = 1,m = 1;

6 if r1 = 1,m ≥ 2;

7 if r1 = 2,m = 1.

Thus E is curve B1, E1, C1, C1, E1 or B2’, respectively.
2−) Suppose that (p, d, m, n)3 satisfy d2 = 2m − pn, and E is the elliptic

curve with coefficients a2 = 2r1pd and a4 = 2m+2r1−2p2. We may assume d is
such that pd ≡ −1 (mod 4). The conductor of E is 2f2p2 where

f2 =


5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2;

Thus E is curve F1, D1, or F1, respectively.
5+) Suppose that (p, d, m, n)4 satisfy pd2 = 2m + 1, and E is the elliptic

curve with coefficients a2 = 2r1pr3+1d and a4 = 2m+2r1−2p2r3+1. We may as-
sume d is such that pr3+1d ≡ −1 (mod 4). The conductor of E is 2f2p2 where

f2 =


3 if r1 = 0,m = 2;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2.

Thus, E is curve G1 (if r1 = 0, m = 2), H1 (if r1 = 0, m ≥ 4) and H1 or H1’ (if
r1 = 1, m ≥ 2).

5−) Suppose that (p, d,m, n)5 satisfy pd2 = 2m − 1, and E is the elliptic
3Then m ≥ 3.
4Then m 6= 1, 3.
5Then m ≥ 3.
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curve with coefficients a2 = 2r1pr3+1d and a4 = 2m+2r1−2p2r3+1. We may as-
sume d is such that pr3+1d ≡ −1 (mod 4). The conductor of E is 2f2p2 where

f2 =


5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2.

Thus E is curve H1 or H1’ (if r1 = 0, m = 3), I1 (if r1 = 0, m ≥ 4) and I1 or I1’
(if r1 = 1, m ≥ 2).

10+) Suppose that (p, d, m, n)6 satisfy d2 = pn + 2m, and E is the elliptic
curve with coefficients a2 = 2r1+1pd and a4 = 22r1pn+2. We may assume d is
such that pd ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =



7 if r1 = 0,m = 1;

4 if r1 = 0,m = 2;

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

7 if r1 = 1,m = 1;

6 if r1 = 1,m ≥ 2.

Thus E is curve D1 (or D1’), B1, E2 (or E2’), C2, E2 (or E2’), and C2 (or C2’),
respectively.

10−) Suppose that (p, d,m, n) satisfy d2 = pn − 2m, and E is the elliptic
curve with coefficients a2 = 2r1+1pd and a4 = 22r1pn+2. We may assume d is
such that pd ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =



6 if r1 = 0,m = 0;

7 if r1 = 0,m = 1;

4 if r1 = 0,m = 2;

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

5 if r1 = 1,m = 0;

7 if r1 = 1,m = 1;

6 if r1 = 1,m ≥ 2.

6Then m 6= 0.
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Thus E is curve A1 (or A1’), G1 (or G1’), E2, G2 (or G2’), F2, A2 (or A2’), G2
(G2’), and H2 (or H2’).

11) Suppose that (p, d, m, n)7 satisfy d2 = 2mpn + 1, and E is the elliptic
curve with coefficients a2 = 2r1+1pd and a4 = 22r1p2. We may assume d is
such that pd ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =


5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2.

Thus E is curve D2 (or D2’), A2, and D2 (or D2’), respectively.
14) Suppose that (p, d, m, n)8 satisfy pd2 = 2m + 1, and E is the elliptic

curve with coefficients a2 = 2r1+1pr3+1d and a4 = 22r1p2r3+1. We may assume
d is such that pr3+1d ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =


3 if r1 = 0,m = 2;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m ≥ 2.

Thus E is curve G2, H2, H2 (or H2’), respectively.
19+) Suppose that (p, d, m, n) satisfy 2d2 = pn + 1, and E is the elliptic

curve with coefficients a2 = 2r1+2pd and a4 = 22r1+1pn+2. The conductor of E

is 28p2, thus E is curve B1 (or B1’) if r1 = 0, and A2 (or A2’) if r1 = 1.
19−) Suppose that (p, d, m, n) satisfy 2d2 = pn − 1, and E is the elliptic

curve with coefficients a2 = 2r1+2pd and a4 = 22r1+1pn+2. The conductor of E

is 28p2, thus E is curve C1 (or C1’) if r1 = 0, and D2 (or D2’) if r1 = 1.
20) Suppose that (p, d, m, n) satisfy 2d2 = pn +1, and E is the elliptic curve

with coefficients a2 = 2r1+2pd and a4 = 22r1+1p2. The conductor of E is 28p2,
thus E is curve A1 (or A1’) if r1 = 0, and B2 (or B2’) if r1 = 1.

23+) There are no solutions to 2pd2 = 1 + 1 so we have no curves corre-
sponding to this case.

23−) Suppose that (p, d, m, n) satisfy 2pd2 = 1− 1, then d = 0, and E is the
elliptic curve with coefficients a2 = 0 and a4 = 22r1p2r3+1. The conductor of
E is 28p2 and E is the curve G1 if r1 = 0 or the curve H2 if r1 = 1.

7Then m ≥ 3.
8Then m 6= 0, 1, 3.
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This completes the proof that assertion (??) is satisfied for all curves in
lemma 3.10.

Assertion (??) holds for Lemma 3.11:

2) Suppose that (p, d, m, n) satisfy d2 = pn − 2m, and E is the elliptic curve
with coefficients a2 = 2r1pd and a4 = −2m+2r1−2p2. We may assume d is such
that pd ≡ −1 (mod 4). Thus, using the tables in chapter 2, the conductor of E

is 2f2p2 where

f2 =



4 if r1 = 0,m = 2;

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

7 if r1 = 1,m = 1;

6 if r1 = 1,m ≥ 2;

7 if r1 = 2,m = 1.

Thus E is curve E1, G1, F1, H1 (or H1’), G1 (or G1’) and G1 (or G1’), respec-
tively.

10) Suppose that (p, d, m, n)9 satisfy d2 = 2m − pn, and E is the elliptic
curve with coefficients a2 = 2r1+1pd and a4 = −22r1pn+2. We may assume d is
such that pd ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =



5 if r1 = 0,m = 0 (i.e. n = 0);

7 if r1 = 0,m = 1;

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

6 if r1 = 1,m = 0 (i.e. n = 0);

7 if r1 = 1,m = 1;

6 if r1 = 1,m ≥ 2.

Thus E is curve A1 (or A1’), F1 (or F1’), F2 (or F2’), D2, A2 (or A2’), and F2
(or F2’), E2 (or E2’) respectively.

9Then m 6= 2.
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11) Suppose that (p, d, m, n)10 satisfy d2 = 2mpn − 1, and E is the elliptic
curve with coefficients a2 = 2r1+1pd and a4 = −22r1p2. We may assume d is
such that pd ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =


5 if r1 = 0,m = 0;

7 if r1 = 0,m = 1;

6 if r1 = 1,m = 0;

7 if r1 = 1,m = 1;

Thus E is curve A1 (or A1’), B1 (or B1’), A2 (or A2’) and A2 (or A2’), respec-
tively.

14) Suppose that (p, d, m, n)11 satisfy pd2 = 2m − 1, and E is the ellip-
tic curve with coefficients a2 = 2r1+1pr3+1d and a4 = −22r1p2r3+1. We may
assume d is such that pr3+1d ≡ 1 (mod 4). The conductor of E is 2f2p2 where

f2 =



6 if r1 = 0,m = 0, p ≡ −1 (mod 4);

5 if r1 = 0,m = 0, p ≡ 1 (mod 4);

5 if r1 = 0,m = 3;

4 if r1 = 0,m ≥ 4;

5 if r1 = 1,m = 0, p ≡ −1 (mod 4);

6 if r1 = 1,m = 0, p ≡ 1 (mod 4);

6 if r1 = 1,m ≥ 2.

Thus E is curve C1, B1, H2 (or H2’), I2, C2, B2, I2 (or H2’), respectively.
20) Suppose that (p, d, m, n) satisfy 2d2 = pn−1, and E is the elliptic curve

with coefficients a2 = 2r1+2pd and a4 = −22r1+1p2. The conductor of E is 28p2,
thus E is curve D1 (or D1’) if r1 = 0, and C2 (or C2’) if r1 = 1.

24) Suppose that (p, d, m, n) satisfy 2pd2 = 1 − 1, then d = 0, and E is the
elliptic curve with coefficients a2 = 0 and a4 = −22r1p2r3+1. The conductor of
E is 28p2 and E is the curve H1 if r1 = 0 or the curve G2 if r1 = 1.

This completes the proof that assertion (??) is satisfied for all curves in
lemma 3.11.

This completes the proof of Theorems 3.1 through 3.9.

10Then m ≤ 1.
11Then m 6= 1, 2.
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3.2 Curves of Conductor 2α3βp

As we mentioned in the introduction to this chapter, the models presented
in the following table are minimal except in the case when the conductor is
not divisible by 4. In these cases (i.e. Theorems 3.12 and 3.13) the model is
minimal except at 2, and a minimal model can be found using Corollary 2.2.
We choose not to do this here.

Theorem 3.12 The elliptic curves E defined over Q, of conductor 3bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 1 such that 263`pn + 1 is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1
√

263`pn + 1 243`+2(b−1)pn 21232`+6(b−1)p2n

A2 −ε · 2 · 3b−1
√

263`pn + 1 32(b−1) 2123`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

2. there exist integers ` ≥ 2− b and n ≥ 1 such that 263` + pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1
√

263` + pn 243`+2(b−1) 21232`+6(b−1)pn

B2 −ε · 2 · 3b−1
√

263` + pn 32(b−1)pn 2123`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

3. there exist integers ` ≥ 2− b and n ≥ 1 such that 263`− pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1
√

263` − pn 243`+2(b−1) −21232`+6(b−1)pn

C2 −ε · 2 · 3b−1
√

263` − pn −32(b−1)pn 2123`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.
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4. there exist integers ` ≥ 2− b and n ≥ 1 such that 26pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1
√

26pn + 3` 2432(b−1)pn 2123`+6(b−1)p2n

D2 −ε · 2 · 3b−1
√

26pn + 3` 3`+2(b−1) 21232`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

5. there exist integers ` ≥ 2− b and n ≥ 1 such that 26 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1
√

26 + 3`pn 2432(b−1) 2123`+6(b−1)pn

E2 −ε · 2 · 3b−1
√

26 + 3`pn 3`+2(b−1)pn 21232`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

6. there exist integers ` ≥ 2− b and n ≥ 1 such that 26− 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1
√

26 − 3`pn 2432(b−1) −2123`+6(b−1)pn

F2 −ε · 2 · 3b−1
√

26 − 3`pn −3`+2(b−1)pn 21232`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

7. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`− 26pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1
√

3` − 26pn −2432(b−1)pn 2123`+6(b−1)p2n

G2 −ε · 2 · 3b−1
√

3` − 26pn 3`+2(b−1) −21232`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 1 such that pn− 263` is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

H1 ε · 3b−1
√

pn − 263` −243`+2(b−1) 21232`+6(b−1)pn

H2 −ε · 2 · 3b−1
√

pn − 263` 32(b−1)pn −2123`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

In the case that b = 2, i.e. N = 2 · 32p2, we furthermore could have one of the
following conditions satisfied:

9. there exist integers n ≥ 1 and s ∈ {0, 1} such that 26+pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 ε · 3s+1
√

26+pn

3 2432s+1 21233+6spn

I2 −ε · 2 · 3s+1
√

26+pn

3 32s+1pn 21233+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

10. there exist integers n ≥ 1 and s ∈ {0, 1} such that 26−pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3s+1
√

26−pn

3 2432s+1 −21233+6spn

J2 −ε · 2 · 3s+1
√

26−pn

3 −32s+1pn 21233+6spn

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

11. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−26

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 ε · 3s+1
√

pn−26

3 −2432s+1 21233+6spn

K2 −ε · 2 · 3s+1
√

pn−26

3 32s+1pn −21233+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.
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Theorem 3.13 The elliptic curves E defined over Q, of conductor 2 ·3bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1
√

2m3`pn + 1 2m−23`+2(b−1)pn 22m32`+6(b−1)p2n

A2 −ε · 2 · 3b−1
√

2m3`pn + 1 32(b−1) 2m+63`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

2. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1
√

2m3` + pn 2m−23`+2(b−1) 22m32`+6(b−1)pn

B2 −ε · 2 · 3b−1
√

2m3` + pn 32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

3. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1
√

2m3` − pn 2m−23`+2(b−1) −22m32`+6(b−1)pn

C2 −ε · 2 · 3b−1
√

2m3` − pn −32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

4. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1
√

2mpn + 3` 2m−232(b−1)pn 22m3`+6(b−1)p2n

D2 −ε · 2 · 3b−1
√

2mpn + 3` 3`+2(b−1) 2m+632`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.
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5. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1
√

2m + 3`pn 2m−232(b−1) 22m3`+6(b−1)pn

E2 −ε · 2 · 3b−1
√

2m + 3`pn 3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

6. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1
√

2m − 3`pn 2m−232(b−1) −22m3`+6(b−1)pn

F2 −ε · 2 · 3b−1
√

2m − 3`pn −3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

7. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1
√

3`pn − 2m −2m−232(b−1) 22m3`+6(b−1)pn

G2 −ε · 2 · 3b−1
√

3`pn − 2m 3`+2(b−1)pn −2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

8. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε · 3b−1
√

3` − 2mpn −2m−232(b−1)pn 22m3`+6(b−1)p2n

H2 −ε · 2 · 3b−1
√

3` − 2mpn 3`+2(b−1) −2m+632`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

9. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 1 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

I1 ε · 3b−1
√

pn − 2m3` −2m−23`+2(b−1) 22m32`+6(b−1)pn

I2 −ε · 2 · 3b−1
√

pn − 2m3` 32(b−1)pn −2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

In the case that b = 2, i.e. N = 2 · 32p, we furthermore could have one of the
following conditions satisfied:

10. there exist integers m ≥ 7, n ≥ 1 and s ∈ {0, 1} such that 2m+pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3s+1
√

2m+pn

3 2m−232s+1 22m33+6spn

J2 −ε · 2 · 3s+1
√

2m+pn

3 32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

11. there exist integers m ≥ 7, n ≥ 1 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 ε · 3s+1
√

2m−pn

3 2m−232s+1 −22m33+6spn

K2 −ε · 2 · 3s+1
√

2m−pn

3 −32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

12. there exist integers m ≥ 7, n ≥ 1 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 ε · 3s+1
√

pn−2m

3 −2m−232s+1 22m33+6spn

L2 −ε · 2 · 3s+1
√

pn−2m

3 32s+1pn −2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.
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Theorem 3.14 The elliptic curves E defined over Q, of conductor 223bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` + pn is a square,
3` ≡ −1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1
√

4 · 3` + pn 3`+2(b−1) 2432`+6(b−1)pn

A2 −ε · 2 · 3b−1
√

4 · 3` + pn 32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` − pn is a square,
3` ≡ −1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1
√

4 · 3` − pn 3`+2(b−1) −2432`+6(b−1)pn

B2 −ε · 2 · 3b−1
√

4 · 3` − pn −32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

3. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4pn − 3` is a square,
pn ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1
√

4pn − 3` 32(b−1)pn −243`+6(b−1)p2n

C2 −ε · 2 · 3b−1
√

4pn − 3` −3`+2(b−1) 2832`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 4 · 3` is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1
√

pn − 4 · 3` −3`+2(b−1) 2432`+6(b−1)pn

D2 −ε · 2 · 3b−1
√

pn − 4 · 3` 32(b−1)pn −283`+6(b−1)p2n
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where ε ∈ {±1} is the residue of 3b−1 modulo 4.

In the case that b = 2, i.e. N = 2232p, we furthermore could have one of the
following conditions satisfied:

5. there exist integers n ≥ 1 and s ∈ {0, 1} such that 4pn−1
3 is a square, pn ≡

1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε3s+1
√

4pn−1
3 32s+1pn −2433+6sp2n

E2 −ε · 2 · 3s+1
√

4pn−1
3 −32s+1 2833+6spn

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

6. there exists an integers n ≥ 1 and s ∈ {0, 1} such that pn+4
3 is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε3s+1
√

pn+4
3 32s+1 2433+6spn

F2 −ε · 2 · 3s+1
√

pn+4
3 32s+1pn 2833+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

Theorem 3.15 The elliptic curves E defined over Q, of conductor 233bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2m3`pn + 1 is
a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1
√

2m3`pn + 1 2m−23`+2(b−1)pn 22m32`+6(b−1)p2n

A2 −ε · 2 · 3b−1
√

2m3`pn + 1 32(b−1) 2m+63`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` + pn is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

B1 −ε · 3b−1
√

4 · 3` + pn 3`+2(b−1) 2432`+6(b−1)pn

B2 ε · 2 · 3b−1
√

4 · 3` + pn 32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

3. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1
√

2m3` + pn 2m−23`+2(b−1) 22m32`+6(b−1)pn

C2 −ε · 2 · 3b−1
√

2m3` + pn 32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` − pn is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 −ε · 3b−1
√

4 · 3` − pn 3`+2(b−1) −2432`+6(b−1)pn

D2 ε · 2 · 3b−1
√

4 · 3` − pn −32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

5. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1
√

2m3` − pn 2m−23`+2(b−1) −22m32`+6(b−1)pn

E2 −ε · 2 · 3b−1
√

2m3` − pn −32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

6. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1
√

2mpn + 3` 2m−232(b−1)pn 22m3`+6(b−1)p2n

F2 −ε · 2 · 3b−1
√

2mpn + 3` 3`+2(b−1) 2m+632`+6(b−1)pn
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where ε ∈ {±1} is the residue of 3b−1 modulo 4.

7. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4pn − 3` is a square,
pn ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 −ε · 3b−1
√

4pn − 3` 32(b−1)pn −243`+6(b−1)p2n

G2 ε · 2 · 3b−1
√

4pn − 3` −3`+2(b−1) 2832`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 1 such that 4 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 −ε · 3b−1
√

4 + 3`pn 32(b−1) 243`+6(b−1)pn

H2 ε · 2 · 3b−1
√

4 + 3`pn 3`+2(b−1)pn 2832`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

9. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 ε · 3b−1
√

2m + 3`pn 2m−232(b−1) 22m3`+6(b−1)pn

I2 −ε · 2 · 3b−1
√

2m + 3`pn 3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

10. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3b−1
√

2m − 3`pn 2m−232(b−1) −22m3`+6(b−1)pn

J2 −ε · 2 · 3b−1
√

2m − 3`pn −3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

11. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

K1 ε · 3b−1
√

3`pn − 2m −2m−232(b−1) 22m3`+6(b−1)pn

K2 −ε · 2 · 3b−1
√

3`pn − 2m 3`+2(b−1)pn −2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

12. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 ε · 3b−1
√

3` − 2mpn −2m−232(b−1)pn 22m3`+6(b−1)p2n

L2 −ε · 2 · 3b−1
√

3` − 2mpn 3`+2(b−1) −2m+632`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

13. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 4 · 3` is a square,
3` ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 −ε · 3b−1
√

pn − 4 · 3` −3`+2(b−1) 2432`+6(b−1)pn

M2 ε · 2 · 3b−1
√

pn − 4 · 3` 32(b−1)pn −283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

14. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 1 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 ε · 3b−1
√

pn − 2m3` −2m−23`+2(b−1) 22m32`+6(b−1)pn

N2 ε · 2 · 3b−1
√

pn − 2m3` 32(b−1)pn −2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

In the case that b = 2, i.e. N = 2332p, we furthermore could have one of the
following conditions satisfied:

15. there exist integers m ∈ {4, 5}, n ≥ 1, and s ∈ {0, 1} such that 2m+pn

3 is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

O1 ε · 3s+1
√

2m+pn

3 2m−232s+1 22m33+6spn

O2 −ε · 2 · 3s+1
√

2m+pn

3 32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

16. there exist integers m ∈ {4, 5}, n ≥ 1, and s ∈ {0, 1} such that 2m−pn

3 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 ε · 3s+1
√

2m−pn

3 2m−232s+1 −22m33+6spn

P2 −ε · 2 · 3s+1
√

2m−pn

3 −32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

17. there exist integers n ≥ 1 and s ∈ {0, 1} such that 4pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 −ε · 3s+1
√

4pn−1
3 32s+1pn −2433+6sp2n

Q2 ε · 2 · 3s+1
√

4pn−1
3 −32s+1 2833+6spn

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

18. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 −ε · 3s+1
√

pn−4
3 −32s+1 2433+6spn

R2 ε · 2 · 3s+1
√

pn−4
3 32s+1pn −2833+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

19. there exist integers m ∈ {4, 5}, n ≥ 1, and s ∈ {0, 1} such that pn−2m

3 is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

S1 ε · 3s+1
√

pn−2m

3 −2m−232s+1 22m33+6spn

S2 −ε · 2 · 3s+1
√

pn−2m

3 32s+1pn −2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s+1 modulo 4.

Theorem 3.16 The elliptic curves E defined over Q, of conductor 243bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 −ε · 3b−1
√

2m3`pn + 1 2m−23`+2(b−1)pn 22m32`+6(b−1)p2n

A2 ε · 2 · 3b−1
√

2m3`pn + 1 32(b−1) 2m+63`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1
√

4 · 3` + pn 3`+2(b−1) 2432`+6(b−1)pn

B2 −ε · 2 · 3b−1
√

4 · 3` + pn 32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3`+b−1 modulo 4.

3. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 −ε · 3b−1
√

2m3` + pn 2m−23`+2(b−1) 22m32`+6(b−1)pn

C2 ε · 2 · 3b−1
√

2m3` + pn 32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 1 such that 4 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

D1 ε · 3b−1
√

4 · 3` − pn 3`+2(b−1) −2432`+6(b−1)pn

D2 −ε · 2 · 3b−1
√

4 · 3` − pn −32(b−1)pn 283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3`+b−1 modulo 4.

5. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 −ε · 3b−1
√

2m3` − pn 2m−23`+2(b−1) −22m32`+6(b−1)pn

E2 ε · 2 · 3b−1
√

2m3` − pn −32(b−1)pn 2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

6. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 −ε · 3b−1
√

2mpn + 3` 2m−232(b−1)pn 22m3`+6(b−1)p2n

F2 ε · 2 · 3b−1
√

2mpn + 3` 3`+2(b−1) 2m+632`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

7. there exist integers ` ≥ 2− b and n ≥ 1 such that 4pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1
√

4pn − 3` 32(b−1)pn −243`+6(b−1)p2n

G2 −ε · 2 · 3b−1
√

4pn − 3` −3`+2(b−1) 2832`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1pn modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 1 such that 4 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε · 3b−1
√

4 + 3`pn 32(b−1) 243`+6(b−1)pn

H2 −ε · 2 · 3b−1
√

4 + 3`pn 3`+2(b−1)pn 2832`+6(b−1)p2n
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where ε ∈ {±1} is the residue of 3b−1 modulo 4.

9. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 −ε · 3b−1
√

2m + 3`pn 2m−232(b−1) 22m3`+6(b−1)pn

I2 ε · 2 · 3b−1
√

2m + 3`pn 3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

10. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 −ε · 3b−1
√

2m − 3`pn 2m−232(b−1) −22m3`+6(b−1)pn

J2 ε · 2 · 3b−1
√

2m − 3`pn −3`+2(b−1)pn 2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

11. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 −ε · 3b−1
√

3`pn − 2m −2m−232(b−1) 22m3`+6(b−1)pn

K2 ε · 2 · 3b−1
√

3`pn − 2m 3`+2(b−1)pn −2m+632`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

12. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 −ε · 3b−1
√

3` − 2mpn −2m−232(b−1)pn 22m3`+6(b−1)p2n

L2 ε · 2 · 3b−1
√

3` − 2mpn 3`+2(b−1) −2m+632`+6(b−1)pn

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

13. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 4 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

M1 ε · 3b−1
√

pn − 4 · 3` −3`+2(b−1) 2432`+6(b−1)pn

M2 −ε · 2 · 3b−1
√

pn − 4 · 3` 32(b−1)pn −283`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3`+b modulo 4.

14. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 1 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 −ε · 3b−1
√

pn − 2m3` −2m−23`+2(b−1) 22m32`+6(b−1)pn

N2 ε · 2 · 3b−1
√

pn − 2m3` 32(b−1)pn −2m+63`+6(b−1)p2n

where ε ∈ {±1} is the residue of 3b−1 modulo 4.

In the case that b = 2, i.e. N = 2432p, we furthermore could have one of the
following conditions satisfied:

15. there exist integers n ≥ 1 and s ∈ {0, 1} such that 4pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 ε · 3s+1
√

4pn−1
3 32s+1pn −2433+6sp2n

O2 −ε · 2 · 3s+1
√

4pn−1
3 −32s+1 2833+6spn

where ε ∈ {±1} is the residue of 3spn modulo 4.

16. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 ε · 3s+1
√

pn+4
3 32s+1 2433+6spn

P2 −ε · 2 · 3s+1
√

pn+4
3 32s+1pn 2833+6sp2n

where ε ∈ {±1} is the residue of 3s modulo 4.

17. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that 2m+pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

Q1 ε · 3s+1
√

2m+pn

3 2m−232s+1 22m33+6spn

Q2 −ε · 2 · 3s+1
√

2m+pn

3 32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s modulo 4.

18. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 ε · 3s+1
√

2m−pn

3 2m−232s+1 −22m33+6spn

R2 −ε · 2 · 3s+1
√

2m−pn

3 −32s+1pn 2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s modulo 4.

19. there exist integer n ≥ 1 and s ∈ {0, 1} such that pn−4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 −ε · 3s+1
√

pn−4
3 −32s+1 2433+6spn

S2 ε · 2 · 3s+1
√

pn−4
3 32s+1pn −2833+6sp2n

where ε ∈ {±1} is the residue of 3s modulo 4.

20. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

T1 ε · 3s+1
√

pn−2m

3 −2m−232s+1 22m33+6spn

T2 −ε · 2 · 3s+1
√

pn−2m

3 32s+1pn −2m+633+6sp2n

where ε ∈ {±1} is the residue of 3s modulo 4.

Theorem 3.17 The elliptic curves E defined over Q, of conductor 253bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:
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1. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`pn + 1 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2 · 3b−1
√

3`pn + 1 3`+2(b−1)pn 2632`+6(b−1)p2n

A2 −4 · 3b−1
√

3`pn + 1 4 · 32(b−1) 2123`+6(b−1)pn

A1’ −2 · 3b−1
√

3`pn + 1 3`+2(b−1)pn 2632`+6(b−1)p2n

A2’ 4 · 3b−1
√

3`pn + 1 4 · 32(b−1) 2123`+6(b−1)pn

2. there exist integers ` ≥ 1 and n ≥ 1 such that 3` + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

B1 2 · 3b−1
√

3` + pn 32(b−1)pn 263`+6(b−1)p2n

B2 −4 · 3b−1
√

3` + pn 4 · 3`+2(b−1) 21232`+6(b−1)pn

B1’ −2 · 3b−1
√

3` + pn 32(b−1)pn 263`+6(b−1)p2n

B2’ 4 · 3b−1
√

3` + pn 4 · 3`+2(b−1) 21232`+6(b−1)pn

(b) ` is odd;

a2 a4 ∆

C1 2 · 3b−1
√

3` + pn 3`+2(b−1) 2632`+6(b−1)pn

C2 −4 · 3b−1
√

3` + pn 4 · 32(b−1)pn 2123`+6(b−1)p2n

C1’ −2 · 3b−1
√

3` + pn 3`+2(b−1) 2632`+6(b−1)pn

C2’ 4 · 3b−1
√

3` + pn 4 · 32(b−1)pn 2123`+6(b−1)p2n

3. there exist integers ` ≥ 1 and n ≥ 1 such that 3` − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

D1 2 · 3b−1
√

3` − pn −32(b−1)pn 263`+6(b−1)p2n

D2 −4 · 3b−1
√

3` − pn 4 · 3`+2(b−1) −21232`+6(b−1)pn

D1’ −2 · 3b−1
√

3` − pn −32(b−1)pn 263`+6(b−1)p2n

D2’ 4 · 3b−1
√

3` − pn 4 · 3`+2(b−1) −21232`+6(b−1)pn

(b) ` is odd;
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a2 a4 ∆

E1 2 · 3b−1
√

3` − pn 3`+2(b−1) −2632`+6(b−1)pn

E2 −4 · 3b−1
√

3` − pn −4 · 32(b−1)pn 2123`+6(b−1)p2n

E1’ −2 · 3b−1
√

3` − pn 3`+2(b−1) −2632`+6(b−1)pn

E2’ 4 · 3b−1
√

3` − pn −4 · 32(b−1)pn 2123`+6(b−1)p2n

4. there exist integers ` ≥ 2− b and n ≥ 1 such that pn − 3` is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

F1 2 · 3b−1
√

pn − 3` −3`+2(b−1) 2632`+6(b−1)pn

F2 −4 · 3b−1
√

pn − 3` 4 · 32(b−1)pn −2123`+6(b−1)p2n

F1’ −2 · 3b−1
√

pn − 3` −3`+2(b−1) 2632`+6(b−1)pn

F2’ 4 · 3b−1
√

pn − 3` 4 · 32(b−1)pn −2123`+6(b−1)p2n

(b) ` is odd;

a2 a4 ∆

G1 2 · 3b−1
√

pn − 3` 32(b−1)pn −263`+6(b−1)p2n

G2 −4 · 3b−1
√

pn − 3` −4 · 3`+2(b−1) 21232`+6(b−1)pn

G1’ −2 · 3b−1
√

pn − 3` 32(b−1)pn −263`+6(b−1)p2n

G2’ 4 · 3b−1
√

pn − 3` −4 · 3`+2(b−1) 21232`+6(b−1)pn

5. there exist integers ` ≥ 2− b and n ≥ 1 such that 8 · 3`pn + 1 is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 3b−1
√

8 · 3`pn + 1 2 · 3`+2(b−1)pn 2632`+6(b−1)p2n

H2 −2 · 3b−1
√

8 · 3`pn + 1 32(b−1) 293`+6(b−1)pn

H1’ −3b−1
√

8 · 3`pn + 1 2 · 3`+2(b−1)pn 2632`+6(b−1)p2n

H2’ 2 · 3b−1
√

8 · 3`pn + 1 32(b−1) 293`+6(b−1)pn

6. there exist integers ` ≥ 2 − b and n ≥ 1 such that 8 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

I1 3b−1
√

8 · 3` + pn 2 · 3`+2(b−1) 2632`+6(b−1)pn

I2 −2 · 3b−1
√

8 · 3` + pn 32(b−1)pn 293`+6(b−1)p2n

I1’ −3b−1
√

8 · 3` + pn 2 · 3`+2(b−1) 2632`+6(b−1)pn

I2’ 2 · 3b−1
√

8 · 3` + pn 32(b−1)pn 293`+6(b−1)p2n

7. there exist integers ` ≥ 2 − b and n ≥ 1 such that 8 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 3b−1
√

8 · 3` − pn 2 · 3`+2(b−1) −2632`+6(b−1)pn

J2 −2 · 3b−1
√

8 · 3` − pn −32(b−1)pn 293`+6(b−1)p2n

J1’ −3b−1
√

8 · 3` − pn 2 · 3`+2(b−1) −2632`+6(b−1)pn

J2’ 2 · 3b−1
√

8 · 3` − pn −32(b−1)pn 293`+6(b−1)p2n

8. there exist integers ` ≥ 2− b and n ≥ 1 such that 8pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 3b−1
√

8pn + 3` 2 · 32(b−1)pn 263`+6(b−1)p2n

K2 −2 · 3b−1
√

8pn + 3` 3`+2(b−1) 2932`+6(b−1)pn

K1’ −3b−1
√

8pn + 3` 2 · 32(b−1)pn 263`+6(b−1)p2n

K2’ 2 · 3b−1
√

8pn + 3` 3`+2(b−1) 2932`+6(b−1)pn

9. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`pn − 8 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 3b−1
√

3`pn − 8 −2 · 32(b−1) 263`+6(b−1)pn

L2 −2 · 3b−1
√

3`pn − 8 3`+2(b−1)pn −2932`+6(b−1)p2n

L1’ −3b−1
√

3`pn − 8 −2 · 32(b−1) 263`+6(b−1)pn

L2’ 2 · 3b−1
√

3`pn − 8 3`+2(b−1)pn −2932`+6(b−1)p2n

10. there exist integers ` ≥ 2− b and n ≥ 1 such that 3` − 8pn is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

M1 3b−1
√

3` − 8pn −2 · 32(b−1)pn 263`+6(b−1)p2n

M2 −2 · 3b−1
√

3` − 8pn 3`+2(b−1) −2932`+6(b−1)pn

M1’ −3b−1
√

3` − 8pn −2 · 32(b−1)pn 263`+6(b−1)p2n

M2’ 2 · 3b−1
√

3` − 8pn 3`+2(b−1) −2932`+6(b−1)pn

11. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 8 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 3b−1
√

pn − 8 · 3` −2 · 3`+2(b−1) 2632`+6(b−1)pn

N2 −2 · 3b−1
√

pn − 8 · 3` 32(b−1)pn −293`+6(b−1)p2n

N1’ −3b−1
√

pn − 8 · 3` −2 · 3`+2(b−1) 2632`+6(b−1)pn

N2’ 2 · 3b−1
√

pn − 8 · 3` 32(b−1)pn −293`+6(b−1)p2n

In the case that b = 2, i.e. N = 2532p, we furthermore could have one of the
following conditions satisfied:

12. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 2 · 3s+1
√

pn+1
3 32s+1 2633+6spn

O2 −4 · 3s+1
√

pn+1
3 4 · 32s+1pn 21233+6sp2n

O1’ −2 · 3s+1
√

pn+1
3 32s+1 2633+6spn

O2’ 4 · 3s+1
√

pn+1
3 4 · 32s+1pn 21233+6sp2n

13. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 2 · 3s+1
√

pn−1
3 32s+1pn −2633+6sp2n

P2 −4 · 3s+1
√

pn−1
3 −4 · 32s+1 21233+6spn

P1’ −2 · 3s+1
√

pn−1
3 32s+1pn −2633+6sp2n

P2’ 4 · 3s+1
√

pn−1
3 −4 · 32s+1 21233+6spn
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14. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+8
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 3s+1
√

pn+8
3 2 · 32s+1 2633+6spn

Q2 −2 · 3s+1
√

pn+8
3 32s+1pn 2933+6sp2n

Q1’ −3s+1
√

pn+8
3 2 · 32s+1 2633+6spn

Q2’ 2 · 3s+1
√

pn+8
3 32s+1pn 2933+6sp2n

15. there exist integers n ≥ 1 and s ∈ {0, 1} such that 8−pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 3s+1
√

8−pn

3 2 · 32s+1 −2633+6spn

R2 −2 · 3s+1
√

8−pn

3 −32s+1pn 2933+6sp2n

R1’ −3s+1
√

8−pn

3 2 · 32s+1 −2633+6spn

R2’ 2 · 3s+1
√

8−pn

3 −32s+1pn 2933+6sp2n

16. there exists an integer n ≥ 1 and s ∈ {0, 1} such that pn−8
3 is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 3s+1
√

pn−8
3 −2 · 32s+1 2633+6spn

S2 −2 · 3s+1
√

pn−8
3 32s+1pn −2933+6sp2n

S1’ −3s+1
√

pn−8
3 −2 · 32s+1 2633+6spn

S2’ 2 · 3s+1
√

pn−8
3 32s+1pn −2933+6sp2n

Theorem 3.18 The elliptic curves E defined over Q, of conductor 263bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`pn + 1 is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

A1 2 · 3b−1
√

3`pn + 1 32(b−1) 263`+6(b−1)pn

A2 −4 · 3b−1
√

3`pn + 1 4 · 3`+2(b−1)pn 21232`+6(b−1)p2n

A1’ −2 · 3b−1
√

3`pn + 1 32(b−1) 263`+6(b−1)pn

A2’ 4 · 3b−1
√

3`pn + 1 4 · 3`+2(b−1)pn 21232`+6(b−1)p2n

2. there exist integers ` ≥ 1 and n ≥ 1 such that 3` + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

B1 2 · 3b−1
√

3` + pn 3`+2(b−1) 2632`+6(b−1)pn

B2 −4 · 3b−1
√

3` + pn 4 · 32(b−1)pn 2123`+6(b−1)p2n

B1’ −2 · 3b−1
√

3` + pn 32(b−1) 2632`+6(b−1)pn

B2’ 4 · 3b−1
√

3` + pn 4 · 3`+2(b−1)pn 2123`+6(b−1)p2n

(b) ` is odd;

a2 a4 ∆

C1 2 · 3b−1
√

3` + pn 32(b−1)pn 263`+6(b−1)p2n

C2 −4 · 3b−1
√

3` + pn 4 · 3`+2(b−1) 21232`+6(b−1)pn

C1’ −2 · 3b−1
√

3` + pn 32(b−1)pn 263`+6(b−1)p2n

C2’ 4 · 3b−1
√

3` + pn 4 · 3`+2(b−1) 21232`+6(b−1)pn

3. there exist integers ` ≥ 1 and n ≥ 1 such that 3` − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

D1 2 · 3b−1
√

3` − pn 3`+2(b−1) −2632`+6(b−1)pn

D2 −4 · 3b−1
√

3` − pn −4 · 32(b−1)pn 2123`+6(b−1)p2n

D1’ −2 · 3b−1
√

3` − pn 3`+2(b−1) −2632`+6(b−1)pn

D2’ 4 · 3b−1
√

3` − pn −4 · 32(b−1)pn 2123`+6(b−1)p2n

(b) ` is odd;
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a2 a4 ∆

E1 2 · 3b−1
√

3` − pn −32(b−1)pn 263`+6(b−1)p2n

E2 −4 · 3b−1
√

3` − pn 4 · 3`+2(b−1) −21232`+6(b−1)pn

E1’ −2 · 3b−1
√

3` − pn −32(b−1)pn 263`+6(b−1)p2n

E2’ 4 · 3b−1
√

3` − pn 4 · 3`+2(b−1) −21232`+6(b−1)pn

4. there exist integers ` ≥ 2− b and n ≥ 1 such that pn − 3` is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

F1 2 · 3b−1
√

pn − 3` 32(b−1)pn −263`+6(b−1)p2n

F2 −4 · 3b−1
√

pn − 3` −4 · 3`+2(b−1) 21232`+6(b−1)pn

F1’ −2 · 3b−1
√

pn − 3` 32(b−1)pn −263`+6(b−1)p2n

F2’ 4 · 3b−1
√

pn − 3` −4 · 3`+2(b−1) 212632`+6(b−1)pn

(b) ` is odd;

a2 a4 ∆

G1 2 · 3b−1
√

pn − 3` −3`+2(b−1) 2632`+6(b−1)pn

G2 −4 · 3b−1
√

pn − 3` 4 · 32(b−1)pn −2123`+6(b−1)p2n

G1’ −2 · 3b−1
√

pn − 3` −3`+2(b−1) 2632`+6(b−1)pn

G2’ 4 · 3b−1
√

pn − 3` 4 · 32(b−1)pn −2123`+6(b−1)p2n

5. there exist integers m ≥ 3, ` ≥ 2 − b and n ≥ 1 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 2 · 3b−1
√

2m3`pn + 1 2m3`+2(b−1)pn 22m+632`+6(b−1)p2n

H2 −4 · 3b−1
√

2m3`pn + 1 4 · 32(b−1) 2m+123`+6(b−1)pn

H1’ −2 · 3b−1
√

2m3`pn + 1 2m3`+2(b−1)pn 22m+632`+6(b−1)p2n

H2’ 4 · 3b−1
√

2m3`pn + 1 4 · 32(b−1) 2m+123`+6(b−1)pn

6. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

I1 2 · 3b−1
√

2m3` + pn 2m3`+2(b−1) 22m+632`+6(b−1)pn

I2 −4 · 3b−1
√

2m3` + pn 4 · 32(b−1)pn 2m+123`+6(b−1)p2n

I1’ −2 · 3b−1
√

2m3` + pn 2m3`+2(b−1) 22m+632`+6(b−1)pn

I2’ 4 · 3b−1
√

2m3` + pn 4 · 32(b−1)pn 2m+123`+6(b−1)p2n

7. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 2 · 3b−1
√

2m3` − pn 2m3`+2(b−1) −22m+632`+6(b−1)pn

J2 −4 · 3b−1
√

2m3` − pn −4 · 32(b−1)pn 2m+123`+6(b−1)p2n

J1’ −2 · 3b−1
√

2m3` − pn 2m3`+2(b−1) −22m+632`+6(b−1)pn

J2’ 4 · 3b−1
√

2m3` − pn −4 · 32(b−1)pn 2m+123`+6(b−1)p2n

8. there exist integers m ≥ 3, ` ≥ 2 − b and n ≥ 1 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 2 · 3b−1
√

2mpn + 3` 2m32(b−1)pn 22m+63`+6(b−1)p2n

K2 −4 · 3b−1
√

2mpn + 3` 4 · 3`+2(b−1) 2m+1232`+6(b−1)pn

K1’ −2 · 3b−1
√

2mpn + 3` 2m32(b−1)pn 22m+63`+6(b−1)p2n

K2’ 4 · 3b−1
√

2mpn + 3` 4 · 3`+2(b−1) 2m+1232`+6(b−1)pn

9. there exist integers ` ≥ 2− b and n ≥ 1 such that 4pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 2 · 3b−1
√

4pn − 3` 4 · 32(b−1)pn −2103`+6(b−1)p2n

L2 −4 · 3b−1
√

4pn − 3` −4 · 3`+2(b−1) 21432`+6(b−1)pn

L1’ −2 · 3b−1
√

4pn − 3` 4 · 32(b−1)pn −2103`+6(b−1)p2n

L2’ 4 · 3b−1
√

4pn − 3` −4 · 3`+2(b−1) 21432`+6(b−1)pn

10. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

M1 2 · 3b−1
√

2m + 3`pn 2m32(b−1) 22m+63`+6(b−1)pn

M2 −4 · 3b−1
√

2m + 3`pn 4 · 3`+2(b−1)pn 2m+1232`+6(b−1)p2n

M1’ −2 · 3b−1
√

2m + 3`pn 2m32(b−1) 22m+63`+6(b−1)pn

M2’ 4 · 3b−1
√

2m + 3`pn 4 · 3`+2(b−1)pn 2m+1232`+6(b−1)p2n

11. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 2 · 3b−1
√

2m − 3`pn 2m32(b−1) −22m+63`+6(b−1)pn

N2 −4 · 3b−1
√

2m − 3`pn −4 · 3`+2(b−1)pn 2m+1232`+6(b−1)p2n

N1’ −2 · 3b−1
√

2m − 3`pn 2m32(b−1) −22m+63`+6(b−1)pn

N2’ 4 · 3b−1
√

2m − 3`pn −4 · 3`+2(b−1)pn 2m+1232`+6(b−1)p2n

12. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 2 · 3b−1
√

3`pn − 2m −2m32(b−1) 22m+63`+6(b−1)pn

O2 −4 · 3b−1
√

3`pn − 2m 4 · 3`+2(b−1)pn −2m+1232`+6(b−1)p2n

O1’ −2 · 3b−1
√

3`pn − 2m −2m32(b−1) 22m+63`+6(b−1)pn

O2’ 4 · 3b−1
√

3`pn − 2m 4 · 3`+2(b−1)pn −2m+1232`+6(b−1)p2n

13. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 2 · 3b−1
√

3` − 2mpn −2m32(b−1)pn 22m+63`+6(b−1)p2n

P2 −4 · 3b−1
√

3` − 2mpn 4 · 3`+2(b−1) −2m+1232`+6(b−1)pn

P1’ −2 · 3b−1
√

3` − 2mpn −2m32(b−1)pn 22m+63`+6(b−1)p2n

P2’ 4 · 3b−1
√

3` − 2mpn 4 · 3`+2(b−1) −2m+1232`+6(b−1)pn

14. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 1 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

Q1 2 · 3b−1
√

pn − 2m3` −2m3`+2(b−1) 22m+632`+6(b−1)pn

Q2 −4 · 3b−1
√

pn − 2m3` 4 · 32(b−1)pn −2m+123`+6(b−1)p2n

Q1’ −2 · 3b−1
√

pn − 2m3` −2m3`+2(b−1) 22m+632`+6(b−1)pn

Q2’ 4 · 3b−1
√

pn − 2m3` 4 · 32(b−1)pn −2m+123`+6(b−1)p2n

In the case that b = 2, i.e. N = 2632p, we furthermore could have one of the
following conditions satisfied:

15. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 2 · 3s+1
√

pn+1
3 32s+1pn 2633+6sp2n

R2 −4 · 3s+1
√

pn+1
3 4 · 32s+1 21233+6spn

R1’ −2 · 3s+1
√

pn+1
3 32s+1pn 2633+6sp2n

R2’ 4 · 3s+1
√

pn+1
3 4 · 32s+1 21233+6spn

16. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 2 · 3s+1
√

pn+1
3 −32s+1 2633+6spn

S2 −4 · 3s+1
√

pn+1
3 4 · 32s+1pn −21233+6sp2n

S1’ −2 · 3s+1
√

pn+1
3 −32s+1 2633+6spn

S2’ 4 · 3s+1
√

pn+1
3 4 · 32s+1pn −21233+6sp2n

17. there exist integers n ≥ 1 and s ∈ {0, 1} such that 4pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

T1 2 · 3s+1
√

4pn−1
3 4 · 32s+1)pn −21033+6sp2n

T2 −4 · 3s+1
√

4pn−1
3 −4 · 32s+1) 21433+6spn

T1’ −2 · 3s+1
√

4pn−1
3 4 · 32s+1)pn −21033+6sp2n

T2’ 4 · 3s+1
√

4pn−1
3 −4 · 32s+1) 21433+6spn

18. there exist integers m ≥ 2, n ≥ 1 and s ∈ {0, 1} such that pn+2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 2 · 3s+1
√

pn+2m

3 2m32s+1 22m+633+6spn

U2 −4 · 3s+1
√

pn+2m

3 4 · 32s+1pn 2m+1233+6sp2n

U1’ −2 · 3s+1
√

pn+2m

3 2m32s+1 22m+633+6spn

U2’ 4 · 3s+1
√

pn+2m

3 4 · 32s+1pn 2m+1233+6sp2n

19. there exist integers m ≥ 2, n ≥ 1 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

V1 2 · 3s+1
√

2m−pn

3 2m32s+1 −22m+633+6spn

V2 −4 · 3s+1
√

2m−pn

3 −4 · 32s+1pn 2m+1233+6sp2n

V1’ −2 · 3s+1
√

2m−pn

3 2m32s+1 −22m+633+6spn

V2’ 4 · 3s+1
√

2m−pn

3 −4 · 32s+1pn 2m+1233+6sp2n

20. there exist integers m ≥ 2, n ≥ 1 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

W1 2 · 3s+1
√

pn−2m

3 −2m32s+1 22m+633+6spn

W2 −4 · 3s+1
√

pn−2m

3 4 · 32s+1pn −2m+1233+6sp2n

W1’ −2 · 3s+1
√

pn−2m

3 −2m32s+1 22m+633+6spn

W2’ 4 · 3s+1
√

pn−2m

3 4 · 32s+1pn −2m+1233+6sp2n
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Theorem 3.19 The elliptic curves E defined over Q, of conductor 273bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2 − b and n ≥ 1 such that 2 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2 · 3b−1
√

2 · 3` + pn 2 · 3`+2(b−1) 2832`+6(b−1)pn

A2 −4 · 3b−1
√

2 · 3` + pn 4 · 32(b−1)pn 2133`+6(b−1)p2n

A1’ −2 · 3b−1
√

2 · 3` + pn 2 · 3`+2(b−1) 2832`+6(b−1)pn

A2’ 4 · 3b−1
√

2 · 3` + pn 4 · 32(b−1)pn 2133`+6(b−1)p2n

B1 2 · 3b−1
√

2 · 3` + pn 32(b−1)pn 273`+6(b−1)p2n

B2 −4 · 3b−1
√

2 · 3` + pn 8 · 3`+2(b−1) 21432`+6(b−1)pn

B1’ −2 · 3b−1
√

2 · 3` + pn 32(b−1)pn 273`+6(b−1)p2n

B2’ 4 · 3b−1
√

2 · 3` + pn 8 · 3`+2(b−1) 21432`+6(b−1)pn

2. there exist integers ` ≥ 2 − b and n ≥ 1 such that 2 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 2 · 3b−1
√

2 · 3` − pn 2 · 3`+2(b−1) −2832`+6(b−1)pn

C2 −4 · 3b−1
√

2 · 3` − pn −4 · 32(b−1)pn 2133`+6(b−1)p2n

C1’ −2 · 3b−1
√

2 · 3` − pn 2 · 3`+2(b−1) −2832`+6(b−1)pn

C2’ 4 · 3b−1
√

2 · 3` − pn −4 · 32(b−1)pn 2133`+6(b−1)p2n

D1 2 · 3b−1
√

2 · 3` − pn −32(b−1)pn 273`+6(b−1)p2n

D2 −4 · 3b−1
√

2 · 3` − pn 8 · 3`+2(b−1) −21432`+6(b−1)pn

D1’ −2 · 3b−1
√

2 · 3` − pn −32(b−1)pn 273`+6(b−1)p2n

D2’ 4 · 3b−1
√

2 · 3` − pn 8 · 3`+2(b−1) −21432`+6(b−1)pn

3. there exist integers ` ≥ 2− b and n ≥ 1 such that 2pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

E1 2 · 3b−1
√

2pn + 3` 2 · 32(b−1)pn 283`+6(b−1)p2n

E2 −4 · 3b−1
√

2pn + 3` 4 · 3`+2(b−1) 21332`+6(b−1)pn

E1’ −2 · 3b−1
√

2pn + 3` 2 · 32(b−1)pn 283`+6(b−1)p2n

E2’ 4 · 3b−1
√

2pn + 3` 4 · 3`+2(b−1) 21332`+6(b−1)pn

F1 2 · 3b−1
√

2pn + 3` 3`+2(b−1) 2732`+6(b−1)pn

F2 −4 · 3b−1
√

2pn + 3` 8 · 32(b−1)pn 2143`+6(b−1)p2n

F1’ −2 · 3b−1
√

2pn + 3` 3`+2(b−1) 2732`+6(b−1)pn

F2’ 4 · 3b−1
√

2pn + 3` 8 · 32(b−1)pn 2143`+6(b−1)p2n

4. there exist integers ` ≥ 2− b and n ≥ 1 such that 2pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 2 · 3b−1
√

2pn − 3` 2 · 32(b−1)pn −283`+6(b−1)p2n

G2 −4 · 3b−1
√

2pn − 3` −4 · 3`+2(b−1) 21332`+6(b−1)pn

G1’ −2 · 3b−1
√

2pn − 3` 2 · 32(b−1)pn −283`+6(b−1)p2n

G2’ 4 · 3b−1
√

2pn − 3` −4 · 3`+2(b−1) 21332`+6(b−1)pn

H1 2 · 3b−1
√

2pn − 3` −3`+2(b−1) 2732`+6(b−1)pn

H2 −4 · 3b−1
√

2pn − 3` 8 · 32(b−1)pn −2143`+6(b−1)p2n

H1’ −2 · 3b−1
√

2pn − 3` −3`+2(b−1) 2732`+6(b−1)pn

H2’ 4 · 3b−1
√

2pn − 3` 8 · 32(b−1)pn −2143`+6(b−1)p2n

5. there exist integers ` ≥ 2− b and n ≥ 1 such that 2 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 2 · 3b−1
√

2 + 3`pn 2 · 32(b−1) 283`+6(b−1)pn

I2 −4 · 3b−1
√

2 + 3`pn 4 · 3`+2(b−1)pn 21332`+6(b−1)p2n

I1’ −2 · 3b−1
√

2 + 3`pn 2 · 32(b−1) 283`+6(b−1)pn

I2’ 4 · 3b−1
√

2 + 3`pn 4 · 3`+2(b−1)pn 21332`+6(b−1)p2n

J1 2 · 3b−1
√

2 + 3`pn 3`+2(b−1)pn 2732`+6(b−1)p2n

J2 −4 · 3b−1
√

2 + 3`pn 8 · 32(b−1) 2143`+6(b−1)pn

J1’ −2 · 3b−1
√

2 + 3`pn 3`+2(b−1)pn 2732`+6(b−1)p2n

J2’ 4 · 3b−1
√

2 + 3`pn 8 · 32(b−1) 2143`+6(b−1)pn
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6. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`pn − 2 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 2 · 3b−1
√

3`pn − 2 −2 · 32(b−1) 283`+6(b−1)pn

K2 −4 · 3b−1
√

3`pn − 2 4 · 3`+2(b−1)pn −21332`+6(b−1)p2n

K1’ −2 · 3b−1
√

3`pn − 2 −2 · 32(b−1) 283`+6(b−1)pn

K2’ 4 · 3b−1
√

3`pn − 2 4 · 3`+2(b−1)pn −21332`+6(b−1)p2n

L1 2 · 3b−1
√

3`pn − 2 3`+2(b−1)pn −2732`+6(b−1)p2n

L2 −4 · 3b−1
√

3`pn − 2 −8 · 32(b−1) 2143`+6(b−1)pn

L1’ −2 · 3b−1
√

3`pn − 2 3`+2(b−1)pn −2732`+6(b−1)p2n

L2’ 4 · 3b−1
√

3`pn − 2 −8 · 32(b−1) 2143`+6(b−1)pn

7. there exist integers ` ≥ 2− b and n ≥ 1 such that 3` − 2pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 2 · 3b−1
√

3` − 2pn −2 · 32(b−1)pn 283`+6(b−1)p2n

M2 −4 · 3b−1
√

3` − 2pn 4 · 3`+2(b−1) −21332`+6(b−1)pn

M1’ −2 · 3b−1
√

3` − 2pn −2 · 32(b−1)pn 283`+6(b−1)p2n

M2’ 4 · 3b−1
√

3` − 2pn 4 · 3`+2(b−1) −21332`+6(b−1)pn

N1 2 · 3b−1
√

3` − 2pn 3`+2(b−1) −2732`+6(b−1)pn

N2 −4 · 3b−1
√

3` − 2pn −8 · 32(b−1)pn 2143`+6(b−1)p2n

N1’ −2 · 3b−1
√

3` − 2pn 3`+2(b−1) −2732`+6(b−1)pn

N2’ 4 · 3b−1
√

3` − 2pn −8 · 32(b−1)pn 2143`+6(b−1)p2n

8. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 2 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

O1 2 · 3b−1
√

pn − 2 · 3` −2 · 3`+2(b−1) 2832`+6(b−1)pn

O2 −4 · 3b−1
√

pn − 2 · 3` 4 · 32(b−1)pn −2133`+6(b−1)p2n

O1’ −2 · 3b−1
√

pn − 2 · 3` −2 · 3`+2(b−1) 2832`+6(b−1)pn

O2’ 4 · 3b−1
√

pn − 2 · 3` 4 · 32(b−1)pn −2133`+6(b−1)p2n

P1 2 · 3b−1
√

pn − 2 · 3` 32(b−1)pn −273`+6(b−1)p2n

P2 −4 · 3b−1
√

pn − 2 · 3` −8 · 3`+2(b−1) 21432`+6(b−1)pn

P1’ −2 · 3b−1
√

pn − 2 · 3` 32(b−1)pn −273`+6(b−1)p2n

P2’ 4 · 3b−1
√

pn − 2 · 3` −8 · 3`+2(b−1) 21432`+6(b−1)pn

In the case that b = 2, i.e. N = 2732p, we furthermore could have one of the
following conditions satisfied:

9. there exist integers n ≥ 1 and s ∈ {0, 1} such that 2pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 2 · 3s+1
√

2pn+1
3 2 · 32s+1pn 2833+6sp2n

Q2 −4 · 3s+1
√

2pn+1
3 4 · 32s+1 21333+6spn

Q1’ −2 · 3s+1
√

2pn+1
3 2 · 32s+1pn 2833+6sp2n

Q2’ 4 · 3s+1
√

2pn+1
3 4 · 32s+1 21333+6spn

R1 2 · 3s+1
√

2pn+1
3 32s+1 2733+6spn

R2 −4 · 3s+1
√

2pn+1
3 8 · 32s+1pn 21433+6sp2n

R1’ −2 · 3s+1
√

2pn+1
3 32s+1 2733+6spn

R2’ 4 · 3s+1
√

2pn+1
3 8 · 32s+1pn 21433+6sp2n

10. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+2
3 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

S1 2 · 3s+1
√

pn+2
3 2 · 32s+1 2833+6spn

S2 −4 · 3s+1
√

pn+2
3 4 · 32s+1pn 21333+6sp2n

S1’ −2 · 3s+1
√

pn+2
3 2 · 32s+1 2833+6spn

S2’ 4 · 3s+1
√

pn+2
3 4 · 32s+1pn 21333+6sp2n

T1 2 · 3s+1
√

pn+2
3 32s+1pn 2733+6sp2n

T2 −4 · 3s+1
√

pn+2
3 8 · 32s+1 21433+6spn

T1’ −2 · 3s+1
√

pn+2
3 32s+1pn 2733+6sp2n

T2’ 4 · 3s+1
√

pn+2
3 8 · 32s+1 21433+6spn

11. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−2
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 2 · 3s+1
√

pn−2
3 −2 · 32s+1 2833+6spn

U2 −4 · 3s+1
√

pn−2
3 4 · 32s+1pn −21333+6sp2n

U1’ −2 · 3s+1
√

pn−2
3 −2 · 32s+1 2833+6spn

U2’ 4 · 3s+1
√

pn−2
3 4 · 32s+1pn −21333+6sp2n

V1 2 · 3s+1
√

pn−2
3 32s+1pn −2733+6sp2n

V2 −4 · 3s+1
√

pn−2
3 −8 · 32s+1 21433+6spn

V1’ −2 · 3s+1
√

pn−2
3 32s+1pn −2733+6sp2n

V2’ 4 · 3s+1
√

pn−2
3 −8 · 32s+1 21433+6spn

Theorem 3.20 The elliptic curves E defined over Q, of conductor 283bp, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 1 such that 3`pn−1
2 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

A1 4 · 3b−1
√

3`pn−1
2 2 · 3`+2(b−1)pn −2932`+6(b−1)p2n

A2 −8 · 3b−1
√

3`pn−1
2 −8 · 32(b−1) 2153`+6(b−1)pn

A1’ −4 · 3b−1
√

3`pn−1
2 2 · 3`+2(b−1)pn −2932`+6(b−1)p2n

A2’ 8 · 3b−1
√

3`pn−1
2 −8 · 32(b−1) 2153`+6(b−1)pn

B1 4 · 3b−1
√

3`pn−1
2 −2 · 32(b−1) 293`+6(b−1)pn

B2 −8 · 3b−1
√

3`pn−1
2 8 · 3`+2(b−1)pn −21532`+6(b−1)p2n

B1’ −4 · 3b−1
√

3`pn−1
2 −2 · 32(b−1) 293`+6(b−1)pn

B2’ 8 · 3b−1
√

3`pn−1
2 8 · 3`+2(b−1)pn −21532`+6(b−1)p2n

2. there exist integers ` ≥ 2 − b and n ≥ 1 such that 3`+pn

2 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 4 · 3b−1
√

3`+pn

2 2 · 3`+2(b−1) 2932`+6(b−1)pn

C2 −8 · 3b−1
√

3`+pn

2 8 · 32(b−1)pn 2153`+6(b−1)p2n

C1’ −4 · 3b−1
√

3`+pn

2 2 · 3`+2(b−1) 2932`+6(b−1)pn

C2’ 8 · 3b−1
√

3`+pn

2 8 · 32(b−1)pn 2153`+6(b−1)p2n

D1 4 · 3b−1
√

3`+pn

2 2 · 32(b−1)pn 293`+6(b−1)p2n

D2 −8 · 3b−1
√

3`+pn

2 8 · 3`+2(b−1) 21532`+6(b−1)pn

D1’ −4 · 3b−1
√

3`+pn

2 2 · 32(b−1)pn 293`+6(b−1)p2n

D2’ 8 · 3b−1
√

3`+pn

2 8 · 3`+2(b−1) 21532`+6(b−1)pn

3. there exist integers ` ≥ 2 − b and n ≥ 1 such that 3`−pn

2 is a square and E is
Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

E1 4 · 3b−1
√

3`−pn

2 2 · 3`+2(b−1) −2932`+6(b−1)pn

E2 −8 · 3b−1
√

3`−pn

2 −8 · 32(b−1)pn 2153`+6(b−1)p2n

E1’ −4 · 3b−1
√

3`−pn

2 2 · 3`+2(b−1) −2932`+6(b−1)pn

E2’ 8 · 3b−1
√

3`−pn

2 −8 · 32(b−1)pn 2153`+6(b−1)p2n

F1 4 · 3b−1
√

3`−pn

2 −2 · 32(b−1)pn 293`+6(b−1)p2n

F2 −8 · 3b−1
√

3`−pn

2 8 · 3`+2(b−1) −21532`+6(b−1)pn

F1’ −4 · 3b−1
√

3`−pn

2 −2 · 32(b−1)pn 293`+6(b−1)p2n

F2’ 8 · 3b−1
√

3`−pn

2 8 · 3`+2(b−1) −21532`+6(b−1)pn

4. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn−3`

2 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 4 · 3b−1
√

pn−3`

2 2 · 32(b−1)pn −293`+6(b−1)p2n

G2 −8 · 3b−1
√

pn−3`

2 −8 · 3`+2(b−1) 21532`+6(b−1)pn

G1’ −4 · 3b−1
√

pn−3`

2 2 · 32(b−1)pn −293`+6(b−1)p2n

G2’ 8 · 3b−1
√

pn−3`

2 −8 · 3`+2(b−1) 21532`+6(b−1)pn

H1 4 · 3b−1
√

pn−3`

2 −2 · 3`+2(b−1) 2932`+6(b−1)pn

H2 −8 · 3b−1
√

pn−3`

2 8 · 32(b−1)pn −2153`+6(b−1)p2n

H1’ −4 · 3b−1
√

pn−3`

2 −2 · 3`+2(b−1) 2932`+6(b−1)pn

H2’ 8 · 3b−1
√

pn−3`

2 8 · 32(b−1)pn −2153`+6(b−1)p2n

In the case that b = 2, i.e. N = 2832p, we furthermore could have one of the
following conditions satisfied:

5. there exists an integer n ≥ 1 such that pn+1
6 is a square and E is Q-isomorphic

to one of the elliptic curves:



Chapter 3. Elliptic Curves with 2-torsion and conductor 2α3βpδ 90

a2 a4 ∆

I1 4 · 3s+1
√

pn+1
3 2 · 32s+1pn 2933+6sp2n

I2 −8 · 3s+1
√

pn+1
3 8 · 32s+1 21533+6spn

I1’ −4 · 3s+1
√

pn+1
3 2 · 32s+1pn 2933+6sp2n

I2’ 8 · 3s+1
√

pn+1
3 8 · 32s+1 21533+6spn

J1 4 · 3s+1
√

pn+1
3 2 · 32s+1 2933+6spn

J2 −8 · 3s+1
√

pn+1
3 8 · 32s+1pn 21533+6sp2n

J1’ −4 · 3s+1
√

pn+1
3 2 · 32s+1 2933+6spn

J2’ 8 · 3s+1
√

pn+1
3 8 · 32s+1pn 21533+6sp2n

6. there exists an integer n ≥ 1 such that pn−1
6 is a square and E is Q-isomorphic

to one of the elliptic curves:

a2 a4 ∆

K1 4 · 3s+1
√

pn−1
3 2 · 32s+1pn −2933+6sp2n

K2 −8 · 3s+1
√

pn−1
3 −8 · 32s+1 21533+6spn

K1’ −4 · 3s+1
√

pn−1
3 2 · 32s+1pn −2933+6sp2n

K2’ 8 · 3s+1
√

pn−1
3 −8 · 32s+1 21533+6spn

L1 4 · 3s+1
√

pn−1
3 −2 · 32s+1 2933+6spn

L2 −8 · 3s+1
√

pn−1
3 8 · 32s+1pn −21533+6sp2n

L1’ −4 · 3s+1
√

pn−1
3 −2 · 32s+1 2933+6spn

L2’ 8 · 3s+1
√

pn−1
3 8 · 32s+1pn −21533+6sp2n

3.3 Curves of Conductor 2α3βp2

As we mentioned in the introduction to this chapter the models presented
in the following table are minimal except in the case when the conductor is
not divisible by 4. In these cases (i.e. Theorems 3.21 and 3.22) the model is
minimal except at 2, and a minimal model can be found using Corollary 2.2.
We choose not to do this here.
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Theorem 3.21 The elliptic curves E defined over Q, of conductor 3bp2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 0 such that 263`pn + 1 is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1p
√

263`pn + 1 243`+2(b−1)pn+2 21232`+6(b−1)p2n+6

A2 −ε · 2 · 3b−1p
√

263`pn + 1 32(b−1)p2 2123`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

2. there exist integers ` ≥ 2− b and n ≥ 0 such that 263` + pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1p
√

263` + pn 243`+2(b−1)p2 21232`+6(b−1)pn+6

B2 −ε · 2 · 3b−1p
√

263` + pn 32(b−1)pn+2 2123`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

3. there exist integers ` ≥ 2− b and n ≥ 0 such that 263`− pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1p
√

263` − pn 243`+2(b−1)p2 −21232`+6(b−1)pn+6

C2 −ε · 2 · 3b−1p
√

263` − pn −32(b−1)pn+2 2123`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

4. there exist integers ` ≥ 2− b and n ≥ 0 such that 26pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1p
√

26pn + 3` 2432(b−1)pn+2 2123`+6(b−1)p2n+6

D2 −ε · 2 · 3b−1p
√

26pn + 3` 3`+2(b−1)p2 21232`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.
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5. there exist integers ` ≥ 2− b and n ≥ 0 such that 26 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1p
√

26 + 3`pn 2432(b−1)p2 2123`+6(b−1)pn+6

E2 −ε · 2 · 3b−1p
√

26 + 3`pn 3`+2(b−1)pn+2 21232`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

6. there exist integers ` ≥ 2− b and n ≥ 0 such that 26− 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1p
√

26 − 3`pn 2432(b−1)p2 −2123`+6(b−1)pn+6

F2 −ε · 2 · 3b−1p
√

26 − 3`pn −3`+2(b−1)pn+2 21232`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

7. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`− 26pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1p
√

3` − 26pn −2432(b−1)pn+2 2123`+6(b−1)p2n+6

G2 −ε · 2 · 3b−1p
√

3` − 26pn 3`+2(b−1)p2 −21232`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 0 such that pn− 263` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε · 3b−1p
√

pn − 263` −243`+2(b−1)p2 21232`+6(b−1)pn+6

H2 −ε · 2 · 3b−1p
√

pn − 263` 32(b−1)pn+2 −2123`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

9. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 263`+1
p is a square and

E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

I1 ε · 3b−1pt+1
√

263`+1
p 243`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

I2 −ε · 2 · 3b−1pt+1
√

263`+1
p 32(b−1)p2t+1 2123`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

10. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 263`−1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3b−1pt+1
√

263`−1
p 243`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

J2 −ε · 2 · 3b−1pt+1
√

263`−1
p −32(b−1)p2t+1 2123`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

11. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 26+3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 ε · 3b−1pt+1
√

26+3`

p 2432(b−1)p2t+1 2123`+6(b−1)p3+6t

K2 −ε · 2 · 3b−1pt+1
√

26+3`

p 3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

12. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 26−3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 ε · 3b−1pt+1
√

26−3`

p 2432(b−1)p2t+1 −2123`+6(b−1)p3+6t

L2 −ε · 2 · 3b−1pt+1
√

26−3`

p −3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

13. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`−26

p is a square and E

is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

M1 ε · 3b−1pt+1
√

3`−26

p −2432(b−1)p2t+1 2123`+6(b−1)p3+6t

M2 −ε · 2 · 3b−1pt+1
√

3`−26

p 3`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

In the case that b = 2, i.e. N = 2 · 32p2, we furthermore could have one of the
following conditions satisfied:

14. there exist integers n ≥ 0 and s ∈ {0, 1} such that 26+pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 ε · 3s+1p
√

26+pn

3 2432s+1p2 21233+6spn+6

N2 −ε · 2 · 3s+1p
√

26+pn

3 32s+1pn+2 21233+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

15. there exist integers n ≥ 0 and s ∈ {0, 1} such that 26−pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 ε · 3s+1p
√

26−pn

3 2432s+1p2 −21233+6spn+6

O2 −ε · 2 · 3s+1p
√

26−pn

3 −32s+1pn+2 21233+6spn+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

16. there exist integers n ≥ 0 and s ∈ {0, 1} such that pn−26

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 ε · 3s+1p
√

pn−26

3 −2432s+1p2 21233+6spn+6

P2 −ε · 2 · 3s+1p
√

pn−26

3 32s+1pn+2 −21233+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.
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Theorem 3.22 The elliptic curves E defined over Q, of conductor 2·3bp2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1p
√

2m3`pn + 1 2m−23`+2(b−1)pn+2 22m32`+6(b−1)p2n+6

A2 −ε · 2 · 3b−1p
√

2m3`pn + 1 32(b−1)p2 2m+63`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

2. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1p
√

2m3` + pn 2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

B2 −ε · 2 · 3b−1p
√

2m3` + pn 32(b−1)pn+2 2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

3. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1p
√

2m3` − pn 2m−23`+2(b−1)p2 −22m32`+6(b−1)pn+6

C2 −ε · 2 · 3b−1p
√

2m3` − pn −32(b−1)pn+2 2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

4. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1p
√

2mpn + 3` 2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

D2 −ε · 2 · 3b−1p
√

2mpn + 3` 3`+2(b−1)p2 2m+632`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.
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5. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1p
√

2m + 3`pn 2m−232(b−1)p2 22m3`+6(b−1)pn+6

E2 −ε · 2 · 3b−1p
√

2m + 3`pn 3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

6. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1p
√

2m − 3`pn 2m−232(b−1)p2 −22m3`+6(b−1)pn+6

F2 −ε · 2 · 3b−1p
√

2m − 3`pn −3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

7. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1p
√

3`pn − 2m −2m−232(b−1)p2 22m3`+6(b−1)pn+6

G2 −ε · 2 · 3b−1p
√

3`pn − 2m 3`+2(b−1)pn+2 −2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

8. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε3b−1p
√

3` − 2mpn −2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

H2 −ε2 · 3b−1p
√

3` − 2mpn 3`+2(b−1)p2 −2m+632`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

9. there exist integers m ≥ 7, ` ≥ 2 − b and n ≥ 0 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:



Chapter 3. Elliptic Curves with 2-torsion and conductor 2α3βpδ 97

a2 a4 ∆

I1 ε · 3b−1p
√

pn − 2m3` −2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

I2 −ε · 2 · 3b−1p
√

pn − 2m3` 32(b−1)pn+2 −2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

10. there exist integers m ≥ 7, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`+1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3b−1pt+1
√

2m3`+1
p 2m−23`+2(b−1)p2t+1 22m32`+6(b−1)p3+6t

J2 −ε · 2 · 3b−1pt+1
√

2m3`+1
p 32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

11. there exist integers m ≥ 7, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`−1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 ε3b−1pt+1
√

2m3`−1
p 2m−23`+2(b−1)p2t+1 −22m32`+6(b−1)p3+6t

K2 −ε2 · 3b−1pt+1
√

2m3`−1
p −32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

12. there exist integers m ≥ 7, ` ≥ 2 − b and t ∈ {0, 1} such that 2m+3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 ε · 3b−1pt+1
√

2m+3`

p 2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

L2 −ε · 2 · 3b−1pt+1
√

2m+3`

p 3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

13. there exist integers m ≥ 7, ` ≥ 2 − b and t ∈ {0, 1} such that 2m−3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:



Chapter 3. Elliptic Curves with 2-torsion and conductor 2α3βpδ 98

a2 a4 ∆

M1 ε · 3b−1pt+1
√

2m−3`

p 2m−232(b−1)p2t+1 −22m3`+6(b−1)p3+6t

M2 −ε · 2 · 3b−1pt+1
√

2m−3`

p −3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

14. there exist integers m ≥ 7, ` ≥ 2 − b and t ∈ {0, 1} such that 3`−2m

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 ε3b−1pt+1
√

3`−2m

p −2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

N2 −ε2 · 3b−1pt+1
√

3`−2m

p 3`+2(b−1)p2t+1 −2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

In the case that b = 2, i.e. N = 2 · 32p2, we furthermore could have one of the
following conditions satisfied:

15. there exist integers m ≥ 7, n ≥ 0 and s ∈ {0, 1} such that 2m+pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 ε · 3s+1p
√

2m+pn

3 2m−232s+1p2 22m33+6spn+6

O2 −ε · 2 · 3s+1p
√

2m+pn

3 32s+1pn+2 2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

16. there exist integers m ≥ 7, n ≥ 0 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 ε · 3s+1p
√

2m−pn

3 2m−232s+1p2 −22m33+6spn+6

P2 −ε · 2 · 3s+1p
√

2m−pn

3 −32s+1pn+2 2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.
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17. there exist integers m ≥ 7, n ≥ 0 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 ε · 3s+1p
√

pn−2m

3 −2m−232s+1p2 22m33+6spn+6

Q2 −ε · 2 · 3s+1p
√

pn−2m

3 32s+1pn+2 −2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

18. there exist integers m ≥ 7 and s, t ∈ {0, 1} such that 2m+1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 ε · 3s+1pt+1
√

2m−pn

3 2m−232s+1p2t+1 22m33+6sp3+6t

R2 −ε · 2 · 3s+1pt+1
√

2m−pn

3 32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3s+1pt+1 modulo 4.

19. there exist integers m ≥ 7 and s, t ∈ {0, 1} such that 2m−1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 ε · 3s+1pt+1
√

2m−pn

3 2m−232s+1p2t+1 −22m33+6sp3+6t

S2 −ε · 2 · 3s+1pt+1
√

2m−pn

3 −32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3s+1pt+1 modulo 4.

Theorem 3.23 The elliptic curves E defined over Q, of conductor 223bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` + pn is a square,
3` ≡ −1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1p
√

4 · 3` + pn 3`+2(b−1)p2 2432`+6(b−1)pn+6

A2 −ε · 2 · 3b−1p
√

4 · 3` + pn 32(b−1)pn+2 283`+6(b−1)p2n+6
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where ε ∈ {±1} is the residue of 3b−1p modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` − pn is a square,
3` ≡ −1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1p
√

4 · 3` − pn 3`+2(b−1)p2 −2432`+6(b−1)pn+6

B2 −ε · 2 · 3b−1p
√

4 · 3` − pn −32(b−1)pn+2 283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

3. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4pn − 3` is a square,
pn ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1p
√

4pn − 3` 32(b−1)pn+2 −243`+6(b−1)p2n+6

C2 −ε · 2 · 3b−1p
√

4pn − 3` −3`+2(b−1)p2 2832`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 0 such that pn − 4 · 3` is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1p
√

pn − 4 · 3` −3`+2(b−1)p2 2432`+6(b−1)pn+6

D2 −ε · 2 · 3b−1p
√

pn − 4 · 3` 32(b−1)pn+2 −283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

5. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`+1
p is a square,

3`p ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1pt+1
√

4·3`+1
p 3`+2(b−1)p2t+1 2432`+6(b−1)p3+6t

E2 −ε · 2 · 3b−1pt+1
√

4·3`+1
p 32(b−1)p2t+1 283`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.



Chapter 3. Elliptic Curves with 2-torsion and conductor 2α3βpδ 101

6. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`−1
p is a square,

3`p ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1pt+1
√

4·3`−1
p 3`+2(b−1)p2t+1 −2432`+6(b−1)p3+6t

F2 −ε · 2 · 3b−1pt+1
√

4·3`−1
p −32(b−1)p2t+1 2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

7. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4+3`

p is a square,
p ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 ε · 3b−1pt+1
√

4+3`

p 32(b−1)p2t+1 243`+6(b−1)p3+6t

G2 −ε · 2 · 3b−1pt+1
√

4+3`

p 3`+2(b−1)p2t+1 2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

8. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 3`−4
p is a square,

p ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε · 3b−1pt+1
√

3`−4
p −32(b−1)p2t+1 243`+6(b−1)p3+6t

H2 −ε · 2 · 3b−1pt+1
√

3`−4
p 3`+2(b−1)p2t+1 −2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

In the case that b = 2, i.e. N = 2232p2, we furthermore could have one of the
following conditions satisfied:

9. there exist integers n ≥ 0 and s ∈ {0, 1} such that 4pn−1
3 is a square, pn ≡

1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 ε3s+1p
√

4pn−1
3 32s+1pn+2 −2433+6sp2n+6

I2 −ε · 2 · 3s+1p
√

4pn−1
3 −32s+1p2 2833+6spn+6
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where ε ∈ {±1} is the residue of 3s−1p modulo 4.

10. there exists an integers n ≥ 0 and s ∈ {0, 1} such that pn+4
3 is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε3s+1p
√

pn+4
3 32s+1p2 2433+6spn+6

J2 −ε · 2 · 3s+1p
√

pn+4
3 32s+1pn+2 2833+6sp2n+6

where ε ∈ {±1} is the residue of 3s−1p modulo 4.

Theorem 3.24 The elliptic curves E defined over Q, of conductor 233bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2m3`pn + 1 is
a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 ε · 3b−1p
√

2m3`pn + 1 2m−23`+2(b−1)pn+2 22m32`+6(b−1)p2n+6

A2 −ε · 2 · 3b−1p
√

2m3`pn + 1 32(b−1)p2 2m+63`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` + pn is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 −ε · 3b−1p
√

4 · 3` + pn 3`+2(b−1)p2 2432`+6(b−1)pn+6

B2 ε · 2 · 3b−1p
√

4 · 3` + pn 32(b−1)pn+2 283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

3. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 ε · 3b−1p
√

2m3` + pn 2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

C2 −ε · 2 · 3b−1p
√

2m3` + pn 32(b−1)pn+2 2m+63`+6(b−1)p2n+6
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where ε ∈ {±1} is the residue of 3b−1p modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` − pn is a square,
3` ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 −ε · 3b−1p
√

4 · 3` − pn 3`+2(b−1)p2 −2432`+6(b−1)pn+6

D2 ε · 2 · 3b−1p
√

4 · 3` − pn −32(b−1)pn+2 283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

5. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 ε · 3b−1p
√

2m3` − pn 2m−23`+2(b−1)p2 −22m32`+6(b−1)pn+6

E2 −ε · 2 · 3b−1p
√

2m3` − pn −32(b−1)pn+2 2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

6. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 ε · 3b−1p
√

2mpn + 3` 2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

F2 −ε · 2 · 3b−1p
√

2mpn + 3` 3`+2(b−1)p2 2m+632`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

7. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4pn − 3` is a square,
pn ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 −ε · 3b−1p
√

4pn − 3` 32(b−1)pn+2 −243`+6(b−1)p2n+6

G2 ε · 2 · 3b−1p
√

4pn − 3` −3`+2(b−1)p2 2832`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 0 such that 4 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

H1 −ε · 3b−1p
√

4 + 3`pn 32(b−1)p2 243`+6(b−1)pn+6

H2 ε · 2 · 3b−1p
√

4 + 3`pn 3`+2(b−1)pn+2 2832`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

9. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 ε · 3b−1p
√

2m + 3`pn 2m−232(b−1)p2 22m3`+6(b−1)pn+6

I2 −ε · 2 · 3b−1p
√

2m + 3`pn 3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

10. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 ε · 3b−1p
√

2m − 3`pn 2m−232(b−1)p2 −22m3`+6(b−1)pn+6

J2 −ε · 2 · 3b−1p
√

2m − 3`pn −3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

11. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 ε · 3b−1p
√

3`pn − 2m −2m−232(b−1)p2 22m3`+6(b−1)pn+6

K2 −ε · 2 · 3b−1p
√

3`pn − 2m 3`+2(b−1)pn+2 −2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

12. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 ε · 3b−1p
√

3` − 2mpn −2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

L2 −ε · 2 · 3b−1p
√

3` − 2mpn 3`+2(b−1)p2 −2m+632`+6(b−1)pn+6
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where ε ∈ {±1} is the residue of 3b−1p modulo 4.

13. there exist integers ` ≥ 2 − b and n ≥ 1 such that pn − 4 · 3` is a square,
3` ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 −ε · 3b−1p
√

pn − 4 · 3` −3`+2(b−1)p2 2432`+6(b−1)pn+6

M2 ε · 2 · 3b−1p
√

pn − 4 · 3` 32(b−1)pn+2 −283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

14. there exist integers m ∈ {4, 5}, ` ≥ 2− b and n ≥ 0 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 ε · 3b−1p
√

pn − 2m3` −2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

N2 ε · 2 · 3b−1p
√

pn − 2m3` 32(b−1)pn+2 −2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

15. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`+1
p is a square,

3`p ≡ 1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 −ε · 3b−1pt+1
√

4·3`+1
p 3`+2(b−1)p2t+1 2432`+6(b−1)p3+6t

O2 ε · 2 · 3b−1pt+1
√

4·3`+1
p 32(b−1)p2t+1 283`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

16. there exist integers m ∈ {4, 5}, ` ≥ 2− b and t ∈ {0, 1} such that 2m3`+1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 ε · 3b−1pt+1
√

2m3`+1
p 2m−23`+2(b−1)p2t+1 22m32`+6(b−1)p3+6t

P2 −ε · 2 · 3b−1pt+1
√

2m3`+1
p 32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.
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17. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`−1
p is a square,

3`p ≡ 1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 −ε · 3b−1pt+1
√

4·3`−1
p 3`+2(b−1)p2t+1 −2432`+6(b−1)p3+6t

Q2 ε · 2 · 3b−1pt+1
√

4·3`−1
p −32(b−1)p2t+1 283`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

18. there exist integers m ∈ {4, 5}, ` ≥ 2− b and t ∈ {0, 1} such that 2m3`−1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 ε · 3b−1pt+1
√

2m3`−1
p 2m−23`+2(b−1)p2t+1 −22m32`+6(b−1)p3+6t

R2 −ε · 2 · 3b−1pt+1
√

2m3`−1
p −32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

19. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4+3`

p is a square,
p ≡ 1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 −ε · 3b−1pt+1
√

4+3`

p 32(b−1)p2t+1 243`+6(b−1)p3+6t

S2 ε · 2 · 3b−1pt+1
√

4+3`

p 3`+2(b−1)p2t+1 2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

20. there exist integers m ∈ {4, 5}, ` ≥ 2− b and t ∈ {0, 1} such that 2m+3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

T1 ε · 3b−1pt+1
√

2m+3`

p 2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

T2 −ε · 2 · 3b−1pt+1
√

2m+3`

p 3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.
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21. there exist integers m ∈ {4, 5}, ` ≥ 2− b and t ∈ {0, 1} such that 2m−3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 ε · 3b−1pt+1
√

2m−3`

p 2m−232(b−1)p2t+1 −22m3`+6(b−1)p3+6t

U2 −ε · 2 · 3b−1pt+1
√

2m−3`

p −3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

22. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 3`−4
p is a square,

p ≡ −1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

V1 −ε · 3b−1pt+1
√

3`−4
p −32(b−1)p2t+1 2432`+6(b−1)p3+6t

V2 ε · 2 · 3b−1pt+1
√

3`−4
p 3`+2(b−1)p2t+1 −283`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

23. there exist integers m ∈ {4, 5}, ` ≥ 2− b and t ∈ {0, 1} such that 3`−2m

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

W1 ε3b−1pt+1
√

3`−2m

p −2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

W2 −ε2 · 3b−1pt+1
√

3`−2m

p 3`+2(b−1)p2t+1 −2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

In the case that b = 2, i.e. N = 2332p2, we furthermore could have one of the
following conditions satisfied:

24. there exist integers m ∈ {4, 5}, n ≥ 0, and s ∈ {0, 1} such that 2m+pn

3 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

X1 ε · 3s+1p
√

2m+pn

3 2m−232s+1p2 22m33+6spn+6

X2 −ε · 2 · 3s+1p
√

2m+pn

3 32s+1pn+2 2m+633+6sp2n+6
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where ε ∈ {±1} is the residue of 3s+1p modulo 4.

25. there exist integers m ∈ {4, 5}, n ≥ 0, and s ∈ {0, 1} such that 2m−pn

3 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Y1 ε · 3s+1p
√

2m−pn

3 2m−232s+1p2 −22m33+6spn+6

Y2 −ε · 2 · 3s+1p
√

2m−pn

3 −32s+1pn+2 2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

26. there exist integers n ≥ 1 and s ∈ {0, 1} such that 4pn−1
3 is a square, pn ≡

−1 (mod 4) and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Z1 ε · 3s+1p
√

4pn−1
3 32s+1pn+2 −2433+6sp2n+6

Z2 −ε · 2 · 3s+1p
√

4pn−1
3 −32s+1p2 2833+6spn+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

27. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Z1 −ε · 3s+1p
√

pn−4
3 −32s+1p2 2433+6spn+6

Z2 ε · 2 · 3s+1p
√

pn−4
3 32s+1pn+2 −2833+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.

28. there exist integers m ∈ {4, 5}, n ≥ 1, and s ∈ {0, 1} such that pn−2m

3 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

AA1 ε · 3s+1p
√

pn−2m

3 −2m−232s+1p2 22m33+6spn+6

AA2 −ε · 2 · 3s+1p
√

pn−2m

3 32s+1pn+2 −2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3s+1p modulo 4.
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29. there exist integers m ∈ {5}, s ∈ {0, 1} and t ∈ {0, 1} such that 2m+1
3p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

BB1 ε · 3s+1pt+1
√

2m+1
3p 2m−232s+1p2t+1 22m33+6sp3+6t

BB2 −ε · 2 · 3s+1pt+1
√

2m+1
3p 32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3s+1pt+1 modulo 4.

30. there exist integers m ∈ {4}, s ∈ {0, 1} and t ∈ {0, 1} such that 2m−1
3p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

CC1 ε · 3s+1pt+1
√

2m−1
3p 2m−232s+1p2t+1 −22m33+6sp3+6t

CC2 −ε · 2 · 3s+1pt+1
√

2m−1
3p −32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3s+1pt+1 modulo 4.

Theorem 3.25 The elliptic curves E defined over Q, of conductor 243bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 −ε · 3b−1p
√

2m3`pn + 1 2m−23`+2(b−1)pn+2 22m32`+6(b−1)p2n+6

A2 ε · 2 · 3b−1p
√

2m3`pn + 1 32(b−1)p2 2m+63`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

2. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

B1 ε · 3b−1p
√

4 · 3` + pn 3`+2(b−1)p2 2432`+6(b−1)pn+6

B2 −ε · 2 · 3b−1p
√

4 · 3` + pn 32(b−1)pn+2 283`+6(b−1)p2n+6
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where ε ∈ {±1} is the residue of 3`+b−1p modulo 4.

3. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 −ε · 3b−1p
√

2m3` + pn 2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

C2 ε · 2 · 3b−1p
√

2m3` + pn 32(b−1)pn+2 2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

4. there exist integers ` ≥ 2 − b and n ≥ 0 such that 4 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

D1 ε · 3b−1p
√

4 · 3` − pn 3`+2(b−1)p2 −2432`+6(b−1)pn+6

D2 −ε · 2 · 3b−1p
√

4 · 3` − pn −32(b−1)pn+2 283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3`+b−1p modulo 4.

5. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

E1 −ε · 3b−1p
√

2m3` − pn 2m−23`+2(b−1)p2 −22m32`+6(b−1)pn+6

E2 ε · 2 · 3b−1p
√

2m3` − pn −32(b−1)pn+2 2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

6. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

F1 −ε · 3b−1p
√

2mpn + 3` 2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

F2 ε · 2 · 3b−1p
√

2mpn + 3` 3`+2(b−1)p2 2m+632`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

7. there exist integers ` ≥ 2− b and n ≥ 0 such that 4pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

G1 ε · 3b−1p
√

4pn − 3` 32(b−1)pn+2 −243`+6(b−1)p2n+6

G2 −ε · 2 · 3b−1p
√

4pn − 3` −3`+2(b−1)p2 2832`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1pn+1 modulo 4.

8. there exist integers ` ≥ 2− b and n ≥ 0 such that 4 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

H1 ε · 3b−1p
√

4 + 3`pn 32(b−1)p2 243`+6(b−1)pn+6

H2 −ε · 2 · 3b−1p
√

4 + 3`pn 3`+2(b−1)pn+2 2832`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

9. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 −ε · 3b−1p
√

2m + 3`pn 2m−232(b−1)p2 22m3`+6(b−1)pn+6

I2 ε · 2 · 3b−1p
√

2m + 3`pn 3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

10. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

J1 −ε · 3b−1p
√

2m − 3`pn 2m−232(b−1)p2 −22m3`+6(b−1)pn+6

J2 ε · 2 · 3b−1p
√

2m − 3`pn −3`+2(b−1)pn+2 2m+632`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

11. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 −ε · 3b−1p
√

3`pn − 2m −2m−232(b−1)p2 22m3`+6(b−1)pn+6

K2 ε · 2 · 3b−1p
√

3`pn − 2m 3`+2(b−1)pn+2 −2m+632`+6(b−1)p2n+6
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where ε ∈ {±1} is the residue of 3b−1p modulo 4.

12. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 −ε · 3b−1p
√

3` − 2mpn −2m−232(b−1)pn+2 22m3`+6(b−1)p2n+6

L2 ε · 2 · 3b−1p
√

3` − 2mpn 3`+2(b−1)p2 −2m+632`+6(b−1)pn+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

13. there exist integers ` ≥ 2 − b and n ≥ 0 such that pn − 4 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 ε · 3b−1p
√

pn − 4 · 3` −3`+2(b−1)p2 2432`+6(b−1)pn+6

M2 −ε · 2 · 3b−1p
√

pn − 4 · 3` 32(b−1)pn+2 −283`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3`+bp modulo 4.

14. there exist integers m ≥ 4, ` ≥ 2 − b, and n ≥ 0 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 −ε · 3b−1p
√

pn − 2m3` −2m−23`+2(b−1)p2 22m32`+6(b−1)pn+6

N2 ε · 2 · 3b−1p
√

pn − 2m3` 32(b−1)pn+2 −2m+63`+6(b−1)p2n+6

where ε ∈ {±1} is the residue of 3b−1p modulo 4.

15. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`+1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 ε · 3b−1pt+1
√

4·3`+1
p 2m3`+2(b−1)p2t+1 2432`+6(b−1)p3+6t

O2 −ε · 2 · 3b−1pt+1
√

4·3`+1
p 32(b−1)p2t+1 2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3`+b−1pt modulo 4.
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16. there exist integers m ≥ 4, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`+1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 −ε · 3b−1pt+1
√

2m3`+1
p 2m3`+2(b−1)p2t+1 22m32`+6(b−1)p3+6t

P2 ε · 2 · 3b−1pt+1
√

2m3`+1
p 32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

17. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 4·3`−1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 ε · 3b−1pt+1
√

4·3`−1
p 2m3`+2(b−1)p2t+1 −2432`+6(b−1)p3+6t

Q2 −ε · 2 · 3b−1pt+1
√

4·3`−1
p −32(b−1)p2t+1 283`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3`+b−1pt modulo 4.

18. there exist integers m ≥ 4, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`−1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 −ε · 3b−1pt+1
√

2m3`−1
p 2m3`+2(b−1)p2t+1 −22m32`+6(b−1)p3+6t

R2 ε · 2 · 3b−1pt+1
√

2m3`−1
p −32(b−1)p2t+1 2m+63`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

19. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 4+3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 ε · 3b−1pt+1
√

4+3`

p 32(b−1)p2t+1 243`+6(b−1)p3+6t

S2 −ε · 2 · 3b−1pt+1
√

4+3`

p 3`+2(b−1)p2t+1 2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt modulo 4.
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20. there exist integers m ≥ 4, ` ≥ 2 − b and t ∈ {0, 1} such that 2m+3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

T1 −ε · 3b−1pt+1
√

2m+3`

p 2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

T2 ε · 2 · 3b−1pt+1
√

2m+3`

p 3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

21. there exist integers m ≥ 4, ` ≥ 2 − b and t ∈ {0, 1} such that 2m−3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 −ε · 3b−1pt+1
√

2m−3`

p 2m−232(b−1)p2t+1 −22m3`+6(b−1)p3+6t

U2 ε · 2 · 3b−1pt+1
√

2m−3`

p −3`+2(b−1)p2t+1 2m+632`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

22. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`−4
p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

V1 ε · 3b−1pt+1
√

3`−4
p −32(b−1)p2t+1 243`+6(b−1)p3+6t

V2 −ε · 2 · 3b−1pt+1
√

3`−4
p 3`+2(b−1)p2t+1 −2832`+6(b−1)p3+6t

where ε ∈ {±1} is the residue of 3bpt modulo 4.

23. there exist integers m ≥ 4, ` ≥ 2 − b and t ∈ {0, 1} such that 3`−2m

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

W1 −ε · 3b−1pt+1
√

3`−2m

p −2m−232(b−1)p2t+1 22m3`+6(b−1)p3+6t

W2 ε · 2 · 3b−1pt+1
√

3`−2m

p 3`+2(b−1)p2t+1 −2m+632`+6(b−1)p3+6t
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where ε ∈ {±1} is the residue of 3b−1pt+1 modulo 4.

In the case that b = 2, i.e. N = 2432p2, we furthermore could have one of the
following conditions satisfied:

24. there exist integers n ≥ 0 and s ∈ {0, 1} such that 4pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

X1 ε · 3s+1p
√

4pn−1
3 32s+1pn+2 −2433+6sp2n+6

X2 −ε · 2 · 3s+1p
√

4pn−1
3 −32s+1p2 2833+6spn+6

where ε ∈ {±1} is the residue of 3spn+1 modulo 4.

25. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Y1 ε · 3s+1p
√

pn+4
3 32s+1p2 2433+6spn+6

Y2 −ε · 2 · 3s+1p
√

pn+4
3 32s+1pn+2 2833+6sp2n+6

where ε ∈ {±1} is the residue of 3sp modulo 4.

26. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that 2m+pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Z1 ε · 3s+1p
√

2m+pn

3 2m−232s+1p2 22m33+6spn+6

Z2 −ε · 2 · 3s+1p
√

2m+pn

3 32s+1pn+2 2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3sp modulo 4.

27. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

AA1 ε · 3s+1p
√

2m−pn

3 2m−232s+1p2 −22m33+6spn+6

AA2 −ε · 2 · 3s+1p
√

2m−pn

3 −32s+1pn+2 2m+633+6sp2n+6
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where ε ∈ {±1} is the residue of 3sp modulo 4.

28. there exist integer n ≥ 1 and s ∈ {0, 1} such that pn−4
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

BB1 −ε · 3s+1p
√

pn−4
3 −32s+1p2 2433+6spn+6

BB2 ε · 2 · 3s+1p
√

pn−4
3 32s+1pn+2 −2833+6sp2n+6

where ε ∈ {±1} is the residue of 3sp modulo 4.

29. there exist integers m ≥ 4, n ≥ 1 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

CC1 ε · 3s+1p
√

pn−2m

3 −2m−232s+1p2 22m33+6spn+6

CC2 −ε · 2 · 3s+1p
√

pn−2m

3 32s+1pn+2 −2m+633+6sp2n+6

where ε ∈ {±1} is the residue of 3sp modulo 4.

30. there exist integers m ≥ 4 and s, t ∈ {0, 1} such that 2m+1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

DD1 ε · 3s+1pt+1
√

2m+1
3p 2m−232s+1p2t+1 22m33+6sp3+6t

DD2 −ε · 2 · 3s+1pt+1
√

2m+1
3p 32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3spt+1 modulo 4.

31. there exist integers m ≥ 4 and s, t ∈ {0, 1} such that 2m−1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

EE1 ε · 3s+1pt+1
√

2m−1
3p 2m−232s+1p2t+1 −22m33+6sp3+6t

EE2 −ε · 2 · 3s+1pt+1
√

2m−1
3p −32s+1p2t+1 2m+633+6sp3+6t

where ε ∈ {±1} is the residue of 3spt+1 modulo 4.
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Theorem 3.26 The elliptic curves E defined over Q, of conductor 253bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`pn + 1 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2 · 3b−1p
√

3`pn + 1 3`+2(b−1)pn+2 2632`+6(b−1)p2n+6

A2 −4 · 3b−1p
√

3`pn + 1 4 · 32(b−1)p2 2123`+6(b−1)pn+6

A1’ −2 · 3b−1p
√

3`pn + 1 3`+2(b−1)pn+2 2632`+6(b−1)p2n+6

A2’ 4 · 3b−1p
√

3`pn + 1 4 · 32(b−1)p2 2123`+6(b−1)pn+6

2. there exist integers ` ≥ 1 and n ≥ 0 such that 3` + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

B1 2 · 3b−1p
√

3` + pn 32(b−1)pn+2 263`+6(b−1)p2n+6

B2 −4 · 3b−1p
√

3` + pn 4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

B1’ −2 · 3b−1p
√

3` + pn 32(b−1)pn+2 263`+6(b−1)p2n+6

B2’ 4 · 3b−1p
√

3` + pn 4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

(b) ` is odd;

a2 a4 ∆

C1 2 · 3b−1p
√

3` + pn 3`+2(b−1)p2 2632`+6(b−1)pn+6

C2 −4 · 3b−1p
√

3` + pn 4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

C1’ −2 · 3b−1p
√

3` + pn 3`+2(b−1)p2 2632`+6(b−1)pn+6

C2’ 4 · 3b−1p
√

3` + pn 4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

3. there exist integers ` ≥ 1 and n ≥ 0 such that 3` − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

D1 2 · 3b−1p
√

3` − pn −32(b−1)pn+2 263`+6(b−1)p2n+6

D2 −4 · 3b−1p
√

3` − pn 4 · 3`+2(b−1)p2 −21232`+6(b−1)pn+6

D1’ −2 · 3b−1p
√

3` − pn −32(b−1)pn+2 263`+6(b−1)p2n+6

D2’ 4 · 3b−1p
√

3` − pn 4 · 3`+2(b−1)p2 −21232`+6(b−1)pn+6
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(b) ` is odd;

a2 a4 ∆

E1 2 · 3b−1p
√

3` − pn 3`+2(b−1)p2 −2632`+6(b−1)pn+6

E2 −4 · 3b−1p
√

3` − pn −4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

E1’ −2 · 3b−1p
√

3` − pn 3`+2(b−1)p2 −2632`+6(b−1)pn+6

E2’ 4 · 3b−1p
√

3` − pn −4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

4. there exist integers ` ≥ 2− b and n ≥ 0 such that pn − 3` is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

F1 2 · 3b−1p
√

pn − 3` −3`+2(b−1)p2 2632`+6(b−1)pn+6

F2 −4 · 3b−1p
√

pn − 3` 4 · 32(b−1)pn+2 −2123`+6(b−1)p2n+6

F1’ −2 · 3b−1p
√

pn − 3` −3`+2(b−1)p2 2632`+6(b−1)pn+6

F2’ 4 · 3b−1p
√

pn − 3` 4 · 32(b−1)pn+2 −2123`+6(b−1)p2n+6

(b) ` is odd;

a2 a4 ∆

G1 2 · 3b−1p
√

pn − 3` 32(b−1)pn+2 −263`+6(b−1)p2n+6

G2 −4 · 3b−1p
√

pn − 3` −4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

G1’ −2 · 3b−1p
√

pn − 3` 32(b−1)pn+2 −263`+6(b−1)p2n+6

G2’ 4 · 3b−1p
√

pn − 3` −4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

5. there exist integers ` ≥ 1 and t ∈ {0, 1} such that 3`+1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

(a) p ≡ 1 (mod 4);

a2 a4 ∆

H1 2 · 3b−1pt+1
√

3`+1
p 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

H2 −4 · 3b−1pt+1
√

3`+1
p 4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

H1’ −2 · 3b−1pt+1
√

3`+1
p 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

H2’ 4 · 3b−1pt+1
√

3`+1
p 4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

(b) p ≡ −1 (mod 4);
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a2 a4 ∆

I1 2 · 3b−1pt+1
√

3`+1
p 32(b−1)p2t+1 263`+6(b−1)p3+6t

I2 −4 · 3b−1pt+1
√

3`+1
p 4 · 3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

I1’ −2 · 3b−1pt+1
√

3`+1
p 32(b−1)p2t+1 263`+6(b−1)p3+6t

I2’ 4 · 3b−1pt+1
√

3`+1
p 4 · 3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

6. there exist integers ` ≥ 1 and t ∈ {0, 1} such that 3`−1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

(a) p ≡ 1 (mod 4);

a2 a4 ∆

J1 2 · 3b−1pt+1
√

3`−1
p −32(b−1)p2t+1 263`+6(b−1)p3+6t

J2 −4 · 3b−1pt+1
√

3`−1
p 4 · 3`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

J1’ −2 · 3b−1pt+1
√

3`−1
p −32(b−1)p2t+1 263`+6(b−1)p3+6t

J2’ 4 · 3b−1pt+1
√

3`−1
p 4 · 3`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

(b) p ≡ −1 (mod 4);

a2 a4 ∆

K1 2 · 3b−1pt+1
√

3`−1
p 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

K2 −4 · 3b−1pt+1
√

3`−1
p −4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

K1’ −2 · 3b−1pt+1
√

3`−1
p 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

K2’ 4 · 3b−1pt+1
√

3`−1
p −4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

7. there exist integers ` ≥ 2− b and n ≥ 0 such that 8 · 3`pn + 1 is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

L1 3b−1p
√

8 · 3`pn + 1 2 · 3`+2(b−1)pn+2 2632`+6(b−1)p2n+6

L2 −2 · 3b−1p
√

8 · 3`pn + 1 32(b−1)p2 293`+6(b−1)pn+6

L1’ −3b−1p
√

8 · 3`pn + 1 2 · 3`+2(b−1)pn+2 2632`+6(b−1)p2n+6

L2’ 2 · 3b−1p
√

8 · 3`pn + 1 32(b−1)p2 293`+6(b−1)pn+6

8. there exist integers ` ≥ 2 − b and n ≥ 0 such that 8 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

M1 3b−1p
√

8 · 3` + pn 2 · 3`+2(b−1)p2 2632`+6(b−1)pn+6

M2 −2 · 3b−1p
√

8 · 3` + pn 32(b−1)pn+2 293`+6(b−1)p2n+6

M1’ −3b−1p
√

8 · 3` + pn 2 · 3`+2(b−1)p2 2632`+6(b−1)pn+6

M2’ 2 · 3b−1p
√

8 · 3` + pn 32(b−1)pn+2 293`+6(b−1)p2n+6

9. there exist integers ` ≥ 2 − b and n ≥ 0 such that 8 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 3b−1p
√

8 · 3` − pn 2 · 3`+2(b−1)p2 −2632`+6(b−1)pn+6

N2 −2 · 3b−1p
√

8 · 3` − pn −32(b−1)pn+2 293`+6(b−1)p2n+6

N1’ −3b−1p
√

8 · 3` − pn 2 · 3`+2(b−1)p2 −2632`+6(b−1)pn+6

N2’ 2 · 3b−1p
√

8 · 3` − pn −32(b−1)pn+2 293`+6(b−1)p2n+6

10. there exist integers ` ≥ 2− b and n ≥ 0 such that 8pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 3b−1p
√

8pn + 3` 2 · 32(b−1)pn+2 263`+6(b−1)p2n+6

O2 −2 · 3b−1p
√

8pn + 3` 3`+2(b−1)p2
2932`+6(b−1)pn+6

O1’ −3b−1p
√

8pn + 3` 2 · 32(b−1)pn+2 263`+6(b−1)p2n+6

O2’ 2 · 3b−1p
√

8pn + 3` 3`+2(b−1)p2
2932`+6(b−1)pn+6

11. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`pn − 8 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

P1 3b−1p
√

3`pn − 8 −2 · 32(b−1)p2 263`+6(b−1)pn+6

P2 −2 · 3b−1p
√

3`pn − 8 3`+2(b−1)pn+2 −2932`+6(b−1)p2n+6

P1’ −3b−1p
√

3`pn − 8 −2 · 32(b−1)p2 263`+6(b−1)pn+6

P2’ 2 · 3b−1p
√

3`pn − 8 3`+2(b−1)pn+2 −2932`+6(b−1)p2n+6

12. there exist integers ` ≥ 1 and n ≥ 0 such that 3` − 8pn is a square and E is
Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

Q1 3b−1p
√

3` − 8pn −2 · 32(b−1)pn+2 263`+6(b−1)p2n+6

Q2 −2 · 3b−1p
√

3` − 8pn 3`+2(b−1)p2 −2932`+6(b−1)pn+6

Q1’ −3b−1p
√

3` − 8pn −2 · 32(b−1)pn+2 263`+6(b−1)p2n+6

Q2’ 2 · 3b−1p
√

3` − 8pn 3`+2(b−1)p2 −2932`+6(b−1)pn+6

13. there exist integers ` ≥ 2 − b and n ≥ 0 such that pn − 8 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 3b−1p
√

pn − 8 · 3` −2 · 3`+2(b−1)p2 2632`+6(b−1)pn+6

R2 −2 · 3b−1p
√

pn − 8 · 3` 32(b−1)pn+2 −293`+6(b−1)p2n+6

R1’ −3b−1p
√

pn − 8 · 3` −2 · 3`+2(b−1)p2 2632`+6(b−1)pn+6

R2’ 2 · 3b−1p
√

pn − 8 · 3` 32(b−1)pn+2 −293`+6(b−1)p2n+6

14. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 8·3`+1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 3b−1pt+1
√

8·3`+1
p 2 · 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

S2 −2 · 3b−1pt+1
√

8·3`+1
p 32(b−1)p2t+1 293`+6(b−1)p3+6t

S1’ −3b−1pt+1
√

8·3`+1
p 2 · 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

S2’ 2 · 3b−1pt+1
√

8·3`+1
p 32(b−1)p2t+1 293`+6(b−1)p3+6t

15. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 8·3`−1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

T1 3b−1pt+1
√

8·3`−1
p 2 · 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

T2 −2 · 3b−1pt+1
√

8·3`−1
p −32(b−1)p2t+1 293`+6(b−1)p3+6t

T1’ −3b−1pt+1
√

8·3`−1
p 2 · 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

T2’ 2 · 3b−1pt+1
√

8·3`−1
p −32(b−1)p2t+1 293`+6(b−1)p3+6t

16. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 8+3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

U1 3b−1pt+1
√

8+3`

p 2 · 32(b−1)p2t+1 263`+6(b−1)p3+6t

U2 −2 · 3b−1pt+1
√

8+3`

p 3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

U1’ −3b−1pt+1
√

8+3`

p 2 · 32(b−1)p2t+1 263`+6(b−1)p3+6t

U2’ 2 · 3b−1pt+1
√

8+3`

p 3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

17. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 8−3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

V1 3b−1pt+1
√

8−3`

p 2 · 32(b−1)p2t+1 −263`+6(b−1)p3+6t

V2 −2 · 3b−1pt+1
√

8−3`

p −3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

V1’ −3b−1pt+1
√

8−3`

p 2 · 32(b−1)p2t+1 −263`+6(b−1)p3+6t

V2’ 2 · 3b−1pt+1
√

8−3`

p −3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

18. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`−8
p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

W1 3b−1pt+1
√

3`−8
p −2 · 32(b−1)p2t+1 263`+6(b−1)p3+6t

W2 −2 · 3b−1pt+1
√

3`−8
p 3`+2(b−1)p2t+1 −2932`+6(b−1)p3+6t

W1’ −3b−1pt+1
√

3`−8
p −2 · 32(b−1)p2t+1 263`+6(b−1)p3+6t

W2’ 2 · 3b−1pt+1
√

3`−8
p 3`+2(b−1)p2t+1 −2932`+6(b−1)p3+6t

In the case that b = 2, i.e. N = 2532p2, we furthermore could have one of the
following conditions satisfied:

19. there exist integers n ≥ 0 and s ∈ {0, 1} such that pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

X1 2 · 3s+1p
√

pn+1
3 32s+1p2 2633+6spn+6

X2 −4 · 3s+1p
√

pn+1
3 4 · 32s+1pn+2 21233+6sp2n+6

X1’ −2 · 3s+1p
√

pn+1
3 32s+1p2 2633+6spn+6

X2’ 4 · 3s+1p
√

pn+1
3 4 · 32s+1pn+2 21233+6sp2n+6

20. there exist integers n ≥ 0 and s ∈ {0, 1} such that pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Y1 2 · 3s+1p
√

pn−1
3 32s+1pn+2 −2633+6sp2n+6

Y2 −4 · 3s+1p
√

pn−1
3 −4 · 32s+1p2 21233+6spn+6

Y1’ −2 · 3s+1p
√

pn−1
3 32s+1pn+2 −2633+6sp2n+6

Y2’ 4 · 3s+1p
√

pn−1
3 −4 · 32s+1p2 21233+6spn+6

21. there exist integers s, t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

(a) p ≡ 1 (mod 4):

a2 a4 ∆

Z1 0 32s+1p2t+1 −2633+6sp3+6t

Z2 0 −4 · 32s+1p2t+1 21233+6sp3+6t

(b) p ≡ −1 (mod 4):

a2 a4 ∆

AA1 0 −32s+1p2t+1 2633+6sp3+6t

AA2 0 4 · 32s+1p2t+1 −21233+6spn+6

22. E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

BB1 0 −32(b−1)p2 2636(b−1)p6

BB2 0 4 · 32(b−1)p2 −21236(b−1)p6

23. there exists an integer t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:
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(a) p ≡ 1 (mod 4):

a2 a4 ∆

CC1 0 −32(b−1)p2t+1 2636(b−1)p3+6t

CC2 0 4 · 32(b−1)p2t+1 −21236(b−1)p3+6t

(b) p ≡ −1 (mod 4):

a2 a4 ∆

DD1 0 32(b−1)p2t+1 −2636(b−1)p3+6t

DD2 0 −4 · 32(b−1)p2t+1 21236(b−1)p3+6t

24. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+8
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

EE1 3s+1p
√

pn+8
3 2 · 32s+1p2 2633+6spn+6

EE2 −2 · 3s+1p
√

pn+8
3 32s+1pn+2 2933+6sp2n+6

EE1’ −3s+1p
√

pn+8
3 2 · 32s+1p2 2633+6spn+6

EE2’ 2 · 3s+1p
√

pn+8
3 32s+1pn+2 2933+6sp2n+6

25. there exist integers n ≥ 1 and s ∈ {0, 1} such that 8−pn

3 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

FF1 3s+1p
√

8−pn

3 2 · 32s+1p2 −2633+6spn+6

FF2 −2 · 3s+1p
√

8−pn

3 −32s+1pn+2 2933+6sp2n+6

FF1’ −3s+1p
√

8−pn

3 2 · 32s+1p2 −2633+6spn+6

FF2’ 2 · 3s+1p
√

8−pn

3 −32s+1pn+2 2933+6sp2n+6

26. there exists an integer n ≥ 1 and s ∈ {0, 1} such that pn−8
3 is a square and E

is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

GG1 3s+1p
√

pn−8
3 −2 · 32s+1p2 2633+6spn+6

GG2 −2 · 3s+1p
√

pn−8
3 32s+1pn+2 −2933+6sp2n+6

GG1’ −3s+1p
√

pn−8
3 −2 · 32s+1p2 2633+6spn+6

GG2’ 2 · 3s+1p
√

pn−8
3 32s+1pn+2 −2933+6sp2n+6

Theorem 3.27 The elliptic curves E defined over Q, of conductor 263bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`pn + 1 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2 · 3b−1p
√

3`pn + 1 32(b−1)p2 263`+6(b−1)pn+6

A2 −4 · 3b−1p
√

3`pn + 1 4 · 3`+2(b−1)pn+2 21232`+6(b−1)p2n+6

A1’ −2 · 3b−1p
√

3`pn + 1 32(b−1)p2 263`+6(b−1)pn+6

A2’ 4 · 3b−1p
√

3`pn + 1 4 · 3`+2(b−1)pn+2 21232`+6(b−1)p2n+6

2. there exist integers ` ≥ 1 and n ≥ 0 such that 3` + pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

B1 2 · 3b−1p
√

3` + pn 3`+2(b−1)p2 2632`+6(b−1)pn+6

B2 −4 · 3b−1p
√

3` + pn 4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

B1’ −2 · 3b−1p
√

3` + pn 32(b−1)p2 2632`+6(b−1)pn+6

B2’ 4 · 3b−1p
√

3` + pn 4 · 3`+2(b−1)pn+2 2123`+6(b−1)p2n+6

(b) ` is odd;

a2 a4 ∆

C1 2 · 3b−1p
√

3` + pn 32(b−1)pn+2 263`+6(b−1)p2n+6

C2 −4 · 3b−1p
√

3` + pn 4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

C1’ −2 · 3b−1p
√

3` + pn 32(b−1)pn+2 263`+6(b−1)p2n+6

C2’ 4 · 3b−1p
√

3` + pn 4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6
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3. there exist integers ` ≥ 1 and n ≥ 0 such that 3` − pn is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

D1 2 · 3b−1p
√

3` − pn 3`+2(b−1)p2 −2632`+6(b−1)pn+6

D2 −4 · 3b−1p
√

3` − pn −4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

D1’ −2 · 3b−1p
√

3` − pn 3`+2(b−1)p2 −2632`+6(b−1)pn+6

D2’ 4 · 3b−1p
√

3` − pn −4 · 32(b−1)pn+2 2123`+6(b−1)p2n+6

(b) ` is odd;

a2 a4 ∆

E1 2 · 3b−1p
√

3` − pn −32(b−1)pn+2 263`+6(b−1)p2n+6

E2 −4 · 3b−1p
√

3` − pn 4 · 3`+2(b−1)p2 −21232`+6(b−1)pn+6

E1’ −2 · 3b−1p
√

3` − pn −32(b−1)pn+2 263`+6(b−1)p2n+6

E2’ 4 · 3b−1p
√

3` − pn 4 · 3`+2(b−1)p2 −21232`+6(b−1)pn+6

4. there exist integers ` ≥ 2− b and n ≥ 0 such that pn − 3` is a square and E is
Q-isomorphic to one of the elliptic curves:

(a) ` is even;

a2 a4 ∆

F1 2 · 3b−1p
√

pn − 3` 32(b−1)pn+2 −263`+6(b−1)p2n+6

F2 −4 · 3b−1p
√

pn − 3` −4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

F1’ −2 · 3b−1p
√

pn − 3` 32(b−1)pn+2 −263`+6(b−1)p2n+6

F2’ 4 · 3b−1p
√

pn − 3` −4 · 3`+2(b−1)p2 21232`+6(b−1)pn+6

(b) ` is odd;

a2 a4 ∆

G1 2 · 3b−1p
√

pn − 3` −3`+2(b−1)p2 2632`+6(b−1)pn+6

G2 −4 · 3b−1p
√

pn − 3` 4 · 32(b−1)pn+2 −2123`+6(b−1)p2n+6

G1’ −2 · 3b−1p
√

pn − 3` −3`+2(b−1)p2 2632`+6(b−1)pn+6

G2’ 4 · 3b−1p
√

pn − 3` 4 · 32(b−1)pn+2 −2123`+6(b−1)p2n+6

5. there exist integers ` ≥ 1 and t ∈ {0, 1} such that 3`+1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

(a) p ≡ 1 (mod 4);
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a2 a4 ∆

H1 2 · 3b−1pt+1
√

3`+1
p 32(b−1)p2t+1 263`+6(b−1)p3+6t

H2 −4 · 3b−1pt+1
√

3`+1
p 4 · 3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

H1’ −2 · 3b−1pt+1
√

3`+1
p 32(b−1)p2t+1 263`+6(b−1)p3+6t

H2’ 4 · 3b−1pt+1
√

3`+1
p 4 · 3`+2(b−1)p2t+1 21232`+6(b−1)p3+6t

(b) p ≡ −1 (mod 4);

a2 a4 ∆

I1 2 · 3b−1pt+1
√

3`+1
p 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

I2 −4 · 3b−1pt+1
√

3`+1
p 4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

I1’ −2 · 3b−1pt+1
√

3`+1
p 3`+2(b−1)p2t+1 2632`+6(b−1)p3+6t

I2’ 4 · 3b−1pt+1
√

3`+1
p 4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

6. there exist integers ` ≥ 1 and t ∈ {0, 1} such that 3`−1
p is a square and E is

Q-isomorphic to one of the elliptic curves:

(a) p ≡ 1 (mod 4);

a2 a4 ∆

J1 2 · 3b−1pt+1
√

3`−1
p 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

J2 −4 · 3b−1pt+1
√

3`−1
p −4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

J1’ −2 · 3b−1pt+1
√

3`−1
p 3`+2(b−1)p2t+1 −2632`+6(b−1)p3+6t

J2’ 4 · 3b−1pt+1
√

3`−1
p −4 · 32(b−1)p2t+1 2123`+6(b−1)p3+6t

(b) p ≡ −1 (mod 4);

a2 a4 ∆

K1 2 · 3b−1pt+1
√

3`−1
p −32(b−1)p2t+1 263`+6(b−1)p3+6t

K2 −4 · 3b−1pt+1
√

3`−1
p 4 · 3`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

K1’ −2 · 3b−1pt+1
√

3`−1
p −32(b−1)p2t+1 263`+6(b−1)p3+6t

K2’ 4 · 3b−1pt+1
√

3`−1
p 4 · 3`+2(b−1)p2t+1 −21232`+6(b−1)p3+6t

7. there exist integers m ≥ 3, ` ≥ 2 − b and n ≥ 0 such that 2m3`pn + 1 is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

L1 2 · 3b−1p
√

2m3`pn + 1 2m3`+2(b−1)pn+2 22m+632`+6(b−1)p2n+6

L2 −4 · 3b−1p
√

2m3`pn + 1 4 · 32(b−1)p2 2m+123`+6(b−1)pn+6

L1’ −2 · 3b−1p
√

2m3`pn + 1 2m3`+2(b−1)pn+2 22m+632`+6(b−1)p2n+6

L2’ 4 · 3b−1p
√

2m3`pn + 1 4 · 32(b−1)p2 2m+123`+6(b−1)pn+6

8. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 2m3` + pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 2 · 3b−1p
√

2m3` + pn 2m3`+2(b−1)p2 22m+632`+6(b−1)pn+6

M2 −4 · 3b−1p
√

2m3` + pn 4 · 32(b−1)pn+2 2m+123`+6(b−1)p2n+6

M1’ −2 · 3b−1p
√

2m3` + pn 2m3`+2(b−1)p2 22m+632`+6(b−1)pn+6

M2’ 4 · 3b−1p
√

2m3` + pn 4 · 32(b−1)pn+2 2m+123`+6(b−1)p2n+6

9. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 2m3` − pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

N1 2 · 3b−1p
√

2m3` − pn 2m3`+2(b−1)p2 −22m+632`+6(b−1)pn+6

N2 −4 · 3b−1p
√

2m3` − pn −4 · 32(b−1)pn+2 2m+123`+6(b−1)p2n+6

N1’ −2 · 3b−1p
√

2m3` − pn 2m3`+2(b−1)p2 −22m+632`+6(b−1)pn+6

N2’ 4 · 3b−1p
√

2m3` − pn −4 · 32(b−1)pn+2 2m+123`+6(b−1)p2n+6

10. there exist integers m ≥ 3, ` ≥ 2 − b and n ≥ 0 such that 2mpn + 3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

O1 2 · 3b−1p
√

2mpn + 3` 2m32(b−1)pn+2 22m+63`+6(b−1)p2n+6

O2 −4 · 3b−1p
√

2mpn + 3` 4 · 3`+2(b−1)p2 2m+1232`+6(b−1)pn+6

O1’ −2 · 3b−1p
√

2mpn + 3` 2m32(b−1)pn+2 22m+63`+6(b−1)p2n+6

O2’ 4 · 3b−1p
√

2mpn + 3` 4 · 3`+2(b−1)p2 2m+1232`+6(b−1)pn+6

11. there exist integers ` ≥ 2− b and n ≥ 0 such that 4pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

P1 2 · 3b−1p
√

4pn − 3` 4 · 32(b−1)pn+2 −2103`+6(b−1)p2n+6

P2 −4 · 3b−1p
√

4pn − 3` −4 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

P1’ −2 · 3b−1p
√

4pn − 3` 4 · 32(b−1)pn+2 −2103`+6(b−1)p2n+6

P2’ 4 · 3b−1p
√

4pn − 3` −4 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

12. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 2m + 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 2 · 3b−1p
√

2m + 3`pn 2m32(b−1)p2 22m+63`+6(b−1)pn+6

Q2 −4 · 3b−1p
√

2m + 3`pn 4 · 3`+2(b−1)pn+2 2m+1232`+6(b−1)p2n+6

Q1’ −2 · 3b−1p
√

2m + 3`pn 2m32(b−1)p2 22m+63`+6(b−1)pn+6

Q2’ 4 · 3b−1p
√

2m + 3`pn 4 · 3`+2(b−1)pn+2 2m+1232`+6(b−1)p2n+6

13. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 2m − 3`pn is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

R1 2 · 3b−1p
√

2m − 3`pn 2m32(b−1)p2 −22m+63`+6(b−1)pn+6

R2 −4 · 3b−1p
√

2m − 3`pn −4 · 3`+2(b−1)pn+2 2m+1232`+6(b−1)p2n+6

R1’ −2 · 3b−1p
√

2m − 3`pn 2m32(b−1)p2 −22m+63`+6(b−1)pn+6

R2’ 4 · 3b−1p
√

2m − 3`pn −4 · 3`+2(b−1)pn+2 2m+1232`+6(b−1)p2n+6

14. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 3`pn − 2m is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

S1 2 · 3b−1p
√

3`pn − 2m −2m32(b−1)p2 22m+63`+6(b−1)pn+6

S2 −4 · 3b−1p
√

3`pn − 2m 4 · 3`+2(b−1)pn+2 −2m+1232`+6(b−1)p2n+6

S1’ −2 · 3b−1p
√

3`pn − 2m −2m32(b−1)p2 22m+63`+6(b−1)pn+6

S2’ 4 · 3b−1p
√

3`pn − 2m 4 · 3`+2(b−1)pn+2 −2m+1232`+6(b−1)p2n+6

15. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that 3` − 2mpn is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

T1 2 · 3b−1p
√

3` − 2mpn −2m32(b−1)pn+2 22m+63`+6(b−1)p2n+6

T2 −4 · 3b−1p
√

3` − 2mpn 4 · 3`+2(b−1)p2 −2m+1232`+6(b−1)pn+6

T1’ −2 · 3b−1p
√

3` − 2mpn −2m32(b−1)pn+2 22m+63`+6(b−1)p2n+6

T2’ 4 · 3b−1p
√

3` − 2mpn 4 · 3`+2(b−1)p2 −2m+1232`+6(b−1)pn+6

16. there exist integers m ≥ 2, ` ≥ 2 − b and n ≥ 0 such that pn − 2m3` is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 2 · 3b−1p
√

pn − 2m3` −2m3`+2(b−1)p2 22m+632`+6(b−1)pn+6

U2 −4 · 3b−1p
√

pn − 2m3` 4 · 32(b−1)pn+2 −2m+123`+6(b−1)p2n+6

U1’ −2 · 3b−1p
√

pn − 2m3` −2m3`+2(b−1)p2 22m+632`+6(b−1)pn+6

U2’ 4 · 3b−1p
√

pn − 2m3` 4 · 32(b−1)pn+2 −2m+123`+6(b−1)p2n+6

17. there exist integers m ≥ 2, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`+1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

V1 2 · 3b−1pt+1
√

2m3`+1
p 2m3`+2(b−1)p2t+1 22m+632`+6(b−1)p3+6t

V2 −4 · 3b−1pt+1
√

2m3`+1
p 4 · 32(b−1)p2t+1 2m+123`+6(b−1)p3+6t

V1’ −2 · 3b−1pt+1
√

2m3`+1
p 2m3`+2(b−1)p2t+1 22m+632`+6(b−1)p3+6t

V2’ 4 · 3b−1pt+1
√

2m3`+1
p 4 · 32(b−1)p2t+1 2m+123`+6(b−1)p3+6t

18. there exist integers m ≥ 2, ` ≥ 2 − b and t ∈ {0, 1} such that 2m3`−1
p is a

square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

W1 2 · 3b−1pt+1
√

2m3`−1
p 2m3`+2(b−1)p2t+1 −22m+632`+6(b−1)p3+6t

W2 −4 · 3b−1pt+1
√

2m3`−1
p −4 · 32(b−1)p2t+1 2m+123`+6(b−1)p3+6t

W1’ −2 · 3b−1pt+1
√

2m3`−1
p 2m3`+2(b−1)p2t+1 −22m+632`+6(b−1)p3+6t

W2’ 4 · 3b−1pt+1
√

2m3`−1
p −4 · 32(b−1)p2t+1 2m+123`+6(b−1)p3+6t

19. there exist integers m ≥ 2, ` ≥ 2 − b and t ∈ {0, 1} such that 2m+3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

X1 2 · 3b−1pt+1
√

2m+3`

p 2m32(b−1)p2t+1 22m+63`+6(b−1)p3+6t

X2 −4 · 3b−1pt+1
√

2m+3`

p 4 · 3`+2(b−1)p2t+1 2m+1232`+6(b−1)p3+6t

X1’ −2 · 3b−1pt+1
√

2m+3`

p 2m32(b−1)p2t+1 22m+63`+6(b−1)p3+6t

X2’ 4 · 3b−1pt+1
√

2m+3`

p 4 · 3`+2(b−1)p2t+1 2m+1232`+6(b−1)p3+6t

20. there exist integers m ≥ 2, ` ≥ 2 − b and t ∈ {0, 1} such that 2m−3`

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Y1 2 · 3b−1pt+1
√

2m−3`

p 2m32(b−1)p2t+1 −22m+63`+6(b−1)p3+6t

Y2 −4 · 3b−1pt+1
√

2m−3`

p −4 · 3`+2(b−1)p2t+1 2m+1232`+6(b−1)p3+6t

Y1’ −2 · 3b−1pt+1
√

2m−3`

p 2m32(b−1)p2t+1 −22m+63`+6(b−1)p3+6t

Y2’ 4 · 3b−1pt+1
√

2m−3`

p −4 · 3`+2(b−1)p2t+1 2m+1232`+6(b−1)p3+6t

21. there exist integers m ≥ 2, ` ≥ 2 − b and t ∈ {0, 1} such that 3`−2m

p is a
square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Z1 2 · 3b−1pt+1
√

3`−2m

p −2m32(b−1)p2t+1 22m+63`+6(b−1)p3+6t

Z2 −4 · 3b−1pt+1
√

3`−2m

p 4 · 3`+2(b−1)p2t+1 −2m+1232`+6(b−1)p3+6t

Z1’ −2 · 3b−1pt+1
√

3`−2m

p −2m32(b−1)p2t+1 22m+63`+6(b−1)p3+6t

Z2’ 4 · 3b−1pt+1
√

3`−2m

p 4 · 3`+2(b−1)p2t+1 −2m+1232`+6(b−1)p3+6t

In the case that b = 2, i.e. N = 2632p2, we furthermore could have one of the
following conditions satisfied:

22. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

AA1 2 · 3s+1p
√

pn+1
3 32s+1pn+2 2633+6sp2n+6

AA2 −4 · 3s+1p
√

pn+1
3 4 · 32s+1p2 21233+6spn+6

AA1’ −2 · 3s+1p
√

pn+1
3 32s+1pn+2 2633+6sp2n+6

AA2’ 4 · 3s+1p
√

pn+1
3 4 · 32s+1p2 21233+6spn+6

23. there exist integers n ≥ 1 and s ∈ {0, 1} such that pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

BB1 2 · 3s+1p
√

pn+1
3 −32s+1p2 2633+6spn+6

BB2 −4 · 3s+1p
√

pn+1
3 4 · 32s+1pn+2 −21233+6sp2n+6

BB1’ −2 · 3s+1p
√

pn+1
3 −32s+1p2 2633+6spn+6

BB2’ 4 · 3s+1p
√

pn+1
3 4 · 32s+1pn+2 −21233+6sp2n+6

24. there exist integers s, t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

(a) p ≡ 1 (mod 4):

a2 a4 ∆

CC1 0 −32s+1p2t+1 2633+6sp3+6t

CC2 0 4 · 32s+1p2t+1 −21233+6sp3+6t

(b) p ≡ −1 (mod 4):

a2 a4 ∆

DD1 0 32s+1p2t+1 −2633+6sp3+6t

DD2 0 −4 · 32s+1p2t+1 21233+6sp3+6t

25. E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

EE1 0 32(b−1)p2 −2636(b−1)p6

EE2 0 −4 · 32(b−1)p2 21236(b−1)p6

26. there exists an integer t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:
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(a) p ≡ 1 (mod 4):

a2 a4 ∆

FF1 0 32(b−1)p2t+1 −2636(b−1)p3+6t

FF2 0 −4 · 32(b−1)p2t+1 21236(b−1)p3+6t

(b) p ≡ −1 (mod 4):

a2 a4 ∆

GG1 0 −32(b−1)p2t+1 2636(b−1)p3+6t

GG2 0 4 · 32(b−1)p2t+1 −21236(b−1)p3+6t

27. there exist integers n ≥ 0 and s ∈ {0, 1} such that 4pn−1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

HH1 2 · 3s+1p
√

4pn−1
3 4 · 32s+1)pn+2 −21033+6sp2n+6

HH2 −4 · 3s+1p
√

4pn−1
3 −4 · 32s+1)p2 21433+6spn+6

HH1’ −2 · 3s+1p
√

4pn−1
3 4 · 32s+1)pn+2 −21033+6sp2n+6

HH2’ 4 · 3s+1p
√

4pn−1
3 −4 · 32s+1)p2 21433+6spn+6

28. there exist integers m ≥ 2, n ≥ 0 and s ∈ {0, 1} such that pn+2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

II1 2 · 3s+1p
√

pn+2m

3 2m32s+1p2 22m+633+6spn+6

II2 −4 · 3s+1p
√

pn+2m

3 4 · 32s+1pn+2 2m+1233+6sp2n+6

II1’ −2 · 3s+1p
√

pn+2m

3 2m32s+1p2 22m+633+6spn+6

II2’ 4 · 3s+1p
√

pn+2m

3 4 · 32s+1pn+2 2m+1233+6sp2n+6

29. there exist integers m ≥ 2, n ≥ 0 and s ∈ {0, 1} such that 2m−pn

3 is a square
and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

JJ1 2 · 3s+1p
√

2m−pn

3 2m32s+1p2 −22m+633+6spn+6

JJ2 −4 · 3s+1p
√

2m−pn

3 −4 · 32s+1pn+2 2m+1233+6sp2n+6

JJ1’ −2 · 3s+1p
√

2m−pn

3 2m32s+1p2 −22m+633+6spn+6

JJ2’ 4 · 3s+1p
√

2m−pn

3 −4 · 32s+1pn+2 2m+1233+6sp2n+6

30. there exist integers m ≥ 2, n ≥ 0 and s ∈ {0, 1} such that pn−2m

3 is a square
and E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

KK1 2 · 3s+1p
√

pn−2m

3 −2m32s+1p2 22m+633+6spn+6

KK2 −4 · 3s+1p
√

pn−2m

3 4 · 32s+1pn+2 −2m+1233+6sp2n+6

KK1’ −2 · 3s+1p
√

pn−2m

3 −2m32s+1p2 22m+633+6spn+6

KK2’ 4 · 3s+1p
√

pn−2m

3 4 · 32s+1pn+2 −2m+1233+6sp2n+6

31. there exist integers m ≥ 2 and s, t ∈ {0, 1} such that 2m+1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

LL1 2 · 3s+1pt+1
√

2m+1
3p 2m32s+1p2t+1 22m+633+6sp3+6t

LL2 −4 · 3s+1pt+1
√

2m+1
3p 4 · 32s+1p2t+1 2m+1233+6sp3+6t

LL1’ −2 · 3s+1pt+1
√

2m+1
3p 2m32s+1p2t+1 22m+633+6sp3+6t

LL2’ 4 · 3s+1pt+1
√

2m+1
3p 4 · 32s+1p2t+1 2m+1233+6sp3+6t

32. there exist integers m ≥ 2 and s, t ∈ {0, 1} such that 2m−1
3p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

MM1 2 · 3s+1pt+1
√

2m−1
3p 2m32s+1p2t+1 −22m+633+6sp3+6t

MM2 −4 · 3s+1pt+1
√

2m−1
3p −4 · 32s+1p2t+1 2m+1233+6sp3+6t

MM1’ −2 · 3s+1pt+1
√

2m−1
3p 2m32s+1p2t+1 −22m+633+6sp3+6t

MM2’ 4 · 3s+1pt+1
√

2m−1
3p −4 · 32s+1p2t+1 2m+1233+6sp3+6t
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Theorem 3.28 The elliptic curves E defined over Q, of conductor 273bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2 − b and n ≥ 0 such that 2 · 3` + pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

A1 2 · 3b−1p
√

2 · 3` + pn 2 · 3`+2(b−1)p2 2832`+6(b−1)pn+6

A2 −4 · 3b−1p
√

2 · 3` + pn 4 · 32(b−1)pn+2 2133`+6(b−1)p2n+6

A1’ −2 · 3b−1p
√

2 · 3` + pn 2 · 3`+2(b−1)p2 2832`+6(b−1)pn+6

A2’ 4 · 3b−1p
√

2 · 3` + pn 4 · 32(b−1)pn+2 2133`+6(b−1)p2n+6

B1 2 · 3b−1p
√

2 · 3` + pn 32(b−1)pn+2 273`+6(b−1)p2n+6

B2 −4 · 3b−1p
√

2 · 3` + pn 8 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

B1’ −2 · 3b−1p
√

2 · 3` + pn 32(b−1)pn+2 273`+6(b−1)p2n+6

B2’ 4 · 3b−1p
√

2 · 3` + pn 8 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

2. there exist integers ` ≥ 2 − b and n ≥ 0 such that 2 · 3` − pn is a square and
E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 2 · 3b−1p
√

2 · 3` − pn 2 · 3`+2(b−1)p2 −2832`+6(b−1)pn+6

C2 −4 · 3b−1p
√

2 · 3` − pn −4 · 32(b−1)pn+2 2133`+6(b−1)p2n+6

C1’ −2 · 3b−1p
√

2 · 3` − pn 2 · 3`+2(b−1)p2 −2832`+6(b−1)pn+6

C2’ 4 · 3b−1p
√

2 · 3` − pn −4 · 32(b−1)pn+2 2133`+6(b−1)p2n+6

D1 2 · 3b−1p
√

2 · 3` − pn −32(b−1)pn+2 273`+6(b−1)p2n+6

D2 −4 · 3b−1p
√

2 · 3` − pn 8 · 3`+2(b−1)p2 −21432`+6(b−1)pn+6

D1’ −2 · 3b−1p
√

2 · 3` − pn −32(b−1)pn+2 273`+6(b−1)p2n+6

D2’ 4 · 3b−1p
√

2 · 3` − pn 8 · 3`+2(b−1)p2 −21432`+6(b−1)pn+6

3. there exist integers ` ≥ 2− b and n ≥ 0 such that 2pn + 3` is a square and E
is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

E1 2 · 3b−1p
√

2pn + 3` 2 · 32(b−1)pn+2 283`+6(b−1)p2n+6

E2 −4 · 3b−1p
√

2pn + 3` 4 · 3`+2(b−1)p2 21332`+6(b−1)pn+6

E1’ −2 · 3b−1p
√

2pn + 3` 2 · 32(b−1)pn+2 283`+6(b−1)p2n+6

E2’ 4 · 3b−1p
√

2pn + 3` 4 · 3`+2(b−1)p2 21332`+6(b−1)pn+6

F1 2 · 3b−1p
√

2pn + 3` 3`+2(b−1)p2 2732`+6(b−1)pn+6

F2 −4 · 3b−1p
√

2pn + 3` 8 · 32(b−1)pn+2 2143`+6(b−1)p2n+6

F1’ −2 · 3b−1p
√

2pn + 3` 3`+2(b−1)p2 2732`+6(b−1)pn+6

F2’ 4 · 3b−1p
√

2pn + 3` 8 · 32(b−1)pn+2 2143`+6(b−1)p2n+6

4. there exist integers ` ≥ 2− b and n ≥ 0 such that 2pn − 3` is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 2 · 3b−1p
√

2pn − 3` 2 · 32(b−1)pn+2 −283`+6(b−1)p2n+6

G2 −4 · 3b−1p
√

2pn − 3` −4 · 3`+2(b−1)p2 21332`+6(b−1)pn+6

G1’ −2 · 3b−1p
√

2pn − 3` 2 · 32(b−1)pn+2 −283`+6(b−1)p2n+6

G2’ 4 · 3b−1p
√

2pn − 3` −4 · 3`+2(b−1)p2
21332`+6(b−1)pn+6

H1 2 · 3b−1p
√

2pn − 3` −3`+2(b−1)p2 2732`+6(b−1)pn+6

H2 −4 · 3b−1p
√

2pn − 3` 8 · 32(b−1)pn+2 −2143`+6(b−1)p2n+6

H1’ −2 · 3b−1p
√

2pn − 3` −3`+2(b−1)p2 2732`+6(b−1)pn+6

H2’ 4 · 3b−1p
√

2pn − 3` 8 · 32(b−1)pn+2 −2143`+6(b−1)p2n+6

5. there exist integers ` ≥ 2− b and n ≥ 0 such that 2 + 3`pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

I1 2 · 3b−1p
√

2 + 3`pn 2 · 32(b−1)p2 283`+6(b−1)pn+6

I2 −4 · 3b−1p
√

2 + 3`pn 4 · 3`+2(b−1)pn+2 21332`+6(b−1)p2n+6

I1’ −2 · 3b−1p
√

2 + 3`pn 2 · 32(b−1)p2 283`+6(b−1)pn+6

I2’ 4 · 3b−1p
√

2 + 3`pn 4 · 3`+2(b−1)pn+2 21332`+6(b−1)p2n+6

J1 2 · 3b−1p
√

2 + 3`pn 3`+2(b−1)pn+2 2732`+6(b−1)p2n+6

J2 −4 · 3b−1p
√

2 + 3`pn 8 · 32(b−1)p2 2143`+6(b−1)pn+6

J1’ −2 · 3b−1p
√

2 + 3`pn 3`+2(b−1)pn+2 2732`+6(b−1)p2n+6

J2’ 4 · 3b−1p
√

2 + 3`pn 8 · 32(b−1)p2 2143`+6(b−1)pn+6
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6. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`pn − 2 is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 2 · 3b−1p
√

3`pn − 2 −2 · 32(b−1)p2 283`+6(b−1)pn+6

K2 −4 · 3b−1p
√

3`pn − 2 4 · 3`+2(b−1)pn+2 −21332`+6(b−1)p2n+6

K1’ −2 · 3b−1p
√

3`pn − 2 −2 · 32(b−1)p2 283`+6(b−1)pn+6

K2’ 4 · 3b−1p
√

3`pn − 2 4 · 3`+2(b−1)pn+2 −21332`+6(b−1)p2n+6

L1 2 · 3b−1p
√

3`pn − 2 3`+2(b−1)pn+2 −2732`+6(b−1)p2n+6

L2 −4 · 3b−1p
√

3`pn − 2 −8 · 32(b−1)p2 2143`+6(b−1)pn+6

L1’ −2 · 3b−1p
√

3`pn − 2 3`+2(b−1)pn+2 −2732`+6(b−1)p2n+6

L2’ 4 · 3b−1p
√

3`pn − 2 −8 · 32(b−1)p2 2143`+6(b−1)pn+6

7. there exist integers ` ≥ 2− b and n ≥ 0 such that 3` − 2pn is a square and E
is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

M1 2 · 3b−1p
√

3` − 2pn −2 · 32(b−1)pn+2 283`+6(b−1)p2n+6

M2 −4 · 3b−1p
√

3` − 2pn 4 · 3`+2(b−1)p2 −21332`+6(b−1)pn+6

M1’ −2 · 3b−1p
√

3` − 2pn −2 · 32(b−1)pn+2 283`+6(b−1)p2n+6

M2’ 4 · 3b−1p
√

3` − 2pn 4 · 3`+2(b−1)p2 −21332`+6(b−1)pn+6

N1 2 · 3b−1p
√

3` − 2pn 3`+2(b−1)p2 −2732`+6(b−1)pn+6

N2 −4 · 3b−1p
√

3` − 2pn −8 · 32(b−1)pn+2 2143`+6(b−1)p2n+6

N1’ −2 · 3b−1p
√

3` − 2pn 3`+2(b−1)p2 −2732`+6(b−1)pn+6

N2’ 4 · 3b−1p
√

3` − 2pn −8 · 32(b−1)pn+2 2143`+6(b−1)p2n+6

8. there exist integers ` ≥ 2 − b and n ≥ 0 such that pn − 2 · 3` is a square and
E is Q-isomorphic to one of the elliptic curves:



Chapter 3. Elliptic Curves with 2-torsion and conductor 2α3βpδ 138

a2 a4 ∆

O1 2 · 3b−1p
√

pn − 2 · 3` −2 · 3`+2(b−1)p2 2832`+6(b−1)pn+6

O2 −4 · 3b−1p
√

pn − 2 · 3` 4 · 32(b−1)pn+2 −2133`+6(b−1)p2n+6

O1’ −2 · 3b−1p
√

pn − 2 · 3` −2 · 3`+2(b−1)p2 2832`+6(b−1)pn+6

O2’ 4 · 3b−1p
√

pn − 2 · 3` 4 · 32(b−1)pn+2 −2133`+6(b−1)p2n+6

P1 2 · 3b−1p
√

pn − 2 · 3` 32(b−1)pn+2 −273`+6(b−1)p2n+6

P2 −4 · 3b−1p
√

pn − 2 · 3` −8 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

P1’ −2 · 3b−1p
√

pn − 2 · 3` 32(b−1)pn+2 −273`+6(b−1)p2n+6

P2’ 4 · 3b−1p
√

pn − 2 · 3` −8 · 3`+2(b−1)p2 21432`+6(b−1)pn+6

9. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 2·3`+1
p is a square and

E is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Q1 2 · 3b−1pt+1
√

2·3`+1
p 2 · 3`+2(b−1)p2t+1 2832`+6(b−1)p3+6t

Q2 −4 · 3b−1pt+1
√

2·3`+1
p 4 · 32(b−1)p2t+1 2133`+6(b−1)p3+6t

Q1’ −2 · 3b−1pt+1
√

2·3`+1
p 2 · 3`+2(b−1)p2t+1 2832`+6(b−1)p3+6t

Q2’ 4 · 3b−1pt+1
√

2·3`+1
p 4 · 32(b−1)p2t+1 2133`+6(b−1)p3+6t

R1 2 · 3b−1pt+1
√

2·3`+1
p 32(b−1)p2t+1 273`+6(b−1)p3+6t

R2 −4 · 3b−1pt+1
√

2·3`+1
p 8 · 3`+2(b−1)p2t+1 21432`+6(b−1)p3+6t

R1’ −2 · 3b−1pt+1
√

2·3`+1
p 32(b−1)p2t+1 273`+6(b−1)p3+6t

R2’ 4 · 3b−1pt+1
√

2·3`+1
p 8 · 3`+2(b−1)p2t+1 21432`+6(b−1)p3+6t

10. there exist integers ` ≥ 2 − b and t ∈ {0, 1} such that 2·3`−1
p is a square and

E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

S1 2 · 3b−1pt+1
√

2·3`−1
p 2 · 3`+2(b−1)p2t+1 −2832`+6(b−1)p3+6t

S2 −4 · 3b−1pt+1
√

2·3`−1
p −4 · 32(b−1)p2t+1 2133`+6(b−1)p3+6t

S1’ −2 · 3b−1pt+1
√

2·3`−1
p 2 · 3`+2(b−1)p2t+1 −2832`+6(b−1)p3+6t

S2’ 4 · 3b−1pt+1
√

2·3`−1
p −4 · 32(b−1)p2t+1 2133`+6(b−1)p3+6t

T1 2 · 3b−1pt+1
√

2·3`−1
p −32(b−1)p2t+1 273`+6(b−1)p3+6t

T2 −4 · 3b−1pt+1
√

2·3`−1
p 8 · 3`+2(b−1)p2t+1 −21432`+6(b−1)p3+6t

T1’ −2 · 3b−1pt+1
√

2·3`−1
p −32(b−1)p2t+1 273`+6(b−1)p3+6t

T2’ 4 · 3b−1pt+1
√

2·3`−1
p 8 · 3`+2(b−1)p2t+1 −21432`+6(b−1)p3+6t

11. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 2+3`

p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

U1 2 · 3b−1pt+1
√

2+3`

p 2 · 32(b−1)p2t+1 283`+6(b−1)p3+6t

U2 −4 · 3b−1pt+1
√

2+3`

p 4 · 3`+2(b−1)p2t+1 21332`+6(b−1)p3+6t

U1’ −2 · 3b−1pt+1
√

2+3`

p 2 · 32(b−1)p2t+1 283`+6(b−1)p3+6t

U2’ 4 · 3b−1pt+1
√

2+3`

p 4 · 3`+2(b−1)p2t+1 21332`+6(b−1)p3+6t

V1 2 · 3b−1pt+1
√

2+3`

p 3`+2(b−1)p2t+1 2732`+6(b−1)p3+6t

V2 −4 · 3b−1pt+1
√

2+3`

p 8 · 32(b−1)p2t+1 2143`+6(b−1)p3+6t

V1’ −2 · 3b−1pt+1
√

2+3`

p 3`+2(b−1)p2t+1 2732`+6(b−1)p3+6t

V2’ 4 · 3b−1pt+1
√

2+3`

p 8 · 32(b−1)p2t+1 2143`+6(b−1)p3+6t

12. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`−2
p is a square and E

is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

W1 2 · 3b−1pt+1
√

3`−2
p −2 · 32(b−1)p2t+1 283`+6(b−1)p3+6t

W2 −4 · 3b−1pt+1
√

3`−2
p 4 · 3`+2(b−1)p2t+1 −21332`+6(b−1)p3+6t

W1’ −2 · 3b−1pt+1
√

3`−2
p −2 · 32(b−1)p2t+1 283`+6(b−1)p3+6t

W2’ 4 · 3b−1pt+1
√

3`−2
p 4 · 3`+2(b−1)p2t+1 −21332`+6(b−1)p3+6t

X1 2 · 3b−1pt+1
√

3`−2
p 3`+2(b−1)p2t+1 −2732`+6(b−1)p3+6t

X2 −4 · 3b−1pt+1
√

3`−2
p −8 · 32(b−1)p2t+1 2143`+6(b−1)p3+6t

X1’ −2 · 3b−1pt+1
√

3`−2
p 3`+2(b−1)p2t+1 −2732`+6(b−1)p3+6t

X2’ 4 · 3b−1pt+1
√

3`−2
p −8 · 32(b−1)p2t+1 2143`+6(b−1)p3+6t

In the case that b = 2, i.e. N = 2732p2, we furthermore could have one of the
following conditions satisfied:

13. there exist integers n ≥ 0 and s ∈ {0, 1} such that 2pn+1
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

Y1 2 · 3s+1p
√

2pn+1
3 2 · 32s+1pn+2 2833+6sp2n+6

Y2 −4 · 3s+1p
√

2pn+1
3 4 · 32s+1p2 21333+6spn+6

Y1’ −2 · 3s+1p
√

2pn+1
3 2 · 32s+1pn+2 2833+6sp2n+6

Y2’ 4 · 3s+1p
√

2pn+1
3 4 · 32s+1p2 21333+6spn+6

Z1 2 · 3s+1p
√

2pn+1
3 32s+1p2 2733+6spn+6

Z2 −4 · 3s+1p
√

2pn+1
3 8 · 32s+1pn+2 21433+6sp2n+6

Z1’ −2 · 3s+1p
√

2pn+1
3 32s+1p2 2733+6spn+6

Z2’ 4 · 3s+1p
√

2pn+1
3 8 · 32s+1pn+2 21433+6sp2n+6

14. there exist integers n ≥ 0 and s ∈ {0, 1} such that pn+2
3 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

AA1 2 · 3s+1p
√

pn+2
3 2 · 32s+1p2 2833+6spn+6

AA2 −4 · 3s+1p
√

pn+2
3 4 · 32s+1pn+2 21333+6sp2n+6

AA1’ −2 · 3s+1p
√

pn+2
3 2 · 32s+1p2 2833+6spn+6

AA2’ 4 · 3s+1p
√

pn+2
3 4 · 32s+1pn+2 21333+6sp2n+6

BB1 2 · 3s+1p
√

pn+2
3 32s+1pn+2 2733+6sp2n+6

BB2 −4 · 3s+1p
√

pn+2
3 8 · 32s+1p2 21433+6spn+6

BB1’ −2 · 3s+1p
√

pn+2
3 32s+1pn+2 2733+6sp2n+6

BB2’ 4 · 3s+1p
√

pn+2
3 8 · 32s+1p2 21433+6spn+6

15. there exist integers n ≥ 0 and s ∈ {0, 1} such that pn−2
3 is a square and E is

Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

CC1 2 · 3s+1p
√

pn−2
3 −2 · 32s+1p2 2833+6spn+6

CC2 −4 · 3s+1p
√

pn−2
3 4 · 32s+1pn+2 −21333+6sp2n+6

CC1’ −2 · 3s+1p
√

pn−2
3 −2 · 32s+1p2 2833+6spn+6

CC2’ 4 · 3s+1p
√

pn−2
3 4 · 32s+1pn+2 −21333+6sp2n+6

DD1 2 · 3s+1p
√

pn−2
3 32s+1pn+2 −2733+6sp2n+6

DD2 −4 · 3s+1p
√

pn−2
3 −8 · 32s+1p2 21433+6spn+6

DD1’ −2 · 3s+1p
√

pn−2
3 32s+1pn+2 −2733+6sp2n+6

DD2’ 4 · 3s+1p
√

pn−2
3 −8 · 32s+1p2 21433+6spn+6

Theorem 3.29 The elliptic curves E defined over Q, of conductor 283bp2, and hav-
ing at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:

1. there exist integers ` ≥ 2− b and n ≥ 0 such that 3`pn−1
2 is a square and E is

Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

A1 4 · 3b−1p
√

3`pn−1
2 2 · 3`+2(b−1)pn+2 −2932`+6(b−1)p2n+6

A2 −8 · 3b−1p
√

3`pn−1
2 −8 · 32(b−1)p2 2153`+6(b−1)pn+6

A1’ −4 · 3b−1p
√

3`pn−1
2 2 · 3`+2(b−1)pn+2 −2932`+6(b−1)p2n+6

A2’ 8 · 3b−1p
√

3`pn−1
2 −8 · 32(b−1)p2 2153`+6(b−1)pn+6

B1 4 · 3b−1p
√

3`pn−1
2 −2 · 32(b−1)p2 293`+6(b−1)pn+6

B2 −8 · 3b−1p
√

3`pn−1
2 8 · 3`+2(b−1)pn+2 −21532`+6(b−1)p2n+6

B1’ −4 · 3b−1p
√

3`pn−1
2 −2 · 32(b−1)p2 293`+6(b−1)pn+6

B2’ 8 · 3b−1p
√

3`pn−1
2 8 · 3`+2(b−1)pn+2 −21532`+6(b−1)p2n+6

2. there exist integers ` ≥ 2 − b and n ≥ 0 such that 3`+pn

2 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

C1 4 · 3b−1p
√

3`+pn

2 2 · 3`+2(b−1)p2 2932`+6(b−1)pn+6

C2 −8 · 3b−1p
√

3`+pn

2 8 · 32(b−1)pn+2 2153`+6(b−1)p2n+6

C1’ −4 · 3b−1p
√

3`+pn

2 2 · 3`+2(b−1)p2 2932`+6(b−1)pn+6

C2’ 8 · 3b−1p
√

3`+pn

2 8 · 32(b−1)pn+2 2153`+6(b−1)p2n+6

D1 4 · 3b−1p
√

3`+pn

2 2 · 32(b−1)pn+2 293`+6(b−1)p2n+6

D2 −8 · 3b−1p
√

3`+pn

2 8 · 3`+2p2 21532`+6(b−1)pn+6

D1’ −4 · 3b−1p
√

3`+pn

2 2 · 32(b−1)pn+2 293`+6(b−1)p2n+6

D2’ 8 · 3b−1p
√

3`+pn

2 8 · 3`+2p2 21532`+6(b−1)pn+6

3. there exist integers ` ≥ 2 − b and n ≥ 0 such that 3`−pn

2 is a square and E is
Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

E1 4 · 3b−1p
√

3`−pn

2 2 · 3`+2(b−1)p2 −2932`+6(b−1)pn+6

E2 −8 · 3b−1p
√

3`−pn

2 −8 · 32(b−1)pn+2 2153`+6(b−1)p2n+6

E1’ −4 · 3b−1p
√

3`−pn

2 2 · 3`+2(b−1)p2 −2932`+6(b−1)pn+6

E2’ 8 · 3b−1p
√

3`−pn

2 −8 · 32(b−1)pn+2 2153`+6(b−1)p2n+6

F1 4 · 3b−1p
√

3`−pn

2 −2 · 32(b−1)pn+2 293`+6(b−1)p2n+6

F2 −8 · 3b−1p
√

3`−pn

2 8 · 3`+2(b−1)p2 −21532`+6(b−1)pn+6

F1’ −4 · 3b−1p
√

3`−pn

2 −2 · 32(b−1)pn+2 293`+6(b−1)p2n+6

F2’ 8 · 3b−1p
√

3`−pn

2 8 · 3`+2(b−1)p2 −21532`+6(b−1)pn+6

4. there exist integers ` ≥ 2 − b and n ≥ 0 such that pn−3`

2 is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

G1 4 · 3b−1p
√

pn−3`

2 2 · 32(b−1)pn+2 −293`+6(b−1)p2n+6

G2 −8 · 3b−1p
√

pn−3`

2 −8 · 3`+2(b−1)p2 21532`+6(b−1)pn+6

G1’ −4 · 3b−1p
√

pn−3`

2 2 · 32(b−1)pn+2 −293`+6(b−1)p2n+6

G2’ 8 · 3b−1p
√

pn−3`

2 −8 · 3`+2(b−1)p2 21532`+6(b−1)pn+6

H1 4 · 3b−1p
√

pn−3`

2 −2 · 3`+2(b−1)p2 2932`+6(b−1)pn+6

H2 −8 · 3b−1p
√

pn−3`

2 8 · 32(b−1)pn+2 −2153`+6(b−1)p2n+6

H1’ −4 · 3b−1p
√

pn−3`

2 −2 · 3`+2(b−1)p2 2932`+6(b−1)pn+6

H2’ 8 · 3b−1p
√

pn−3`

2 8 · 32(b−1)pn+2 −2153`+6(b−1)p2n+6

5. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`+1
2p is a square and E

is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆

I1 4 · 3b−1pt+1
√

3`+1
2p 2 · 3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

I2 −8 · 3b−1pt+1
√

3`+1
2p 8 · 32(b−1)p2t+1 2153`+6(b−1)p3+6t

I1’ −4 · 3b−1pt+1
√

3`+1
2p 2 · 3`+2(b−1)p2t+1 2932`+6(b−1)p3+6t

I2’ 8 · 3b−1pt+1
√

3`+1
2p 8 · 32(b−1)p2t+1 2153`+6(b−1)p3+6t

J1 4 · 3b−1pt+1
√

3`+1
2p 2 · 32(b−1)p2t+1 293`+6(b−1)p3+6t

J2 −8 · 3b−1pt+1
√

3`+1
2p 8 · 3`+2(b−1)p2t+1 21532`+6(b−1)p3+6t

J1’ −4 · 3b−1pt+1
√

3`+1
2p 2 · 32(b−1)p2t+1 293`+6(b−1)p3+6t

J2’ 8 · 3b−1pt+1
√

3`+1
2p 8 · 3`+2(b−1)p2t+1 21532`+6(b−1)p3+6t

6. there exist integers ` ≥ 2− b and t ∈ {0, 1} such that 3`−1
2p is a square and E

is Q-isomorphic to one of the elliptic curves:

a2 a4 ∆

K1 4 · 3b−1pt+1
√

3`−1
2p 2 · 3`+2(b−1)p2t+1 −2932`+6(b−1)p3+6t

K2 −8 · 3b−1pt+1
√

3`−1
2p −8 · 32(b−1)p2t+1 2153`+6(b−1)p3+6t

K1’ −4 · 3b−1pt+1
√

3`−1
2p 2 · 3`+2(b−1)p2t+1 −2932`+6(b−1)p3+6t

K2’ 8 · 3b−1pt+1
√

3`−1
2p −8 · 32(b−1)p2t+1 2153`+6(b−1)p3+6t

L1 4 · 3b−1pt+1
√

3`−1
2p −2 · 32(b−1)p2t+1 293`+6(b−1)p3+6t

L2 −8 · 3b−1pt+1
√

3`−1
2p 8 · 3`+2(b−1)p2t+1 −21532`+6(b−1)p3+6t

L1’ −4 · 3b−1pt+1
√

3`−1
2p −2 · 32(b−1)p2t+1 293`+6(b−1)p3+6t

L2’ 8 · 3b−1pt+1
√

3`−1
2p 8 · 3`+2(b−1)p2t+1 −21532`+6(b−1)p3+6t

In the case that b = 2, i.e. N = 2832p2, we furthermore could have one of the
following conditions satisfied:

7. there exists an integer n ≥ 0 such that pn+1
6 is a square and E is Q-isomorphic

to one of the elliptic curves:
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a2 a4 ∆

M1 4 · 3s+1p
√

pn+1
3 2 · 32s+1pn+2 2933+6sp2n+6

M2 −8 · 3s+1p
√

pn+1
3 8 · 32s+1p2 21533+6spn+6

M1’ −4 · 3s+1p
√

pn+1
3 2 · 32s+1pn+2 2933+6sp2n+6

M2’ 8 · 3s+1p
√

pn+1
3 8 · 32s+1p2 21533+6spn+6

N1 4 · 3s+1p
√

pn+1
3 2 · 32s+1p2 2933+6spn+6

N2 −8 · 3s+1p
√

pn+1
3 8 · 32s+1pn+2 21533+6sp2n+6

N1’ −4 · 3s+1p
√

pn+1
3 2 · 32s+1p2 2933+6spn+6

N2’ 8 · 3s+1p
√

pn+1
3 8 · 32s+1pn+2 21533+6sp2n+6

8. there exists an integer n ≥ 0 such that pn−1
6 is a square and E is Q-isomorphic

to one of the elliptic curves:

a2 a4 ∆

O1 4 · 3s+1p
√

pn−1
3 2 · 32s+1pn+2 −2933+6sp2n+6

O2 −8 · 3s+1p
√

pn−1
3 −8 · 32s+1p2 21533+6spn+6

O1’ −4 · 3s+1p
√

pn−1
3 2 · 32s+1pn+2 −2933+6sp2n+6

O2’ 8 · 3s+1p
√

pn−1
3 −8 · 32s+1p2 21533+6spn+6

P1 4 · 3s+1p
√

pn−1
3 −2 · 32s+1p2 2933+6spn+6

P2 −8 · 3s+1p
√

pn−1
3 8 · 32s+1pn+2 −21533+6sp2n+6

P1’ −4 · 3s+1p
√

pn−1
3 −2 · 32s+1p2 2933+6spn+6

P2’ 8 · 3s+1p
√

pn−1
3 8 · 32s+1pn+2 −21533+6sp2n+6

9. there exist integers s, t ∈ {0, 1} such that E is Q-isomorphic to one of the
elliptic curves:

a2 a4 ∆

Q1 0 2 · 32s+1p2t+1 −2933+6sp3+6t

Q2 0 −8 · 32s+1p2t+1 21533+6sp3+6t

R1 0 −2 · 32s+1p2t+1 2933+6sp3+6t

R2 0 8 · 32s+1p2t+1 −21533+6sp3+6t
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3.4 Proofs of 2α3βp and 2α3βp2

We sketch a constructive proof that the curves listed in the tables of Sections
3.2 and 3.3 are all the curves up to Q-isomorphism of the stated conductor.
Most of the work has already been done in Appendix A; there we have a
classification of curves (up to Q-isomorphism, and containing a point of order
2) with conductor of the form 2α3βpδ. All that needs to be done now is to find
the exact conductor, i.e. the values of 0 ≤ α ≤ 8, 1 ≤ β ≤ 2 and 1 ≤ δ ≤
2. These will depend on the values of m, `, n and the congruence class of d

modulo 4 in the defining Diophantine equation. To compute the conductors
of each of the curves in the tables of Appendix A we make extensive use of
the tables in Chapter 2. Rather than get bogged down in all the details of
computing the conductors of the curves we will give a general overview of
how the computations can be done. This should be enough to give the reader
the flavor of the proof and allow us to save some trees in the process.

In what follows we refer to the elliptic curve y2 = x3 + ax2 + bx by its
coefficients a and b.

We split the curves appearing in Lemma A.1 into three classes: let A.1.I
be the class consisting of curves numbered 1 through 9, A.1.II be the class of
curves numbered 10 through 18, and A.1.III be the class of curves numbered
19 through 27. It is straightforward to check that the 2-valuations of a, b and
∆ for curves in each of the three classes are as follows.

A.1.I A.1.II A.1.III
v2(a) r1 = r1 + 1 (if m ≥ 1) r1 + 2

> r1 + 1 (if m = 0)
v2(b) m + 2r1 − 2 2r1 2r1 + 1
v2(∆) 2m + 6r1 2r1 + 1 6r1 + 9
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It follows directly from Theorem 2.1 that for curves in A.1.I

v2(N) =



4 if r1 = 0, m = 2, a ≡ 1 (mod 4), b ≡ 1 (mod 4)

2 if r1 = 0, m = 2, a ≡ 1 (mod 4), b ≡ −1 (mod 4)

3 if r1 = 0, m = 2, a ≡ −1 (mod 4), b ≡ 1 (mod 4)

4 if r1 = 0, m = 2, a ≡ −1 (mod 4), b ≡ −1 (mod 4)

5 if r1 = 0, m = 3,

4 if r1 = 0, m ≥ 4, a ≡ −1 (mod 4)

3 if r1 = 0, m = 4, 5, a ≡ 1 (mod 4)

0 if r1 = 0, m = 6, a ≡ 1 (mod 4)

1 if r1 = 0, m ≥ 7, a ≡ 1 (mod 4)

7 if r1 = 1, m = 1,

6 if r1 = 1, m ≥ 2,

7 if r1 = 2, m = 1,
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and for the curves in A.1.II we have

v2(N) =



6 if r1 = 0, m = 0, b ≡ 1 (mod 4)

5 if r1 = 0, m = 0, b ≡ −1 (mod 4)

7 if r1 = 0, m = 1,

4 if r1 = 0, m = 2, a− b ≡ 13 (mod 16),

3 if r1 = 0, m = 2, a− b ≡ 5 (mod 16),

4 if r1 = 0, m = 2, a− b ≡ 1 (mod 16),

2 if r1 = 0, m = 2, a− b ≡ 9 (mod 16),

5 if r1 = 0, m = 3,

4 if r1 = 0, m ≥ 4, a/2 ≡ 1 (mod 4)

3 if r1 = 0, m = 4, 5, a/2 ≡ −1 (mod 4)

0 if r1 = 0, m = 6, a/2 ≡ −1 (mod 4)

1 if r1 = 0, m ≥ 7, a/2 ≡ −1 (mod 4)

5 if r1 = 1, m = 0, b/4 ≡ 1 (mod 4)

6 if r1 = 1, m = 0, b/4 ≡ −1 (mod 4)

6 if r1 = 1, m ≥ 1, b/4 ≡ 1 (mod 4)

7 if r1 = 2, m ≥ 1. b/4 ≡ −1 (mod 4).

As for the curves in A.1.III we simply have v2(N) = 8.
The values of v3(N) can be directly computed from Theorem 2.3. We find

that if E is one of the curves in Lemma A.1 and DE the corresponding Dio-
phantine equation which p satisfies, then, if 3 appears as a coefficient of d2 in
DE then v3(N) = 2, otherwise

v3(N) =


0 if r2 = 0 and ` = 0

1 if r2 = 0 and ` 6= 0

2 if r2 = 1.

Similarly, we find that if p appears as a coefficient of d2 in DE then vp(N) = 2,
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otherwise

vp(N) =


0 if r3 = 0 and n = 0

1 if r3 = 0 and n 6= 0

2 if r3 = 1.

Recall, we also made the convention in Appendix A that, in the Diophantine
equations listed in Lemma A.1, `, m, or n can only be zero if they appear on
the right-hand side of the equation. This just avoids redundancy in our list of
curves.

This is all the information needed to distribute the curves in A.1 across
the appropriate theorems in Sections 3.2 and 3.3. Notice that, by taking ` = 0,
we get curves of conductor 2αp2. This is how the curves in the theorems of
Section 3.1 were originally found, though the proof we gave there did not
reflect this.

Similar considerations can be applied to the curves in Lemma A.2.
This completes the proof of the theorems in Sections 3.2 and 3.3.



Chapter 4
Diophantine Lemmata

In this chapter we prepare all the Diophantine lemmata we will need in sub-
sequent chapters.

4.1 Useful Results

In this section we collect together, for the convenience of the reader, all the re-
sults that we will need to solve the Diophantine equations in the next section.

The first result we will need is Catalan’s Conjecture, which is now a theo-
rem of Mihailescu [52]. In this work we will refer to it as ”Catalan’s Theorem”,
or simply as ”Catalan”.

Theorem 4.1 (Mihailescu) The only solution to the diophantine equation

xn − ym = 1

in positive integers x, y, m, n with n, m > 1 is given by 32 − 23 = 1.

Some results of Cohn and Ljunggren that we will make use of are the
following.

Theorem 4.2 (Cohn [19]) Let k be odd. The only solutions to x2 + 2k = yn in
positive integers x, y and n ≥ 3 are

k x y n

6α + 1 5 · 23α 3 · 22α 3
4α + 5 7 · 22α 3 · 2α 4
10α + 5 11 · 25α+3 3 · 22α+1 5

150
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with α ≥ 0.

Theorem 4.3 (Ljunggren [48]) The equation x4− 3y2 = 1 has no solution in pos-
itive integers.

The main results that we will use in attacking the diophantine equations
arising in the table of the previous chapter are the results of Bennett, Skinner,
Vatsal and Yazdani. Here we restate the relevant parts of their results.

Theorem 4.4 (Bennett, Skinner [5]) If n ≥ 4 and C ∈ {1, 2, 3, 6} then the equa-
tion

xn + yn = Cz2

has no solutions in nonzero pairwise coprime integers (x, y, z) with, say, x > y

unless C = 2 and (n, x, y, z) ∈ {(5, 3,−1,±11), (4, 1,−1,±1)}.

Theorem 4.5 (Bennett, Vatsal, Yazdani [6]) If C ∈ {1, 2, 3}, n ≥ 5 is prime and
α, β are nonnegative integers, then the diophantine equation

xn + 3αyn = Cβz3

has no solutions in coprime integers (x, y, z) with |xy| > 1, unless

(|x|, |y|, α, n, |Cz3|) = (2, 1, 1, 7, 125)

or, possibly, (α, C) = (1, 2).

Theorem 4.6 (Bennett [3]) Suppose that a < b are positive integers with ab =
2α3β for nonegative integers α, β. If n ≥ 3 is an integer, then the only solutions in
positive integers x and y to the diophantine equation axn − byn = ±1 are given by

(a, b, x, y, n) =

{
(1, 2, 1, 1, n), (2, 3, 1, 1, n), (3, 4, 1, 1, n),

(8, 9, 1, 1, n), (1, 9, 2, 1, 3).

The proofs of the above theorem rely heavily on results on ternary dio-
phantine equations coming from the theory of Galois representations and
modular forms. In a few cases of the proofs of the results in the next sec-
tion we will need to make use of this theory, so we briefly outline the main
idea as it applies here. See [5] for the general details.
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Consider the equation 3`xq + 2myq = d2 with `,m, q fixed integers. We
want to show this equation has no solutions for x, y, d, with |xy| > 1, in the
case that q ≥ 7 is prime and m ≥ 6. Suppose that (x, y, d) = (a, b, c) is a
solution in this case. Without loss of generality we may assume c ≡ 1 (mod 4).
Then, as in [5], we associate to this solution the elliptic curve

Ea,b,c : Y 2 + XY = X3 +
c− 1

4
X2 + 2m−2bqX,

whose discriminant is
∆ = 22m−123`(ab2)q

and conductor is
N(Ea,b,c) = 2α3

∏
p|ab

p,

where α ∈ {−1, 0}. We then associate to Ea,b,c a Galois representation ρ
Ea,b,c
q

which is irreducible (see [5] corollary 3.1 , this is where |xy| > 1 and q ≥
7 is required). The representation ρ

Ea,b,c
q arises from a cuspidal newform of

weight 2 and level N = 2α+13 (see [5] Lemma 3.3). This is where we reach a
contradiction, since there are no newforms at level 3 or 6.

So how does this help us with the diophantine equations we will be con-
sidering in the next section? Well, the above result applies to the equations

d2 = 3`pn + 2m and d2 = 3` + 2mpn

to show that there are no solutions with both m ≥ 6 and n having a prime
divisor ≥ 7. Then we’ll use other methods to deal with the other cases of n

and m.

4.2 Diophantine lemmata

In the following p denotes a prime ≥ 5.
The following results generalize those of Ivorra [37] (and of Hadano [34]).

In particular, Ivorra’s work concerns the case when ` = 0, thus in our proofs
we can refer to Ivorra’s work and assume ` ≥ 1.

For an integer n, let Pmin(n) denote its smallest prime factor and Pmax(n)
denote its largest prime factor. This notation will be used throughout the rest
of this section.



Chapter 4. Diophantine Lemmata 153

Lemma 4.7 1. The solutions to

d2 − 2m3`pn = 1

with m, `, n ≥ 0 and d ≥ 1 satisfy one of the following

(i) n = 0 and (d, m, `) ∈ {(2, 0, 1), (3, 3, 0), (5, 3, 1), (7, 4, 1), (17, 5, 2)},

(ii) n = 1 and

(a) p = 5 and (d, m, `) ∈ {(9, 4, 0), (161, 6, 4)},
(b) p = 3` ± 2 with ` ≥ 1 and (d, m) = (p∓ 1, 0),
(c) p = 3`−1

2 with ` odd and (d, m) = (4p + 1, 3),

(d) p = 3`+1
2 with ` even and (d, m) = (4p− 1, 3),

(e) p = 3`+1
4 with ` odd and (d, m) = (8p− 1, 4),

(f) p = 2m−23` ± 1 with m ≥ 3 and d = 2p∓ 1,
(g) p = 2m−2 ± 1 with m ≥ 5 and (d, `) = (2p∓ 1, 0),
(h) p = 2m−2+1

3` with m ≥ 5, ` ≥ 1 and d = 2m−1+1, where 3` | m−2.

(iii) n = 2 and (p, m, `, d) ∈ {(5, 0, 3, 26), (5, 5, 1, 49), (7, 6, 1, 97),
(11, 3, 5, 485), (17, 7, 2, 577)}.

2. The solutions to
d2 − 2m3`pn = −1

with m, `, n ≥ 0 and d ≥ 1 must have ` = 0 and satisfy one of the following

(i) p ≥ 5 and (d, m, n) = (1, 1, 0),

(ii) p = 13 and (d,m, n) ∈ {(5, 1, 1), (239, 1, 4)},

(iii) p 6= 13, p ≡ 1 (mod 4) and (m,n) ∈ {(0, 1), (1, 1), (1, 2)}.

Proof. 1) It follows from Corollary 1.4 of [3] that n ∈ {0, 1, 2}. By considering
the equation modulo 8 either m = 0 or m ≥ 3, since 3 and 5 are quadratic
non-residues modulo 8. If m = 0 then the equation can be written

(d + 1)(d− 1) = 3`pn.

It follows d + 1 and d− 1 are coprime and so{
d + 1 = 3`

d− 1 = pn
or

{
d− 1 = 3`

d + 1 = pn.
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We will consider such cases many times throughout the proofs in this section
so to save space we will collapse them into one single pair of equations:{

d± 1 = 3`

d∓ 1 = pn.

Subtracting the two equations gives

±2 = 3` − pn.

If n = 0 then ` = 1 and d = 2; if n = 1 then p = 3` ∓ 2. Finally, if n = 2 then
p2 = 3` ∓ 2, but modulo 3 implies the sign must be negative, and modulo 4
implies ` is odd.

For the rest of the proof we assume m ≥ 3 and consider the cases n = 0, 1,
and 2 separately.

n = 0: Again, we could write the equation as d2 − 1 = 2m3` and factor the
left-hand side to obtain the solutions in an elementary way, however, a direct
application of Corollary 1.4 of [3] suffices to show the only solutions are

(d, m, `) = {(3, 3, 0), (5, 3, 1), (7, 4, 1), (17, 5, 2)}.

n = 1 or 2: The equation can be written as

(d + 1)(d− 1) = 2m3`pn

where gcd (d + 1, d− 1) = 2, so one of the following three cases must hold:{
d± 1 = 2 · 3`pn

d∓ 1 = 2m−1
,

{
d± 1 = 2 · pn

d∓ 1 = 3`
or

{
d± 1 = 2 · 3`

d∓ 1 = pn
(4.1)

Case 1 of (4.1): Subtracting the equations and dividing through by 2 gives

3`pn − 2m−2 = ±1. (4.2)

Suppose 3`pn − 2m−2 = −1, then consideration modulo 3 implies m is even.
Writing m − 2 = 2k the equation can be written as 3`pn = (2k + 1)(2k − 1),
thus {

2k ± 1 = 3`

2k ∓ 1 = pn
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The second equation has no solutions by Catalan’s theorem. Thus (4.2) is
3`pn − 2m−2 = 1. Clearly m ≥ 5 and consideration modulo 3 implies m

odd. If n = 1 then we are in case (ii)(g) or (ii)(h) of the lemma. In this case
22(m−2) ≡ 1 (mod 3`), and so 3`−1 | m − 2 (see, for instance, [Be00] Lemma
3.1). On the other hand, if n = 2 then ` is even (look modulo 3). The equation
can then be written

(3`/2p)2 − 2m−2 = 1

which has no solutions with m ≥ 5 by Catalan’s theorem.
Case 2 of (4.1): Subtracting the equations and dividing through by 2 gives

pn − 2m−23` = ±1.

If n = 1 then p = 2m−23` ± 1 which is case (ii)(f) of the lemma. If n = 2 then
p2 = 2m−23` ± 1. A simple inspection modulo 4 reveals that the negative sign
cannot occur, therefore

p2 = 2m−23` + 1.

Moving the 1 to the left-hand side and factoring, or simply applying corollary
1.4 of [Be:2004], reveals the only solutions are

(m, `, p) ∈ {(5, 1, 5), (6, 1, 7), (7, 2, 17)}.

Case 3 of (4.1): Subtracting the equations and dividing through by 2 gives

3` − 2m−2pn = ±1.

n = 1: If m = 3 then we are in (ii)(c) or (ii)(d) of the lemma. If m = 4 then
we are in case (ii)(e) of the lemma. Now suppose m ≥ 5, so the equation is

3` − 2m−2p = ±1. (4.3)

The right-hand side must be positive and ` must be even by considering the
equation modulo 8. Letting ` = 2k we may write

(3k + 1)(3k − 1) = 2m−2p.

Since gcd (3k + 1, 3k − 1) = 2 we are in one of the two cases:{
3k ± 1 = 2

3k ∓ 1 = 2m−3p
or

{
3k ± 1 = 2p

3k ∓ 1 = 2m−3.
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The first case has no solutions, so we must be in the second case. Subtracting
the two equations and dividing through by 2 gives p− 2m−4 = ±1, and so

p = 2m−4 ± 1 with m ≥ 6.

Going back to (4.3) (recall the right-hand side must be positive) where we
now know m ≥ 6 we get 3` ≡ 1 (mod 16). Thus 4 | `. Finally, taking (4.3)
modulo 5 results in 2m−2p ≡ 0 (mod 5), hence p = 5. Thus the only solution
with m ≥ 5 is (p, n,m, `, d) = (5, 1, 6, 4, 161).

n = 2: In this case the equation is

2m−2p2 = 3` ± 1.

If m is even then the equation is (2(m−2)/2p)2−3` = ±1 which has no solutions
by Catalan’s theorem. Therefore m is odd and the equation can be written as

2x2 − 3` = ±1,

where x = 2(m−3)/2p. Clearly there are no solutions, with x of the desired
form, when ` = 0, so assume ` ≥ 1. The left-hand side must be negative by
considering the equation modulo 3:

2x2 − 3` = −1.

Certainly the only solutions with ` ≤ 2 are (x, `) ∈ {(1, 1), (2, 2)}. As for
` ≥ 3, Nagell [54] has shown the only solution is (x, `) = (11, 5). Of these three
solutions only one has x of the desired form, namely (x, `) = (11, 5). Thus
2m−2p2 = 3` ± 1 has only the solution (p, m, `) = (11, 3, 5). This completes the
proof (1).

2) Considering the equation d2 − 2m3`pn = −1 modulo 3 implies ` = 0.
Therefore, the lemma follows from Lemma 3 in [37].

Lemma 4.8 1. The solutions to

d2 − 2mpn = 3`

with `, n ≥ 0, m ≥ 2, and d ≥ 1 satisfy one of the following:
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(i) n = 0 and (d, m, `) = (3, 3, 0), (5, 4, 2),

(ii) n = 1 and

(a) p = 3`/2+1
2 with `/2 even and (d, m) = (3`/2 + 2, 3),

(b) p = 3`/2+1
4 with `/2 odd and (d, m) = (3`/2 + 2, 4),

(c) p = 2m−2 ± 3`/2 with m ≥ 3 and d = 2p∓ 3`/2,

(iii) n = 2, and (p, m, `, d) = (5, 6, 4, 41).

(iv) n = 3 and (p, m, `, d) = (5, 9, 2, 253).

2. The solutions to
d2 + 3` = 2mpn

with m ≥ 2, ` ≥ 1 and n ≥ 0 satisfy one of the following:

(i) n = 0, m = 2 and ` = 1,

(ii) n = 2, p = 3`+1
4 , ` odd, m = 2, and d = 2p− 1,

(iii) n odd, n = 1 or Pmin(n) ≥ 7, p ≡ 1 (mod 3), m = 2 and ` odd.

3. The solutions to
d2 + 2mpn = 3`

with m ≥ 2, ` ≥ 1 and n ≥ 0 satisfy one of the following:

(i) n = 0 and (m, `, d) ∈ {(3, 2, 1), (5, 4, 7)},

(ii) n = 1 and

(a) p = 5 and (m, `, d) = (6, 8, 79),
(b) p = 3`/2−1

2 , `/2 odd, m = 3, and d = ±(4p− 3`/2),
(c) p = 3`/2 − 2m−2, m ≥ 3, ` even, and d = ±(2p− 3`/2),

(iii) n = 2 and

(a) p = 5 and (m, `, d) = (3, 6, 23),
(b) p = 7 and (m, `, d) = (7, 8, 17).,
(c) p2 = 3`/2−1

2 , `/2 odd, m = 3, and d = ±(4p2 − 3`/2),

Proof. 1) The case when ` = 0 is done in [37], so we may assume ` ≥ 1
henceforth. We break up the proof into a series of statements or ”assertions”.
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Assertion 1: If m ≥ 6 and Pmax(n) ≥ 7 then there are no solutions.

Write the equation as

3`(±1)q + 2myq = d2

where q = Pmax(n) ≥ 7 and y = pn/q. This is a particular form of the equation

3`xq + 2myq = d2.

Let Ea,b,c be the elliptic curve associated to a solution (x, y, d) = (a, b, c) of this
equation as described in case (v) of [5]. It follows from Lemma 3.3 in [5] that
Ea,b,c has conductor

N(Ea,b,c) =

{
3p if m = 6

6p if m ≥ 7.

and corresponds to a cuspidal newform of weight 2, and level{
3 if m = 6

6 if m ≥ 7.

This gives a contradiction since there are no cuspidal newforms of weight 2
at these levels.

Assertion 2: If m ≥ 2 then ` is even and m 6= 2.

This follows by inspection of the equation modulo 4 and 8.

Assertion 3: If m ≥ 2 and Pmax(n) ≥ 5 then ` = 2. Furthermore, m ≥ 8.

By assertion 2 it follows that ` is even so we may write ` = 2k and factor
the equation as

(d + 3`)(d− 3`) = 2mpn.

Either one of the following two cases holds:{
d± 3k = 2

d∓ 3k = 2m−1pn
or

{
d± 3k = 2pn

d∓ 3k = 2m−1.

Suppose we are in the first case. Subtracting the two equations and dividing
through by 2 gives

2m−2pn ± 3k = 1.
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Clearly there are no solutions when the sign is positive, and when the sign is
negative there are no solutions by Theorem 1.2 of [3]. Now suppose we are
in the second case. Subtracting the two equations and dividing through by 2
gives

xt + 3k(1)t = 2m−2(−1)3,

where t = Pmax(n) and x = ±pn/t. By Theorem 1.5 in [6] it follows that k =
1, i.e. ` = 2. Additionally, one may easily check by hand that there are no
solutions for m ≤ 7. This proves assertion 3.

Assertion 4: If m ≥ 2 and Pmax(n) ≥ 7 then there are no solutions.

This is a direct consequence of assertions 1 and 3.

Assertion 5: If m ≥ 2 and Pmax(n) = 5 then there are no solutions.

Recall ` = 2 by assertion 3 so the equation can be written as d3− 2mx5 = 9
where x = pn/5. Letting 0 ≤ a ≤ 4 be the residue of m modulo 5 we may write

(22md)2 = (2
m+4a

5 x)5 + 24a9.

If a ≥ 3 we may scale through by 2−10b where 4a = 10b + r, and 0 ≤ r ≤ 9 is
even, to get (

22md

25b

)2

=

(
2

m+4a
5 x

22b

)5

+ 2r9.

The point is that solutions to our original equation correspond to rational
points of a particular form on a genus 2 hyperelliptic curve: Y 2 = X5 + 22s9,
0 ≤ s ≤ 4. We show in Chapter 5 (see Theorem 5.1) that the rational points
on these curves all have X ∈ {−2, 0, 4}. Thus, there are no solutions to our
original equation. This proves assertion 5.

Assertion 6: If m ≥ 2 and Pmax(n) = 3 then the only solution is (p, n,m, `) =
(5, 3, 9, 2).

In this case the equation can be written as d2 = 2mx3 + 3` where x = pn/3.
Let 0 ≤ a ≤ 2 be the residue of m modulo 3 and 0 ≤ b ≤ 5 be the residue
of ` modulo 6. Recall ` is even, so b must be even also. Making the change of
variables

X =
2(m+2a)/4x

3(`−b)/3
and D =

2ad

3(`−b)/2
,
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the equation becomes

D2 = X3 + 22a3b where 2a, b ∈ {0, 2, 4}.

We are only interested in solutions where X and D are of the form above, in
particular (X, D) is to be a {3,∞}-integral solution. The table in appendix B
lists all the S-integral points on these elliptic curves. The only solution to this
equation of the desired form occurs when (a, b) = (0, 2) and it is (X, D) =
(40, 253). This pulls back to the solution (p, n,m, `, d) =(5, 3, 9, 2, 253) of the
original equation. This proves assertion 6.

Assertion 7: If m ≥ 2 and n = 2a where a ≥ 1 then p = 5 and (m, `, d) =
(6, 4, 41).

By considering the equation modulo 3 it follows that m is even (2 | n

means pn ≡ 1 (mod 3)). Write m = 2s and n = 2t so equation becomes

(d + 2spt)(d− 2spt) = 3`.

It follows that {
d + 2spt = 3`

d− 2spt = 1,

and subtracting these equations gives

2s+1pt = 3` − 1.

By assertion 2 we know ` is even so we may write ` = 2k and factor the
right-hand side:

2s+1pt = (3k + 1)(3k − 1).

It follows that {
3k + 1 = 2spt

3k − 1 = 2
or

{
3k ± 1 = 2pt

3k ∓ 1 = 2s.

The first case only has the solution (k, s, t) = (1, 2, 0) which implies n =
0, a contradiction. In the second case, it follows from Catalan and the sec-
ond equation that (s, k) ∈ {(1, 1), (2, 1), (3, 2)}, hence p = 5 and (m, `, d) =
(6, 4, 41). This proves assertion 7.
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Assertion 8: If m ≥ 2 and n = 1, then the only solutions are the ones stated in
the lemma.

Since ` is even (assertion 2) the equation can be written as

(d + 3k)(d− 3k) = 2mp,

where ` = 2k. It follows that{
d± 3k = 2p

d∓ 3k = 2m−1
or

{
d− 3k = 2

d + 3k = 2m−1p.

Eliminating d in the first case gives ±3k = p − 2m−2. Thus p = 2m−2 ± 3k. In
the second case eliminating d gives −3k = 1− 2m−2p, that is

2m−2p = 3k + 1.

Considering this equation modulo 8 implies m ≤ 4, so m ∈ {3, 4}. This proves
assertion 8.

Finally, if n = 0 then the equation is d2 = 2m + 3` which only has the
solution (m, `, d) = (4, 2, 5) by Lemma 5 in [37]. This completes the proof of
(1).

2) Considering the equation modulo 4 implies ` is odd, and considering
the equation modulo 8 implies m = 2. If n is even then we may write n = 2s

and the equation becomes

(d + 2ps)(d− 2p2) = −3`.

As we’ve done many times before in these arguments we eliminate d:

4ps = 3` + 1.

It follows from Theorem 1.2 in [3] that s ∈ {0, 1, 2}. If s = 0 or 1 then we are in
case (i) or (ii) of the lemma, respectively. So assume s = 2. The equation can
be factored as

(2p + 1)(2p− 1) = 3`

and since we are to have gcd (2p + 1, 2p− 1) = 1 it follows 2p − 1 = 1 and
hence there are no solutions. Now assume n is odd. Considering the equation



Chapter 4. Diophantine Lemmata 162

modulo 3 implies p ≡ 1 (mod 3). It suffices to show 3 and 5 cannot divide n

to complete the proof. If 3 divides n then the equation can be written as

d2 = 4x3 − 3`,

where x = pn/3. Changing variables we may write this as(
4d

33t

)2

=
(

2x

32t

)3

− 24 · 3a,

where ` = 6t + a, 0 ≤ a ≤ 5 is odd. By the tables in Appendix B there are no
rational points on these elliptic curves of the desired form. If 5 divides n then
a similar change of variables leads us to the equation(

16d

35t

)2

=
(

4x

32t

)5

− 28 · 3a,

where x = pn/5 and a ∈ {1, 3, 5, 7, 9}. Again, there are no solutions of the de-
sired form to these hyperelliptic curves as shown in Chapter 5. This completes
the proof of (2).

3) If n = 0 then the equation is

d2 = 3` − 2m.

Considering the equation modulo 3 it follows m must be odd. It is easy to
check that the only solutions with ` ≤ 2 are

(m, `, d) ∈ {(1, 1, 1), (3, 2, 1)}.

As for the case when ` ≥ 3 it follows from [19] that the only solutions are
(m, `, d) ∈ {(1, 3, 5), (5, 4, 7)}.

From now on we assume n ≥ 1. It follows from the equation that ` ≥
3 since the left-hand side is d2 + 2mpn ≥ 1 + 10 = 11. Furthermore, since
m ≥ 2 then considering the equation modulo 4 implies ` even, and further
considerations modulo 8 imply m ≥ 3.

Assertion: If m ≥ 2 and Pmax(n) ≥ 3 then the equation d2 + 2mpn = 3` has no
solutions.
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Since ` is even we may factor the equation

(d− 3k)(d + 3k) = −2mpn,

where ` = 2k. This leads to the two cases{
d± 3k = ±2

d∓ 3k = ∓2m−1pn
or

{
d± 3k = ±2pn

d∓ 3k = ∓2m−1.

Eliminating d in the first case gives

3k − 2m−2pn = 1,

and by Theorem 1.2 in [3] there are no solutions, since Pmax(n) ≥ 3. Eliminat-
ing d in the second case gives

3k − pn = 2m−2.

If Pmax(n) ≥ 5 then by Theorem 1.5 in [6] it follows that k = 1, i.e. ` = 2,
which contradicts ` ≥ 3. Now assume Pmax(n) = 3. We return to the original
equation and write it as

d2 = 2mx3 + 3`,

where x = pn/3. The solutions to this equation correspond to the rational
points on the elliptic curves

Y 2 = X3 + 22a3b

of the form

X =
2a+spn/3

32t
and Y =

2ad

33t
,

where m = 3s+a, ` = 6t+b and 2a, b ∈ {0, 2, 4}. From the tables in Appendix
B we see there are no such points. This proves the assertion.

Finally, we consider the solutions with n = 2a for a ≥ 0. Factoring the
equation, as we did in the proof of the assertion above, we are in one of two
cases:

3k − 2m−2pn = 1 or 3k − pn = 2m−2, (4.4)
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where k = `/2.
In the first case of (4.4), Theorem 1.2 of [3] implies n ∈ {1, 2}. If m = 3 then

we are in case (ii)(b) or (ii)(b) of the lemma. So assume m ≥ 4. Considering the
equation modulo 4 implies k is even, i.e. 4 | `, so we may factor the equation
as

(3s + 1)(3s − 1) = 2m−2pn,

where k = 2s, i.e s = `/4. We are in one of two cases:{
3s + 1 = 2m−3pn

3s − 1 = 2
or

{
3s ± 1 = 2m−3

3s ∓ 1 = 2pn.

The first case clearly has no solutions (under our assumptions on p and n).
Eliminating 3s in the second case gives

±1 = 2m−4 − pn,

from which it follows from Catalan’s Theorem that n = 1, and so p = 2m−4±1.
It follows from assumptions on p that m ≥ 6. Therefore, the equation in (4.4)
becomes

3k − 2m−2p = 1,

where m ≥ 6 and 4 | k (look modulo 16). Considering the equation modulo 5
implies 2m−2p ≡ 0 (mod 5), thus p = 5 and we are in case (ii)(c) of the lemma.

Now suppose we are in the second case of (4.4). If n = 1 then we are in
(ii)(c) of the lemma. So assume n = 2a with a ≥ 1. If m = 3 then the equation
is 3k − pn = 2 which only has the solution (p, n, k) = (5, 2, 3) in even n (see
[19]). So assume m ≥ 4. Considering the equation modulo 8 implies m ≥ 5
and k is even, i.e. 4 | `. Factor the equation as

(3t + ps)(3t − ps) = 2m−2,

where k = 2t and n = 2s. It follows that{
3t + ps = 2m−3

3t − ps = 2,

and so by eliminating ps we get 3t− 2m−4 = 1. By Catalan’s Theorem (t, m) ∈
{(1, 5), (2, 7)}, and solving for p, n,m and ` we get (p, n,m, `) = (7, 2, 7, 8).
This completes the proof of (3).
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Lemma 4.9 1. The solutions to

d2 − 2m3` = pn

with m ≥ 2, ` ≥ 0 and n ≥ 1 satisfy one of the following:

(i) n = 2 and

(a) p = 2m−23` − 1, m ≥ 3, and d = p + 2,
(b) p = 3` − 2m−2, m ≥ 3, and d = 2m−1 + p,
(c) p = 2m−2 − 3`, m ≥ 5, and d = 2m−1 − p,

(ii) n = 3, and (p, m, `, d) ∈ {(7, 1, 2, 19), (13, 2, 1, 47), (17, 7, 0, 71),
(19, 1, 9, 215), (73, 15, 2, 827)},

(iii) n = 4, and (p, m, `, d) ∈ {(5, 3, 3, 29), (7, 7, 4, 13)},

(iv) n = 6, and (p, m, `, d) = (5, 9, 1, 131),

(v) Pmin(n) ≥ 7, m ≤ 5 and ` ≥ 1,

(vi) n = 1.

2. The solutions to
d2 + 2m3` = pn

with m ≥ 1, ` ≥ 0 and n ≥ 1 satisfy one of the following:

(i) n = 2 and

(a) p = 2m−23` + 1, m ≥ 3, and d = p− 2,
(b) p = 3` + 2m−2, m ≥ 3, and d = p− 2 · 3`,

(ii) n = 3 and (p, m, `, d) ∈ {(5, 2, 0, 11), (7, 1, 3, 17), (13, 2, 5, 35),
(73, 4, 7, 595), (97, 3, 4, 955), (193, 4, 4, 2681), (1153, 5, 5, 39151)},

(iii) n = 4 and (p, m, `, d) ∈ {(5, 5, 1, 23), (5, 6, 2, 7), (7, 6, 1, 47),
(17, 7, 2, 287)},

(iv) Pmin(n) ≥ 7 and m ≤ 5,

(v) n = 1.

3. The solutions to
d2 + pn = 2m3`

with m ≥ 1, ` ≥ 0 and n ≥ 1 satisfy one of the following:
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(i) n = 3 and (p, m, `, d) ∈ {(23, 12, 1, 11), (5, 1, 5, 19), (7, 9, 0, 13),
(23, 3, 7, 73), (47, 5, 11, 2359)},

(ii) Pmin(n) ≥ 7 and m ≤ 5,

(iii) n = 1.

Proof. 1) The case when ` = 0 is treated in [37], so we may assume ` ≥ 1. We
break the proof up into the following sequence of ”assertions”.

Assertion 1: If m ≥ 6 and Pmax(n) ≥ 7 then there are no solutions.

Write the equation as

2m3`(1)q + yq = d2

where q = Pmax(n) ≥ 7 and y = pn/q. This is a particular form of the equation

2m3`xq + yq = d2.

Let Ea,b,c be the elliptic curve associated to a solution (x, y, d) = (a, b, c) of this
equation as described in case (v) of [5]. It follows form Lemma 3.3 in [5] that
Ea,b,c has conductor

N(Ea,b,c) =

{
3p if m = 6

6p if m ≥ 7.

and corresponds to a cuspidal newform of weight 2, and level{
3 if m = 6

6 if m ≥ 7.

This gives a contradiction since there are no cuspidal newforms of weight 2
at these levels. This proves assertion 1.

Assertion 2: The only solutions with 3 | n are the ones with n ∈ {3, 6} as
stated in the lemma.

Applying the change of variables

X =
pn/3

22s32t
and D =

d

23s33t
,
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to the equation d2 = pn + 2m3` where m = 6s + a and ` = 6t + b with
0 ≤ a, b ≤ 5, gives the equation

D2 = X3 + 2a3b.

The rational points of the desired form on these elliptic curves can be found
by inspection of the tables in Appendix B and are as follows:

(X, D, a, b) = {(17/4, 71/8, 1, 0), (7, 19, 1, 2), (19/9, 215/27, 1, 3), (13, 47, 2, 1),

(25/4, 131/8, 3, 1), (73/16, 827/64, 3, 2)}.

These pull back to the following solutions of the original equation:

(p, n,m, `, d) = {(17, 3, 7, 0, 71), (7, 3, 1, 2, 19), (19, 3, 1, 9, 215), (13, 3, 2, 1, 47),

(5, 6, 9, 1, 131), (73, 3, 15, 2, 827)}.

This proves assertion 2.

Assertion 3: There are no solutions with 5 | n.

Solutions to d2 = pn + 2m3` with 5 | n correspond to rational points on
D2 = X5 + 2a3b, 0 ≤ a, b ≤ 9, with x coordinate of the form

X =
pn/5

22s32t
.

We show in Chapter 5 that no such points exist.

Assertion 4: The only solutions with n even, 3 - n, are the ones with n ∈ {2, 4}
as stated in the lemma.

Considering the equation d2 = 2m3` + pn modulo 8 implies m ≥ 3. Since
n is even we may factor the equation as

(d + pk)(d− pk) = 2m3`,

where n = 2k. It follows that we are in one of two cases{
d− pn = 2

d + pk = 2m−13`,
or

{
d± pk = 2 · 3`

d∓ pk = 2m−1.
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Eliminating d in the first case gives 2m−23` − pk = 1, in which it follows from
[3] that k = 1 or 2. However, considering this equation modulo 3 implies k is
odd, therefore k = 1, and so p = 2m−23` − 1.

In the second case, eliminating d gives

3` ∓ pk = 2m−2. (4.5)

If Pmax(k) ≥ 5 then it follows from Theorem 1.5 in [6] that ` = 1. Recall 5 - n

by assertion 3, so we may assume Pmax(k) ≥ 7. However, assertion 1 implies
in this case that m ≤ 5. It is now easy to see that there are no solutions with
Pmax(n) ≥ 5. So we must have that k = 2a, a ∈ N. If k = 1, i.e. n = 2, then we
are are in case (i) of the lemma. So suppose k = 2a > 1. If the equation in (4.5)
is 3`+pk = 2m−2 then observe, by local considerations, that m ≥ 5 is even and
` is odd. Factoring the equation, as we’ve done many times over, leads us to
see there are no solutions. So equation (4.5) must be 3` − pk = 2m−2. If m = 3
then the equation is 3`− pk = 2 which has only the solution (p, `, k) = (5, 3, 2)
(see [19]). So assume m ≥ 4. Considering the equation modulo 4 implies ` is
even and so we may factor as usual:

(3`/2 + pk/2)(3`/2 − pk/2) = 2m−2,

from which it follows that {
3`/2 + pk/2 = 2m−3

3`/2 − pk/2 = 2,

and so, eliminating pk/2 we get 3`/2−2m−4 = 1. By Catalan’s Theorem (m, `) ∈
{(5, 2), (7, 4)}, only one of which pulls back to a solution of the original equa-
tion;

(p, n,m, `, d) = (7, 4, 7, 4, 113).

This proves assertion 4.

Finally, if n is odd it clearly follows from the equation d2 − 2m3` = pn that
p ≡ 1 (mod 12).

2) Assertion 1 in the proof of (1) above also holds for this case, that is,
there are no solutions if both m ≥ 6 and Pmax(n) ≥ 7. The case when ` = 0 is
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treated in [37] so we may assume ` ≥ 1. The solutions with 3 | n correspond
to points on the elliptic curves

y2 = x3 − 2a3b

of the form

x =
pn/3

22s32t
,

where 0 ≤ a, b ≤ 5, m = 6s + a and ` = 6t + b. It follows from the tables
in Appendix B that the only such points have n = 1 and correspond to the
seven solutions in part (ii) of the lemma. The solutions with 5 | n correspond
to points on the hyperelliptic curves

y2 = x5 − 2a3b

of the form

x =
pn/3

22s32t
,

where 0 ≤ a, b ≤ 9, m = 10s+a and ` = 10t+b. It follows from Chapter 5 that
there are no rational points on these curves of this form. We break the rest of
the proof up into two cases depending on the parity of n.

Assertion 5: The only solutions with n even are the ones with n ∈ {2, 4} as
stated in the lemma.

Since n is even we may factor the equation as

(d + pk)(d− pk) = −2m3`,

where n = 2k, it follows that we are in one of the two cases{
d− pk = −2

d + pk = 2m−13`,
or

{
d± pk = 2 · 3`

d∓ pk = 2m−1.

Eliminating d in the first case gives pk − 2m−23` = 1 which has no solutions
for k ≥ 3 by [3], thus k = 1 or 2. If k = 1 then p = 2m−23` + 1 and we are in
case (ii)(a) of the lemma. If k = 2 then we may factor the equation as

(p + 1)(p− 1) = 2m−23`,
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where, as usual, eliminating p gives ±1 = 3` − 2m−4, so

(m, `) ∈ {(5, 1), (7, 2), (6, 1)}

by Catalan. Thus,

(p, n,m, `) ∈ {(5, 4, 5, 1), (7, 4, 6, 1), (17, 4, 7, 2)}.

In the second case, eliminating d gives

pk = 3` + 2m−2.

We may assume 3, 5 - k as these cases were already considered above. Sup-
pose Pmax(k) ≥ 7, then from Theorem 1.5 in [6] it follows that ` = 1, and
so m ≥ 7. However, we have already seen that there are no solutions with
Pmax(n) ≥ 7 and m ≥ 7. Therefore k, thus n, must be a power of 2. If k = 1
then we are in (i)(b) of the lemma. If k = 2a > 1 then considering the equation
pk = 3` + 2m−2 modulo 3 implies m ≥ 4 and even, and modulo 4 implies ` is
even. As usual, factoring and applying Catalan gives (p, n,m, `) = (5, 4, 6, 2).
This proves assertion 5.

Finally, if n is odd and (n, 15) = 1 then either n = 1 or Pmax(n) ≥ 7 (and
m ≤ 5 as we’ve argued using [5] many times before).

This proves (2).
3) As we’ve seen in (1) and (2) there are no solutions with both m ≥ 6 and

Pmax(n) ≥ 7. The solutions with 3 | n correspond to rational points on the
elliptic curves y2 = x3 + 2a3b of the form

x =
−pn/3

22s32t
,

and these can be determined by consulting the tables in Appendix B. Simi-
larly, the solutions with 5 | n correspond to rational points on the hyperelliptic
curves y2 = x5 + 2a3b of the form

x =
−pn/5

22s32t
,

of which there are none by Theorem 5.1. The solutions with n even must have
m = 1 (looking modulo 3) and ` = 0 (looking modulo 4), thus there are no
solutions. This completes the proof of (3).
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Lemma 4.10 1. The solutions to

d2 − 2m = 3`pn

with m ≥ 1, ` ≥ 0 and n ≥ 1 satisfy one of the following:

(i) n = 1 and

(a) p = 2m/2+1+1
3` , ` ≥ 1, d = 2m/2 + 1,

(b) p = 3` ± 2m/2+1, ` ≥ 1, d = p± 2m/2,
(c) ` = 0, m odd.

(ii) n = 2 and

(a) (p, m, `, d) ∈ {(5, 6, 2, 17), (7, 8, 4, 65)},
(b) p = 2m−2 − 1, m ≥ 5, ` = 0 and d = p + 2,

(iii) n = 3 and (p, m, `, d) = (17, 7, 0, 71).

2. The solutions to
d2 − 2m = −3`pn

with m, ` ≥ 0 and n ≥ 1 satisfy one of the following:

(i) n = 1 and

(a) (p, m, `, d) ∈ {(5, 6, 1, 7), (7, 10, 2, 31)},
(b) p = 2m/2+1 − 3`, m ≥ 4 even, ` ≥ 1, and d = ±(2m/2 − p),
(c) ` = 0 and m ≥ 5 odd.

(ii) n = 3 and (p, m, `, d) ∈ {(5, 12, 1, 61), (7, 9, 0, 13)}.

3. The solutions to
d2 + 2m = 3`pn

with m ≥ 1, ` ≥ 0 and n ≥ 1 satisfy one of the following:

(i) n = 1,

(ii) n = 2 and

(a) (p, m, `, d) = (5, 4, 0, 3),
(b) p = 2m−1+1

3`/2 with m ≥ 3 odd, and d = 3`/2p− 2,
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(iii) n = 3 and (p, m, `, d) ∈ {(5, 2, 0, 11), (11, 9, 1, 59), (17, 15, 2, 107),
(19, 7, 1, 143), (67, 5, 3, 8549), (73, 2, 9, 1871)},

(iv) Pmax(n) ≥ 7 and m ∈ {1, 3, 5}.

Proof. 1) The case when ` = 0 is treated in [37] so we only need to consider
` ≥ 1. In this case it follows that m is even. As in the proofs of the other
lemmata it follows from [5] there are no solutions with both Pmax(n) ≥ 7
and m ≥ 6. Also, there are no solutions in the case when 3 | n (resp. 5 | n)
since solutions would correspond to {2,∞}-integral points on elliptic curves
(resp. hyperelliptic curves) of a particular form of which there are none by
Appendix B (resp. Theorem 5.1).

Assertion 1: The solutions with Pmax(n) ≥ 7 must have ` = 1.

Since m is even we can factor the equation as

(d + 2k)(d− 2k) = 3`pn,

where m = 2k. One of the following cases must hold:{
d + 2k = 3`pn

d− 2k = 1,
or

{
d± 2k = 3`

d∓ 2k = pn.

Eliminating d in the first case gives 3`pn − 2k+1 = 1 which has no solutions
with Pmax(n) ≥ 7 by Theorem 1.2 in [3]. Eliminating d in the second case gives

3` − pn = ±2k+1, (4.6)

from which ` = 1 follows by Theorem 1.5 of [6]. This proves assertion 1.

Assertion 2: There are no solutions with Pmax(n) ≥ 7.

It follows from remarks above that such solutions must have m ∈ {2, 4}
and ` = 1. Furthermore, it follows from (4.6) that

pn = 2m/2+1 + 3,

and so pn = 7 or 11, which contradicts Pmax(n) ≥ 7. This proves assertion 2.

Assertion 3: The solutions with n even are the ones with n = 2 as stated in the
lemma .



Chapter 4. Diophantine Lemmata 173

Considering the equation modulo 4 implies ` is even, so we may factor the
equation as

(d + 3`/2pn/2)(d− 3`/2pn/2) = 2m,

from which it follows that{
d± 3`/2pn/2 = 2m−1

d∓ 3`/2pn/2 = 2.

Eliminating d give 3`/2pn/2 = 2m−2 − 1 and so n ∈ {2, 4} by Theorem 1.2 of
[3]. Furthermore, since m is even we may factor the right-hand side of this
equation as

3`/2pn/2 = (2(m−2)/2 + 1)(2(m−2)/2 − 1),

from which it follows that{
2(m−2)/2 ± 1 = 3`/2

2(m−2)/2 ∓ 1 = pn/2.

It follows from the first equation and Catalan that

(m, `) ∈ {(4, 2), (6, 2), (8, 4)},

and plugging these into the second equation gives p = 5 or 7. This proves
assertion 3.

Finally, we need to consider the case when n = 1. Following the proof in
assertion 1, where the fact that m even was used to factor the equation, we
obtain the two cases:

3`p− 2m/2+1 = 1 or 3` − p = ±2m/2+1.

This completes the proof of (1).
2) Clearly there are no solutions with m ≤ 3. The case when ` = 0 is treated

in [37] so we only need to consider ` ≥ 1. In this case it follows that m is even
and m ≥ 4. Furthermore, n is odd. As in the proofs of the other lemmas it
follows from [5] there are no solutions with both Pmax(n) ≥ 7 and m ≥ 6.
Also, the only solution in the case when 3 | n is (p, n,m, `, d) = (5, 3, 12, 1, 61)
since solutions would correspond to {2,∞}-integral points on elliptic curves
which we can determine with the use of Appendix B.
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Assertion 4: The solutions with Pmax(n) ≥ 5 must have ` = 1. Furthermore,
there are no solutions with Pmax(n) ≥ 7.

This follows by a similar argument as in assertions 1 and 2 of part (1)
above.

If 5 | n then solutions to d2 − 2m = −3pn would correspond to {2,∞}-
integral points on hyperelliptic curves y2 = x5 + 22b34 with x of the form
x = (−3pn/5)/(22k) and by Theorem 5.1 there are no such points.

The only case left to consider is n = 1. Since m is even we may factor the
original equation as

(d + 2m/2)(d− 2m/2) = −3`p,

and so one of the following cases must hold:{
d + 2m/2 = 3`pn

d− 2m/2 = −1,
or

{
d± 2m/2 = ±3`

d∓ 2m/2 = ∓pn.

Eliminating d in the first case gives 3`p = 2m/2+1 − 1 where m/2 + 1 must be
even. By factoring the left-hand side we see the only solutions are (p, m, `) ∈
{(5, 6, 1), (7, 10, 2)}. Eliminating d in the second case gives p = 2m/2+1 − 3`.
This completes the proof of (2).

3) For the case when ` = 0 see [37]. As usual, we can apply [5] to show
there are no solutions with both Pmax(n) ≥ 7 and m ≥ 6. Also, local consider-
ations at 3 imply m is odd.

The case when 3 | n (respectively 5 | n) corresponds to finding {2,∞}-
integral points on elliptic curves (respectively hyperelliptic curves) so we can
use the tables in Appendix B (respectively Theorem 5.1) to show the only
solutions are the ones as stated in the lemma.

In the case when 2 | n we must have ` is even also and so we may factor
the equation. A result of Bennett [3] shows n = 2 or 4, and a result of Cohn
[19] shows n 6= 4. This completes the proof of (3).

Lemma 4.11 1. The solutions to 3d2 − 2m = pn with m ≥ 0 and n ≥ 1 satisfy
one of the following:
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(i) n = 3 and (p, m, d) = (11, 8, 23),

(ii) Pmax(n) ≥ 7 or n even, and m = 1,

(iii) n = 1.

2. The solutions to 3d2 − 2m = −pn with m ≥ 0 and n ≥ 1 satisfy one of the
following:

(i) n = 3 and (p, m, d) = (5, 7, 1),

(ii) n = 1.

3. The solutions to 3d2 + 2m = pn with m ≥ 0 and n ≥ 1 satisfy one of the
following:

(i) n = 3 and (p, m, d) = (11, 3, 21),

(ii) Pmax(n) ≥ 7 and m = 1,

(iii) n = 2 and m ∈ {0, 1},

(iv) n = 1.

4. The solutions to 3d2 − 2mpn = −1 with m ≥ 0 and n ≥ 1 satisfy m ∈ {0, 2}
and n ∈ {1, 2}.

5. The solutions to 3d2 − 2mpn = 1 with m ≥ 0 and n ≥ 1 satisfy m ∈ {0, 1}
and n ∈ {1, 2}.

Proof. In the first three cases there are no solutions with Pmax(n) ≥ 7 and
m ≥ 2 by Theorem 1.2 of [5].

1) First consider the case when m = 0, from which it follows that n is odd.
There are no solutions with n ≥ 4 by Theorem 1.1 of [5], and there are no
solutions with n = 3 as shown in [18] (alternatively, this case corresponds to
finding integral points on the Mordell curve y2 = x3 + 27). Thus n = 1 in this
case. In what follows we may assume m ≥ 1.

If 3 | n then the equation describes an elliptic curve (whose minimal
model is of the form y2 = x3 + 2a33, 0 ≤ a ≤ 5) and solutions correspond
to {2,∞}-integral points on the elliptic curve of a certain form. Using the ta-
bles in Appendix B we conclude that (p, m, d) = (11, 8, 23) is the only solution
in this case. Similarly, if 5 | n then the equation describes a hyperelliptic curve
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(whose minimal model is of the form y2 = x5 + 2a33, 0 ≤ a ≤ 9) and so we
may apply results of Chapter 5 to conclude there are no solutions.

Finally, if n is even then considering the equations modulo 4 implies m =
1.

The proofs of (2) and (3) are very similar.
4) Considering the equation modulo 4 and 8 implies m ∈ {0, 2}. Suppose

m = 0, then Theorem 1.1 of [5] implies Pmax(n) ≤ 3. If 3 | n then the equation
can be written as (9d)2 = (3pn/3)3 − 27 which, by the tables in Appendix
B, has no solutions of the desired form. If 4 | n then the equation can be
written as 3d2 = x4 − 1 which has no solutions by [22]. Therefore, n = 1, 2.
As for the case m = 2, Theorem 1.2 of [5] implies Pmax(n) ∈ {2, 3, 5}. If 5 | n

then the equation can be written as (2433d)2 = (223pn/5)5 − 2835 which has
no solutions by Theorem 5.1. If 3 | n then the equation can be written as
(2232d)2 = (2 ·3pn/3)3−2433 which has no solutions by the tables in Appendix
B. If 4 | n then by Theorem 1.2 of [7] there are no solutions. Therefore, n = 1, 2.

5) Considering the equations modulo 4 implies m ∈ {0, 1}. Suppose m = 0
then Theorem 1.1 of [5] implies Pmax(n) ≤ 3, and considering the equation
modulo 3 implies n odd. Thus, n = 1 or 3 | n. If 3 | n then the equation can be
written as (9d)2 = (3pn/3)3+27, and since y2 = x3+27 is a rank 0 elliptic curve
with only one nontrivial point (x, y) = (−3, 0), the equation has no solutions
of the desired form. Therefore n = 1. As for the case m = 1, Theorem 1.2 of
[5] implies Pmax(n) ∈ {2, 3, 5}. If 5 | n then the equation can be written as
(2433d)2 = (223pn/5)5 + 2835 which has no solutions by Theorem 5.1. If 3 | n

then the equation can be written as (2232d)2 = (2 · 3pn/3)3 − 2433 which has
no solutions by the tables in Appendix B. If 4 | n then there are no solutions
since the equation 3d2 = 2x4 + 1 has only the trivial solution d = x = 1 (see
[47]).

This completes the proof of the lemma.



Chapter 5
Rational points on y2 = x5 ± 2α3β

In this chapter we are concerned with finding all the rational points on the
genus 2 hyperelliptic curves y2 = x5 ± 2α3β where α and β are integers. The
results obtained here were used in the proofs of the Diophantine lemmata of
Chapter 4.

5.1 Introduction and Statement of Results

A celebrated theorem of Faltings states that a curve C of genus ≥ 2 has only
finitely many rational points: #C(K) < ∞ for K a number field. For fixed α

and β the curve C : y2 = x5 ± 2α3β is of genus 2 and so has finitely many
rational points. We wish to determine all such points, i.e. C(Q). It suffices
to only consider the cases 0 ≤ α, β ≤ 9 since two curves y2 = x5 + A and
y2 = x5 + B are Q-isomorphic if A/B is a tenth power. Unfortunately, there is
one curve we cannot say anything about, namely y2 = x5 − 2339. We believe
there are no (finite) rational points on this curve but are unable to prove this at
this time. Of course, it can be shown that there are no integral points on it (see
[71]). Keeping this curve aside for the time being we will prove the following
theorem.

Theorem 5.1 Let α and β be integers such that 0 ≤ α, β ≤ 9, and ε ∈ {±1}.
Suppose (α, β, ε) 6= (3, 9,−1). If C : y2 = x5 + ε2α3β contains a (finite) rational
point (x, y) then α, β, ε, x, y are one of those listed in Table 5.1.

177
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C C

α β ε C(Q) \ {∞} α β ε C(Q) \ {∞}
0 0 1 (−1, 0), (0,±1) 6 6 1 (0,±216)
0 1 1 (1,±2) 6 8 1 (0,±648)
0 2 1 (0,±3) 8 0 1 (0,±16)
0 4 1 (0,±9), (−2,±7), (3,±18)) 8 2 1 (0,±48)
0 5 1 (−3, 0) 8 4 1 (0,±144)
0 6 1 (0,±27) 8 6 1 (0,±432)
0 8 1 (0,±81), (18,±1377) 8 8 1 (0,±1296)
1 0 1 (−1,±1) 0 0 −1 (1, 0)
1 5 1 (3,±27) 0 5 −1 (3, 0)
1 8 1 (7,±173) 1 2 −1 (3,±15)
2 0 1 (0,±2), (2,±6) 1 4 −1 (3,±9)
2 2 1 (0,±6), (−2,±2) 3 8 −1 (9,±81)
2 4 1 (0,±18), (−3,±9), (6,±90) 4 0 −1 (2,±4)
2 5 1 (−3,±27) 4 2 −1 (10,±316)
2 6 1 (0,±54) 5 0 −1 (2, 0), (6,±88)
2 8 1 (0,±162) 5 4 −1 (6,±72)
3 0 1 (1,±3) 5 5 −1 (6, 0)
3 1 1 (1,±5) 5 6 −1 (9,±189)
4 0 1 (0,±4) 5 8 −1 (18,±1296)
4 1 1 (1,±7), (−2,±4) 7 4 −1 (33,±6255)
4 2 1 (0,±12) 8 1 −1 (4,±16)
4 3 1 (−2,±20) 8 5 −1 (12,±432)
4 4 1 (0,±36)
4 5 1 (6,±108), (−2,±4)
4 6 1 (0,±108)
4 8 1 (1,±324), (9,±405)
5 0 1 (−2, 0), (2,±8)
5 1 1 (−2,±8)
5 2 1 (1,±17), (−2,±16)
5 5 1 (−6, 0), (−2,±88)
6 0 1 (0,±8)
6 2 1 (0,±24), (4,±40)
6 4 1 (0,±72), (12,±504)

Table 5.1: Theorem 5.1: All points on C : y2 = x5 ± 2α3β
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5.2 Basic Theory of Jacobians of Curves

In this section we outline the basic theory of Jacobians of curves with a focus
on computing in the Jacobian using MAGMA. The reader we have in mind
is one who is familiar with the theory of, and computing with, elliptic curves
and wants to start computing in Jacobians. We end this section with a dis-
cussion of Chabauty’s technique for bounding the rational points on genus 2
curves and using its implementation in MAGMA. The reader already familiar
with this material can skip directly to Section 5.3.

By a hyperelliptic curve we shall mean a curve C (with a model) of the form
y2 = f(x), where f(x) is a polynomial of degree 2g+1, with distinct roots, and
with coefficients in a field k of characteristic 6= 2. Here g is a positive integer,
the genus of the curve C. We will mostly be interested in the case of genus 2
curves over number fields k (especially k = Q), however in stating the basic
theory we won’t restrict ourselves to genus 2 just yet.

When studying hyperelliptic curves one is chiefly concerned with deter-
mining the set of k-rational points on C, denoted by C(k). This is the set of
points (x, y) on C with x, y ∈ k. A celebrated theorem of Faltings says that if
g ≥ 2 and k is a number field, then this set is finite. Thus, one can hope to
write down the set C(k) explicitly.

Faltings theorem clearly does not hold for genus 1 curves (elliptic curves).
For example, it is well known that the elliptic curve E : y2 = x3 + x + 1 has
infinitely many Q-rational points. Some examples of rational points on E are:

(0,±1), (1/4,±9/8), (72,±611), (−287/1296,±40879/46656),

(43992/82369,±30699397/23639903).

In the elliptic curve case the rational points on C form a finitely generated
abelian group, so one is interested in determining the group structure of C(k),
called the Mordell-Weil group. In our example above, E(Q) ' Z, with genera-
tor P = (0, 1), and the points listed above are P , 2P , 3P , 4P and 5P .

For curves C of genus ≥ 2 the set C(k) does not form a group. However,
C(k) can be embedded into a finitely generated abelian group J(k) called the
Jacobian of C/k (also called the Mordell-Weil group of C). We will briefly sketch
how the Jacobian is constructed from C and state some of the basic facts that
we will use.
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5.2.1 Basic Setup

Let k be the algebraic closure of k. By a point on C we mean a pair (x, y) of
elements in k satisfying y2 = f(x) or one other element; the point at infinity,
denoted ∞. Let C(k) denote the set of all points on C. We can define an action
of Aut(k/k) on C(k) as follows: if σ ∈ Aut(k/k) and P ∈ C(k) then P σ =
(xσ, yσ). The set of k-rational points on C can be defined as

C(k) = {P ∈ C(k) : P σ = P for all σ ∈ Aut(k/k)}.

5.2.2 Divisors

The divisor group of C is the free abelian group generated by the points of C.
Thus a divisor D of C is a finite formal sum of the form

D =
∑

P∈C(k)

mP (P ),

where the mP are integers (only finitely many of which are non-zero). The
degree of D is deg(D) =

∑
P mP . If mP ≥ 0 for all P then we write D ≥ 0 and

call D an effective divisor. The divisors of degree 0 form a subgroup of Div(C)
which we denote by

Div0(C) = {D ∈ Div(C) : deg(D) = 0}.

We can define an action of Aut(k/k) on Div(C) in the obvious way

Dσ =
∑
P

mP (P σ).

We say that D is defined over k if Dσ = D for all σ ∈ Aut(k/k). Note that if
D =

∑
P mP (P ) then to say D is defined over k does not mean all P ∈ C(k),

it just means that Aut(k/k) permutes the P in the appropriate way. The group
of divisors defined over k is denoted by Divk(C) and similarly for Div0

k(C).

5.2.3 Principal Divisors and Jacobian

The (affine) coordinate ring k[C] of C is defined to be the quotient ring

k[C] = k[x, y]/〈y2 − f(x)〉,
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which is an integral domain. The field of fractions k(C) is called the function
field of C. We can think of the function field as the set of all rational functions
p(x, y)/q(x, y), with q not divisible by y2 − f(x), where we identify two such
functions if they agree at all points on C. Over k we can similarly define k[C]
and k(C). If P = (u, v) is a point on C then the local ring of C at P is subring of
k(C) consisting of functions defined at P ;

k[C]P = {F ∈ k(C) : F = g/h for some g, h ∈ k[C] with h(P ) 6= 0}.

This is a discrete valuation ring with (normalized) valuation denoted by ordP ,
maximal ideal denoted MP generated by tP , a uniformizer (see, [69] chapter
2). We extend ordP to k(C) by ordP (g/h) = ordP (g) − ordP (h). The point of
all this is that for g ∈ k(C) we can write

g = t
ordP (g)
P h,

for some h ∈ k(C) such that h(P ) 6= 0, and this can be done at each point
P on C. The order of g at P is ordP (g) and if ordP (g) > 0 then g has a zero
at P ; if ordP (g) < 0 then g has a pole at P . For the hyperelliptic curve C the
uniformizer can be explicitly determined, it depends on the point P = (u, v)
as follows

tP =

{
x− u if v 6= 0

y if v = 0

(see, for example [67]).
A function g ∈ k(C) has only a finite number of zeros and poles (see, for

example [67]) so we can associate to g a divisor

div(g) =
∑

P∈C(k)

ordP (g)(P ).

A divisor of this form is called principal and the set of all principal divisors is
denoted

Prin(C) = {div(g) : g ∈ k(C)}.

This is a subgroup of Div(C), since div(f) + div(g) = div(fg). In fact it is a
subgroup of Div0(C). We define the Jacobian of C to be the quotient

J(C) = Div0(C)/Prin(C).
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This is clearly an abelian group. This is going to be the main object we are
concerned with. We will see in a little bit that there is a more natural way to
view this object when C has genus 2. If D1 and D2 are degree 0 divisors then
we write D1 ∼ D2, and say D1 and D2 are linearly equivalent, if D1 − D2 ∈
Prin(C). For D ∈ Div0(C) we write [D]∼ (or just [D]) for the element of J(C)
represented by D.

We can extend the action of Aut(k/k) to J(C) in the natural way. Then
Jk(C) is defined to be subgroup of J(C) fixed by Aut(k/k). When it is clear as
to what curve we are referring, we shall denote J(C) and Jk(C) by J(k) and
J(k), respectively.

5.2.4 Geometric representation of the Jacobian

In the case when C is an elliptic curve, say E, it is well known that there is
a bijection between E(k) and J(k). To be more specific, the Riemann-Roch
theorem tells us that every element of J(k) has a unique representative of
the form (P ) − (∞), so the bijection E(k) −→ J(k) is given by P 7→ [(P ) −
(∞)]. In this case, the points on E(k) form a finitely generated abelian group
(with identity ∞), and the group operation turns out to have a geometric
description; P + Q + R = ∞ iff P , Q, and R are co-linear (with tangency
requirements if the points aren’t all distinct). This is sometimes stated as ”an
elliptic curve is its own Jacobian”.

Let C be a hyperelliptic curve of genus g. If P = (x0, y0) is a point on the
curve then so is P ′ = (x0,−y0). The points P and P ′ are zeros of the function
x − x0, which has a double pole at ∞. Thus the divisor (P ) + (P ′) − 2(∞) is
principal, that is−(P ′) ∼ (P )− 2(∞). It follows that each element of J(k) can
be represented in the form

D =
r∑

i=1

(Pi)− r(∞)

with the following condition satisfied: if the point Pi = (xi, yi) appears in D,
then the point P ′

i = (xi,−yi) does not appear as one of the Pj for j 6= i. This
implies, in particular, that the points of the form (x, 0) appear at most once in
D. It follows from Riemann-Roch that each element of J(k) can be represented
uniquely by such a divisor with the additional condition that r ≤ g. Such
divisors are called reduced.
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Now let’s restrict out attention to the case when C has genus 2. In this case
we then have that every element of J(k) has a unique (reduced) representa-
tive of the form

D = (P ) + (Q)− 2(∞),

where Q 6= P ′ (note P = ∞ or Q = ∞ is allowed). We denote the class of such
a divisor as {P,Q}. Thus

J(k) = { {P,Q} : P,Q ∈ C(k), Q 6= P ′}. (5.1)

The group operation on J(k) can be described geometrically, much in the
same way as for elliptic curves. The identity is O = {∞,∞} and

−{P,Q} = {P ′, Q′}. (5.2)

Let {P1, Q1} and {P2, Q2} be two points in J(k). There is a unique M(x) ∈ k[x]
of degree 3 such that y = M(x) passes through the four points P1, Q1, P2, Q2.
This curve intersects C at another 2 points P3 and Q3 and so

{P1, Q1}+ {P2, Q2}+ {P3, Q3} = O.

In other words

{P1, Q1}+ {P2, Q2} = {P ′
3, Q

′
3}. (5.3)

5.2.5 2-torsion in the Jacobian

From the identity 5.2 it follows that the elements of the form {(θ1, 0), (θ2, 0)},
where θ1 and θ2 are distinct roots of f(x), are of order 2 in J(k). Also, elements
of the form {(θ, 0),∞}, where θ is a root of f(x), are of order 2. These are

precisely all the 2-torsion elements. Thus, there are

(
6
2

)
= 15 elements of

order 2 in J(k).

5.2.6 Rational Points

The group Aut(k/k) acts on J(k) as follows

{P,Q}σ = {P σ, Qσ}.
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The set of rational points on the Jacobian is the set J(k); the subset of J(k) fixed
under the action of Aut(k/k) on J(k). That is,

J(k) = {{P,Q} ∈ J(k) : (P σ, Qσ) = (P,Q) or (Q,P ) for all σ ∈ Aut(k/k)}.

It follows that an element {P,Q} ∈ J(k) is rational if either

(i) P,Q ∈ C(k), or

(ii) P and Q are defined over a quadratic extension k(
√

d) of k and conju-
gate over k(

√
d),

As an example consider the curve C : y2 = x5 + 1 over the base field k =
Q. Some points in C(Q) are ∞, (0,±1), (−1, 0), and so we have the following
eight elements in J(Q)

O, {∞, (0, 1)}, {∞, (0,−1)}, {∞, (−1, 0)}, {(0, 1), (−1, 0)}
{(0,−1), (−1, 0)}, {(0, 1), (0, 1)}, {(0,−1), (0,−1)}.

The element {∞, (−1, 0)} is the only element of order 2 in J(Q), since x = −1
is the only rational root of x5 + 1. Using (5.3) we can compute

{∞, (0, 1)}+ {∞, (−1, 0)} = {∞,∞}+ {(0, 1), (−1, 0)} = {(0, 1), (−1, 0)}.

Over the quadratic field Q(i) (where i =
√
−1) we have

(1 + i,±(−1 + 2i)), (1− i,±(1 + 2i)) ∈ C(Q(i))

which gives two more points in J(Q):

{(1 + i,−1 + 2i), (1− i,−1− 2i)}, {(1 + i, 1− 2i), (1− i, 1 + 2i)}.

Notice that, for example, {(1 + i, 1− 2i), (0, 1)} is in J(Q) but not J(Q), since
(1 + i, 1− 2i) and (0, 1) are not quadratic conjugates over Q.

5.2.7 Structure of the Jacobian: The Mordell-Weil theorem

By construction (as a quotient of a free abelian group) the Jacobian is an
abelian group. In fact, the Mordell-Weil theorem states that J(k) is finitely
generated in the case when k is a number field. Thus, we can write it as

J(k) ' J(k)tors × Zr
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where J(k)tors is the torsion subgroup of J(k) (which is finite) and r is the
rank of J(k). Computing the torsion subgroup J(k)tors is a computationally
straightforward task. J(k)tors embeds into J(Fp) for each prime p for which C
has good reduction (p does not divide the discriminant of f ). The finite groups
J(Fp) are easy to compute and so piecing together the information at different
primes we can usually, in practice, determine the structure of J(k)tors. This
procedure is not effective but does work quite well in many situations. There
is a crude effective procedure involving the height function of J(k) which can
be used to compute J(k)tors. For all the curves we will be considering, we will
use MAGMA to compute the torsion subgroup.

There is no known effective procedure for computing the rank, however
there are a number of heuristics for computing bounds on the rank. In prac-
tice one can usually bound the rank r by doing a 2-descent, and then find
enough independent points in J(k) which meets this bound, thus determin-
ing the rank. This will be the case in all the curves we consider (except for
y2 = x5 − 2339, where we obtain a rank bound of 1 but can’t find a point on
the Jacobian).

Coming back to the example we considered above, namely y2 = x5 +
1 over Q, we found ten elements in J(Q). It can be determined that a rank
bound for J(Q) is zero and that the torsion subgroup has size 10, thus we
have found J(Q) completely. It follows that the only integral solutions to y2 =
x5 + 1 are (0,±1) and (−1, 0). Of course this is certainly well known; it is a
special case of Catalan’s theorem.

5.2.8 Computer Representations of Jacobians

Any element {(u1, v1), (u2, v2)} ∈ J(k) can be represented uniquely by a pair
of polynomials (a(x), b(x)) ∈ k[x]2, where a(x) = (x−u1)(x−u2) and y = b(x)
is the unique line through (u1, v1) and (u2, v2) (take y = b(x) to be the tangent
line to C if (u1, v1) = (u2, v2)). This is equivalent to requiring f(x) − b(x)2 be
divisible by a(x). In the case when the point of J(k) is of the form {∞, (u, v)}
then a(x) = x − u and b(x) = v. The identity O = {∞,∞} gets represented
as (1, 0). If we let kd[x] denote the set of polynomials of degree at most d then
we have a injection

φ : J(k) −→ k2[x]× k1[x],
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where the image is the set of all (a, b) such that a is monic and a | f − b2.
An algorithm for adding two elements in J(k) by adding their corre-

sponding images (a1, b1), (a2, b2) in k2[x] × k1[x] has been given by Cantor
[14].

The rational points J(k) on J(k) correspond to polynomials with rational
coefficients (over k), that is, φ restricts to

φ : J(k) ↪→ k2[x]× k1[x],

5.2.9 Some Examples (Using MAGMA)

Let’s come back to our example y2 = x5 + 1 (where k = Q). The elements in
J(Q) and their corresponding representations are as follows.

O = {∞,∞} 7−→ (1, 0)

{∞, (0, 1)} 7−→ (x, 1)

{∞, (0,−1)} 7−→ (x,−1)

{∞, (−1, 0)} 7−→ (x + 1, 0)

{(0, 1), (−1, 0)} 7−→ (x2 + x, x + 1)

{(0,−1), (−1, 0)} 7−→ (x2 + x,−x− 1)

{(0, 1), (0, 1)} 7−→ (x2, 1)

{(0,−1), (0,−1)} 7−→ (x2,−1)

{(1 + i,−1 + 2i), (1− i,−1− 2i)} 7−→ (x2 − 2x + 2, 2x− 3)

{(1 + i, 1− 2i), (1− i, 1 + 2i)} 7−→ (x2 − 2x + 2,−2x + 3).

As another example consider the curve y2 = x5+2234 over Q. Some points
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on J(Q) and their corresponding representations are as follows.

{∞, (0, 18)} 7−→ (x, 18)

{∞, (−3, 9)} 7−→ (x + 3, 9)

{∞, (6, 90)} 7−→ (x− 6, 90)

{(0, 18), (0, 18)} 7−→ (x2, 18)

{(−3, 9), (−3, 9)} 7−→ (x2 + 6x + 9, 45/2x + 153/2)

{(0, 18), (6,−90)} 7−→ (x2 − 6x,−18x + 18)

{(−1 +
√

11i, 2 + 4
√

11i),(−1−
√

11i, 2− 4
√

11i)}
7−→ (x2 + 2x + 12, 4x + 6).

We now show how MAGMA can be used to find the structure of J(Q).

> _<x>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve(xˆ5+2ˆ2*3ˆ4); J:=Jacobian(C);

> T,mapTtoJ:=TorsionSubgroup(J);

> T;

> {mapTtoJ(t):t in T};

Abelian Group isomorphic to Z/5

Defined on 1 generator

Relations:

5*P[1] = 0

{ (x,18,1), (xˆ2,-18,2), (xˆ2,18,2), (x,-18,1), (1,0,0) ]

This tells us that J(Q)tors ' Z/5 and is generated by (x, 18), i.e. the el-
ement {∞, (0, 18)}. All of J(Q)tors is also listed (elements in MAGMA are
listed as triples (a(x), b(x),deg a)). All that remains is to determine the rank
r of J(Q) and (if possible) the r free generators. We can use a 2-descent to
compute an upper bound r̂ on the rank, then search for independent points
in J(Q) and hope we get r̂ of them, thus verifying r̂ is the rank of J(Q).

> r:=TwoSelmerGroupDatat(J);r;

> R:=RationalPoints(J:Bound:=1000);

> B:=ReducedBasis(R); B;
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1

[ (xˆ2 - 6*x, -18*x + 18, 2) ]

We get an upper bound of 1 on the rank and we found a torsion-free ele-
ment, thus J(Q) has rank 1. Therefore

J(Q) ' Z/5× Z.

Note, we can’t conclude thatA = (x2−6x,−18x+18) generates the free part,
it could be a multiple of the generator. Let’s suppose the generator of the free
part is G and that A = nG for some integer n. Then taking (canonical) heights
we get ĥ(A) = n2ĥ(G). If A is not a generator then n ≥ 2 and so

ĥ(G) <
1
4
ĥ(A).

So we just need to search for points on J(Q) up to canonical height 1
4 ĥ(A)

to find the generator. In MAGMA we can search for points by naive height
h. Letting HC be the height constant of J(Q), i.e. the maximum difference
between the canonical and naive height, we have to search up to the bound

exp

(
ĥ(A)

4
+ HC

)
to find a generator.

> HC:=HeightConstant(J:Effort:=2);HC;

> A:=J![xˆ2 - 6*x, -18*x + 18];

> hA:=Height(A);hA;

> newbound:=Exp(hA/4+HC);newbound;

> R:=RationalPoints(J:Bound:=newbound);B:=ReducedBasis(R);B;

0.333877813949881712480190389291

7.08937355470437938278274010122

1303.54532976380801714115763662

[ (xˆ2 - 6*x, -18*x + 18, 2) ]

Therefore A is indeed a generator of the free part of J(Q). Thus

J(Q) = 〈(x, 18)〉 × 〈(x2 − 6x,−18x + 18)〉 ' Z/5× Z.

Other possible choices for the free generator are A + nP , where P = (x, 18)
and n any integer, these can be listed as follows.
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> [ n*P + A : n in {1..4} ];

[ (xˆ2-3*x-18, 9*x+36, 2), (xˆ2+2*x+12, -4*x-6, 2),

(xˆ2-6*x, -12*x-18, 2), (x-6, -90, 1) ]

5.2.10 Chabauty’s theorem

Theorem 5.2 (Chabauty [16]) Let C be a curve defined over genus g > 1 defined
over a number field k. If the Jacobian of C has rank less than g, then C(k) is finite.

This result is superceded by Falting’s work which gives the same conclu-
sion without a condition on the rank. However, the methods of Chabauty can
be used, in some situations, to give a sharp upper bound on the cardinality of
C(k), hence allowing us to determine the set C(k).

In our situation, C is a genus 2 curve of rank 1 and we are interested in
the set of rational points C(Q). Consider C(Q) as contained in J(Q) via the
embedding

P 7→ {P,∞}.

Suppose we have already found the torsion and free-generator of J(Q):

J(Q) = J(Q)tors × 〈D〉.

The basic idea is to pick an odd prime p for which C has good reduction; i.e.
C̃ = C (mod p) is a curve of genus 2 over Fp. Let D̃ be the reduction ofD mod
p, and let m be the order of D̃ in J(Fp). Then the divisor F = mD is in the
kernel of reduction. Anything in J(Q) can be written uniquely in the form

U + n · F , n ∈ Z,

where U is an element in the finite set

{B + i · D : B ∈ J(Q)tors and 1 ≤ i ≤ m− 1}.

Fix U as a member of this set. The question is for how many integers n can
U + n · F be of the form {P,∞}? It turns out that this only happens if n is
a root of a power series over Zp (the power series will depend on U). A the-
orem of Strassman can be used to bound the number of p-adic roots to this
power series and hence one can find an upper bound `(U) on the number of
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integers n for which U + n · F is of the form {P,∞}. Summing these bounds
`(U) over the finitely many U we get a bound on the number of possible el-
ements of the form {P,∞}, hence a bound on the cardinality of C(Q). If this
bound matches the number of known points we have found on the curve
then we know we have found all the rational points. For a thorough account
of Chabauty’s method the reader is directed to [15] (or [25] for a similar pro-
cedure using differential forms) .

Let us consider the task of finding all the rational points on the curve
C3 : y2 = x5+3. First we input the curve into MAGMA and search for rational
points.

> _<x>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve(xˆ5+3);

> RationalPoints(C:Bound:=1000);

{@ (1 : 0 : 0), (1 : -2 : 1), (1 : 2 : 1) @}

One can check that increasing the search bound does not produce any
more points. So we would like to show C3(Q) = {∞, (1, 0), (1,±2)}.

> J:=Jacobian(C);

> r:=TwoSelmerGroupData(J);r;

> T,mapTtoJ:=TorsionSubgroup(J);

> T;

> R:=RationalPoints(J:Bound:=1000);B:=ReducedBasis(R);B;

1

Abelian Group of order 1

[ (x - 1, 2, 1) ]

Thus J(Q) has rank 1 and trivial torsion. Also, (x− 1, 2) is a possible gen-
erator. By the procedure outlined in the previous section we can verify that
P = (x − 1, 2) is indeed a generator. With a generator in hand we can now
apply Chabauty at a prime≥ 7 to find an upper bound on the size of C(Q). In
fact, what Chabauty returns is a bound on half the number of non-Weierstrass
points; Weierstrass points are the points (x, 0) and the point at∞, all of which
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are easy to find. In this example the only Weierstrass point is ∞. Since we
know two non-Weierstrass point on our curve, we are done if Chabauty re-
turns the value 1. The function ”Chabauty” actually returns an indexed set
of tuples < (x, z, v, k) > such that there are at most k pairs of rational points
on C whose image in P1 under the x-coordinate map are congruent to (x : z)
modulo pv, and such that the only rational points on C outside these con-
gruences classes are Weierstrass points. We can just get a bound by using the
prefix # on the command.

> P:=B[1];"\\

> #Chabauty(P,7)

> #Chabauty(P,11)

> #Chabauty(P,17)

> #Chabauty(P,19)

3

3

8

1

Thus, applying Chabauty’s method at the prime 19 is enough to show that
we have found all the rational points on C3.

It is worth noting that Strassman’s theorem bounds the number of p-adic
roots, not just the integer roots, so it seems likely that the bound returned will
be strictly greater than the number of rational points. This is what happened
in the previous example for the primes 7, 11 and 17. For these primes the
procedure could not decide whether the extra p-adic solutions were actually
rational solutions. These p-adic points on the curve, which are not rational,
are affectionately called ”ghost” solutions; see [13].

As a second example let us consider the curve C324 := y2 = x5+324. (Note
324 = 2234.) This is the example we worked through in the previous section.
We showed

J324(Q) ' Z/5Z× Z

with torsion generator (x, 18) and free generator (x2−6x,−18x+18). A simple
search reveals the following points in C324(Q):

{∞, (0,±18), (−3,±9), (6,±90)}.
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If we try to apply Chabauty’s method we find that the smallest bound re-
turned is 4, which occurs at the primes 7, 31, 139, and 191. This is not enough
to conclude we have found all the points, but it does show there is at most
one other pair of rational points on the curve. It may happen that trying larger
primes will succeed in a bound of 3 but this simply becomes computational
costly. So, how do we proceed? Well, we do have additional information given
to us at the smaller primes, MAGMA returns p-adic information about these
supposed ”ghost” solutions, so it may be possible to piece information to-
gether at different primes to conclude no other rational point can exist. We
refer to this as ”multiple-prime” Chabauty and consider some examples in
Section 5.5.

5.3 Data for the curves y2 = x5 ± 2α3β

Let A = ±2α3β , 0 ≤ α, β ≤ 9, and CA denote the curve y2 = x5 + A. For each
value of A we can use MAGMA to compute the torsion group JA(Q)tors and
a rank bound rA on the Mordell-Weil group JA(Q) of CA (via a 2-descent).
Furthermore, we use MAGMA to try to find rA linearly independent points
in JA(Q) thus concluding the rank is exactly rA. We have already successfully
done this for A = 2234 in Section 5.2.9 and moreover we found a generator
for the free part of JA(Q).

For most of the two hundred curves we consider this works out quite well
in determining JA(Q). However, in some cases MAGMA was unable to find
a non-torsion point, simply because its height is just beyond the search range.
In each case, Michael Stoll [73] was able to find such points for us.

In Tables 5.2 through 5.9 we list the results of the computations performed
by MAGMA. Here r is the rank bound determined by MAGMA by doing a
2-descent (in the cases A = −2 · 33,−2537 we use the results of Stoll [72] to get
a sharper bound, this is included in brackets). #LI is the number of linearly
independent points found in JA(Q) by searching in MAGMA (and in some
cases the data provided by Stoll [73]). CA(Q)known is the set of known points
on CA(Q) including the point at infinity ∞. For curves of rank 0, we have
CA(Q) = CA(Q)known. For the curves of rank 1, we include in column p the
first prime for which Chabauty returns a bound on #CA(Q) which is equal
to the number of known points in CA(Q). This verifies we have found CA(Q)
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exactly. In the case that two primes appears in column p, we were unable to
find a single prime for which the Chabauty computation was successful in
determining CA(Q). However, a multiple-prime Chabauty argument at the
two primes works in these cases. This will be done in Section 5.5. Also, there
we will discuss the curves of rank 2.

As shown in Tables 5.2 through 5.9 we have successfully determined the
rank except in four cases:

A ∈ {2539,−39,−2339,−2436}.

In the case −2339 we have a rank bound of 1 but are unable to find a point in
J(Q). If a point does exist it can be shown (under Birch and Swinnerton-Dyer)
to be just beyond the reach of computing at this time [73]. Thus, at this time
we are unable to determine the rank. In the three other cases MAGMA has
returned a rank bound of 2 but was unable to find any non-torsion points. We
now show, in these cases, the rank is 0.

Let A ∈ {2539,−39,−2436}, and C
(d)
A denote the twist y2 = d(x5 + A) of

CA. Over K = Q(
√

d) these two curves are isomorphic from which it follows

rkJA(K) = rkJA(Q) + rkJ
(d)
A (Q).

Taking d = −3 we get the following, where the curve C
(d)
A is Q-isomorphic to

the one listed. The bounds for rkJA(K) were computed in MAGMA by using
a 2-descent, and the ranks rkJ

(d)
A (Q) were computed above.

A C
(d)
A rkJA(K) rkJ

(d)
A (Q)

2539 y2 = x5 − 2534 ≤ 2 2
−39 y2 = x5 + 34 ≤ 2 2
−2436 y2 = x5 + 243 ≤ 2 2

Thus rkJA(Q) = 0 in each of these cases.
To summarize, in the case when that rank is ≤ 1 we have now shown

(using classical Chabauty implemented in MAGMA) that C(Q) = C(Q)known

as listed in the tables except possibly in the cases1

A ∈ {2234, 25, 2632, 2633}.
1And when A = −2339 since we can’t determine the exact rank in this case, as men-
tioned above.
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C : y2 = x5 + 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

0 0 0 0 0 Z/10 (−1, 0), (0,±1)
0 1 1 1 1 Z (1,±2) 11
0 2 1 1 1 Z/5× Z (0,±3) 11
0 3 0 0 0 0
0 4 2 2 2 Z/5× Z2 (0,±9), (−2,±7), (3,±18)
0 5 1 1 1 Z/2× Z (−3, 0) 29
0 6 0 0 0 Z/5 (0,±27)
0 7 0 0 0 0
0 8 1 1 1 Z/5× Z (0,±81), (18,±1377) 17
0 9 1 1 1 Z 19
1 0 2 2 2 Z2 (−1,±1)
1 1 2 2 2 Z2

1 2 0 0 0 0
1 3 0 0 0 0
1 4 1 1 1 Z 19
1 5 1 1 1 Z (3,±27) 19
1 6 0 0 0 0
1 7 1 1 1 Z 11
1 8 2 2 2 Z2 (7,±173)
1 9 1 1 1 Z 31
2 0 1 1 1 Z/5× Z (0,±2), (2,±6) 19
2 1 0 0 0 0
2 2 1 1 1 Z/5× Z (0,±6), (−2,±2) 61
2 3 1 1 1 Z 19
2 4 1 1 1 Z/5× Z (0,±18), (−3,±9), (6,±90) 29, 59
2 5 1 1 1 Z (−3,±27) 29

Table 5.2: Data for y2 = x5 + 2α3β
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C : y2 = x5 + 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

2 6 1 1 1 Z/5× Z (0,±54) 11
2 7 0 0 0 0
2 8 0 0 0 Z/5 (0,±162)
2 9 1 1 1 Z 29
3 0 1 1 1 Z (1,±3) 13
3 1 1 1 1 Z (1,±5) 31
3 2 0 0 0 0
3 3 1 1 1 Z 11
3 4 1 1 1 Z 11
3 5 0 0 0 0
3 6 0 0 0 0
3 7 0 0 0 0
3 8 1 1 1 Z 19
3 9 1 1 1 Z 11
4 0 0 0 0 Z/5 (0,±4)
4 1 2 2 2 Z2 (1,±7), (−2,±4)
4 2 0 0 0 Z/5 (0,±12)
4 3 1 1 1 Z (−2,±20) 19
4 4 0 0 0 Z/5 (0,±36)
4 5 2 2 2 Z2 (6,±108)
4 6 1 1 1 Z/5× Z (0,±108) 61
4 7 1 1 1 Z 19
4 8 1 1 1 Z/5× Z (0,±324), (9,±405) 47
4 9 1 1 1 Z 17

Table 5.3: Data for y2 = x5 + 2α3β (con’t)
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C : y2 = x5 + 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

5 0 1 1 1 Z/2× Z (−2, 0), (2,±8)
5 1 2 2 2 Z2 (−2,±8)
5 2 3 3 3 Z3 (1,±17), (−2,±16)
5 3 1 1 1 Z 19
5 4 0 0 0 0
5 5 1 1 1 Z/2× Z (−2,±88), (−6, 0) 11
5 6 0 0 0 0
5 7 1 1 1 Z
5 8 1 1 1 Z
5 9 2 0
6 0 0 0 0 Z/5 (0,±8)
6 1 1 1 1 Z 19
6 2 1 1 1 Z/5× Z (0,±24), (4,±40) 29,59
6 3 1 1 1 Z 7,29
6 4 1 1 1 Z/5× Z (0,±72), (12,±504) 7
6 5 0 0 0 0
6 6 0 0 0 Z/5 (0,±216)
6 7 1 1 1 Z 17
6 8 0 0 0 Z/5 (0,±648)
6 9 0 0 0 0
7 0 1 1 1 Z 11
7 1 1 1 1 Z 11
7 2 1 1 1 Z 31
7 3 0 0 0 0
7 4 2 2 2 Z2

Table 5.4: Data for y2 = x5 + 2α3β (con’t)
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C : y2 = x5 + 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

7 5 0 0 0 0
7 6 1 1 1 Z 19
7 7 1 1 1 Z 19
7 8 0 0 0 0
7 9 1 1 1 Z 41
8 0 0 0 0 Z/5 (0,±16)
8 1 1 1 1 Z 29
8 2 1 1 1 Z/5× Z (0,±48) 29
8 3 0 0 0 0
8 4 0 0 0 Z/5 (0,±144)
8 5 1 1 1 Z 11
8 6 0 0 0 Z/5 (0,±432)
8 7 1 1 1 Z 29
8 8 0 0 0 Z/5 (0,±1296)
8 9 0 0 0 0
9 0 0 0 0 0
9 1 1 1 1 Z 11
9 2 0 0 0 0
9 3 1 1 1 Z 59
9 4 0 0 0 0
9 5 1 1 1 Z 29
9 6 1 0 1 Z 11
9 7 0 0 0 0
9 8 0 0 0 0
9 9 0 0 0 0

Table 5.5: Data for y2 = x5 + 2α3β (con’t)
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C : y2 = x5 − 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

0 0 1 1 1 Z/2× Z (1, 0) 11
0 1 0 0 0 0
0 2 0 0 0 0
0 3 1 1 1 Z 17
0 4 1 1 1 Z 11
0 5 0 0 0 Z/2 (3, 0)
0 6 1 1 1 Z 19
0 7 1 1 1 Z 17
0 8 0 0 0 0
0 9 2 0
1 0 0 0 0 0
1 1 0 0 0 0
1 2 2 2 2 Z2 (3,±15)
1 3 2 (0) 0 0 0
1 4 1 1 1 Z (3,±9) 13
1 5 1 1 1 Z 11
1 6 2 2 2 Z2

1 7 1 1 1 Z 11
1 8 0 0 0 0
1 9 1 1 1 Z 7
2 0 0 0 0 0
2 1 1 1 1 Z 17
2 2 0 0 0 0
2 3 0 0 0 0
2 4 0 0 0 0

Table 5.6: Data for y2 = x5 − 2α3β
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C : y2 = x5 − 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

2 5 0 0 0 0
2 6 0 0 0 0
2 7 1 1 1 Z 17
2 8 1 1 1 Z 41
2 9 0 0 0 0
3 0 1 1 1 Z 11
3 1 1 1 1 Z 11
3 2 0 0 0 0
3 3 1 1 1 Z 11
3 4 1 1 1 Z 19
3 5 0 0 0 0
3 6 0 0 0 0
3 7 0 0 0 0
3 8 1 1 1 Z (9,±81) 17
3 9 1 0
4 0 1 1 1 Z (2,±4) 29
4 1 1 1 1 Z 11
4 2 1 1 1 Z (10,±316) 11
4 3 0 0 0 0
4 4 1 1 1 Z 19
4 5 1 1 1 Z 17
4 6 2 0
4 7 0 0 0 0
4 8 0 0 0 0
4 9 0 0 0 0

Table 5.7: Data for y2 = x5 − 2α3β (con’t)
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C : y2 = x5 − 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

5 0 1 1 1 Z/2× Z (2, 0), (6,±88) 11
5 1 0 0 0 0
5 2 1 1 1 Z 19
5 3 1 1 1 Z 11
5 4 2 2 2 Z2 (6,±72)
5 5 1 1 1 Z/2× Z (6, 0) 11
5 6 2 2 2 Z2 (9,±189)
5 7 3 (1) 1 1 Z 11
5 8 1 1 1 Z (18,±1296) 11
5 9 0 0 0 0
6 0 1 1 1 Z 19
6 1 0 0 0 0
6 2 0 0 0 0
6 3 0 0 0 0
6 4 0 0 0 0
6 5 1 1 1 Z 17
6 6 1 1 1 Z 41
6 7 0 0 0 0
6 8 1 1 1 Z 41
6 9 1 1 1 Z 17
7 0 1 1 1 Z 11
7 1 1 1 1 Z 11
7 2 1 1 1 Z 11
7 3 0 0 0 0
7 4 2 2 2 Z2 (33,±6255)

Table 5.8: Data for y2 = x5 − 2α3β (con’t)
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C : y2 = x5 − 2α3β

α β r #LI rank J(Q) C(Q)known \∞ p

7 5 0 0 0 0
7 6 1 1 1 Z 29
7 7 1 1 1 Z 11
7 8 0 0 0 0
7 9 1 1 1 Z 11
8 0 0 0 0 0
8 1 1 1 1 Z (4,±16) 19
8 2 1 1 1 Z 61
8 3 0 0 0 0
8 4 0 0 0 0
8 5 1 1 1 Z (12,±432) 29
8 6 0 0 0 0
8 7 1 1 1 Z 29
8 8 0 0 0 0
8 9 0 0 0 0
9 0 0 0 0 0
9 1 1 1 1 Z 11
9 2 0 0 0 0
9 3 1 1 1 Z 11
9 4 0 0 0 0
9 5 1 1 1 Z 11
9 6 1 1 1 Z 29
9 7 0 0 0 0
9 8 0 0 0 0
9 9 0 0 0 0

Table 5.9: Data for y2 = x5 − 2α3β (con’t)



Chapter 5. Rational points on y2 = x5 ± 2α3β 202

In fact, we will show that C(Q) = C(Q)known in these cases as well. The first
case is dealt with using the results of Stoll in the next section. The last two
cases are dealt with in Section 5.5 by applying a multiple-prime Chabauty
argument. The case A = 25 is dealt with using results on ternary diophantine
equations, which we also do in Section 5.5.

5.4 The family of curves y2 = x5 + A

We take a digression in this section to mention some general results pertaining
to our curves. The curves of interest in this chapter are a part of the family of
curves

CA : y2 = x5 + A,

where A 6= 0 is a rational number. Since CA and CB are isomorphic over Q
if A/B is a tenth power we will assume that A is an integer and tenth-power
free. Except for some fixed values of A not much is known about the rational
points on this family of curves in general. However, recently Michael Stoll
(see [75]) has announced some very interesting results regarding the number
of rational points on these curves, in the case when the Jacobian JA(Q) of CA

has rank 1.
Before stating his results we’ll fix a bit of notation. Let dA be the number

of trivial points on CA(Q); points (x, y) ∈ CA(Q) with xy = 0, or the point
at infinity ∞. Non-trivial points occurs in pairs: (x, y), (x,−y), so we let nA

be half the number of non-trivial points. Equivalently, nA is the number of
nontrivial points with positive y coordinate. Then #CA(Q) = 2nA + dA, and
dA is given by

dA =


1 if A is neither a square nor a fifth power,

2 if A is a fifth power, A 6= 1,

3 if A is a square, A 6= 1,

4 if A = 1.

We have already seen that C1 has rank zero and that #C1(Q) = 4. Thus for
A 6= 1 we have #CA(Q) ≤ 2nA + 3. In [75] Stoll proves the following, where
rA denotes the Mordell-Weil rank of the Jacobian JA(Q) of CA.
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Theorem 5.3 (Stoll) Let A 6= 0 be an integer such that rA = 1. Then nA ≤ 2 and
consequently #CA(Q) ≤ 7.

More specifically he proves the following theorem, using a refinement of
the method of Chabauty and Coleman. Here p is an odd prime and vp denotes
the p-adic valuation.

Theorem 5.4 (Stoll) Let A 6= 0 be an integer such that rA = 1.

1. if vp(A) ∈ {1, 3, 7, 9} for some p 6= 11, 13 then nA ≤ 1.

2. if vp(A) = 5 for some p 6= 3, 5 then nA ≤ 1, if v3(A) = 5 then nA ≤ 2.

3. if vp(A) ∈ {2, 4, 6, 8} for some p 6= 2, 3, 7, or if v3(A) ∈ {6, 8}, or if v7(A) ∈
{2, 6, 8} then nA ≤ 1, otherwise if v3(A) ∈ {2, 4} then nA ≤ 2,

4. if A ≡ 1 (mod 3) then nA ≤ 1, and if A ≡ −1 (mod 3) then nA ≤ 2,

5. if A ≡ 1, 3, 9 (mod 11) then nA ≤ 1.

In the case that A = ±2a3b the upper bounds on #CA(Q) obtained by Stoll
matches the number of known points on CA(Q) in the following cases:

A ∈ {3, 38, 2234, 23, 3, 2433, 2438, 2634,−2 · 34,−2338,−2538,−283}.

Thus, our results in the previous section are superceded by Stoll’s results,
except in one case. Notice that in the case A = 2234 = 182 we were unable
to find a single prime at which the Chabauty bound is sufficient to determine
C182(Q), thus Stoll’s results now give us C182(Q).

The curve C182 has 7 rational points, so the bound in Theorem 5.3 is sharp.
In fact, as shown in Stoll, this is the unique curve that attains this bound.

One may have noticed, in the tables of the previous section, the only tor-
sion groups that arose were Z/2Z, Z/5Z, and, in the single case A = 1, Z/10Z.
This is also governed by a general result. It follows from results of Poonen
[58] that the torsion of JA(Q) is as follows.

1. If A is neither a square nor a fifth power then

JA(Q)tors = 0.
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2. If A = a2 for some integer a 6= 1 then

JA(Q)tors = {{(0, a),∞}, {(0,−a),∞}, {(0, a), (0, a)},

{(0,−a), (0,−a)}, O} ' Z/5Z.

3. If A = b5 for some integer b 6= 1 then

JA(Q)tors = { {(−b, 0),∞} , O} ' Z/2Z.

5.5 Proof of Theorem 5.1

We have verified in Section 5.3 that Theorem 5.1 holds for all A except A ∈
{2234, 25, 2632, 2633}. In the last section we verified, using a result of Stoll, the
case A = 2234. In this section we show that for A ∈ {25, 2632, 2633} the set
of known points C(Q)known listed in the tables of Section 5.3 are precisely all
the rational points these curves. In the last two cases we do this by applying
a multiple-prime Chabauty argument. Such an argument is scarcely found in
the literature, indeed I only know of only two places it is applied: [59] and
[13].

In what follows, we view CA(Q) ⊂ JA(Q) via the embedding (x0, y0) 7→
{(x0, y0),∞}.

5.5.1 A = 2632

Let us first consider the case A = 2632, where

CA(Q)known = {∞, (0,±24), (4,±40)}

and
JA(Q) = 〈{(0,−24),∞}〉 × 〈{(4,−40),∞}〉 ' Z/5Z× Z.

Let T = {(0,−24),∞} and P = {(4,−40),∞} be the generators for the torsion
and free-part respectively.

Considering the reduction modulo 29,

φ29 : J(Q) → J(F29) ' Z/30Z× Z/30Z.

The reductions of T and P , denoted by T29 and P29, have orders 5 and 30
respectively. We can input this into MAGMA as follows.
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> _<x>:=PolynomialRing(Rationals());

> C:=HyperellipticCurve(xˆ5+2ˆ6*3ˆ2); J:=Jacobian(C);

> T:=J![x,-24]]; P:=J![x-4,-4x-24];

> J29:=BaseChange(J,GF(29));

> T29:=J29!T; P29:=J29!P;

> Order(T29); Order(P29);

5

30

It follows that the image of the Mordell-Weil group is φ29(J(Q)) = 〈T29〉×
〈P29〉 ' Z/5Z × Z/30Z (it is a simple computation to check T29 6∈ 〈P29〉). A
rational point (x0, y0) on CA(Q) has image of the form {(x0, y0),∞} in J(F29)
so we determine conditions on the integers a and b such that the element
aT + bP has this image.

> for a in [0..4] do;

for> for b in [0..29] do;

for|for> if (a*T29+b*P29)[3] le 1 then;

for|for|if> print(<a,b,a*T29+b*P29>);

for|for|if> end if;

for|for> end for;

for> end for;

<0, 0, (1, 0, 0)>

<0, 1, (x + 25, 18, 1)>

<0, 29, (x + 25, 11, 1)>

<1, 0, (x, 5, 1)>

<1, 10, (x + 7, 3, 1)>

<2, 8, (x + 1, 16, 1)>

<3, 22, (x + 1, 13, 1)>

<4, 0, (x , 24, 1)>

<4, 12, (x + 7, 26, 1)>

This tells us that the image of aT +bP is {(x0, y0),∞} for a and b satisfying
the following congruences.
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a (mod 5) b (mod 30) φ29(aT + bP )
0 0 {∞,∞}
0 1 {(4, 18),∞}
0 29 {(4, 11),∞}
1 0 {(0, 5),∞}
0 18 {(22, 3),∞}
2 8 {(28, 16),∞}
3 22 {(28, 13),∞}
4 0 {(0, 24),∞}
4 12 {(22, 26),∞}

Our five known rational points on C(Q) are in the residue classes {∞,∞},
{(4, 18),∞}, {(4, 11),∞}, {(0, 5),∞} and {(0, 24),∞}, to show there are no
other rational points it suffices to show two things:
(i) each coset of J(Q)/kerφ29 contains at most one rational point,
(ii) there are no rational points in the other four residue classes.

The first of these follows from the fact that the differential killing the
Mordell-Weil group modulo 29, ω = x + 18, does not vanish on any of the
residue classes. This is the Coleman-Chabauty part of the argument. As for
(ii) we repeat the computations above with p = 59 and get the following
classes of (a (mod 60), b (mod 60)):

(0, 0), (0, 1), (0, 7), (0, 11), (0, 30), (0, 49), (0, 53),

(0, 59), (1, 0), (1, 36), (2, 44), (3, 16), (4, 0), (4, 24).

Considering b modulo 30, we see the four extraneous classes which appeared
at the prime 29 do not appear here. Thus, these four classes do not contain a
rational point. Therefore, for A = 2632

CA(Q) = {∞, (0,±24), (4,±40)}.

I would like to thank Michael Stoll for his help with this argument.

5.5.2 A = 2633

In this case there are no known finite points on CA(Q). Using MAGMA we
find

JA(Q) = 〈P 〉 ' Z,
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where P = {x2−24x+88, 116x−584}. Making a call, in MAGMA, to Chabauty
at the prime 7 we find that there are at most two rational points on C. Simi-
larly, we get the same information at the prime 29. In particular, applying the
same type of computations as above, aP lies in a residue class of the form
{r,∞} modulo 7 only when a ≡ 0, 2, 3 (mod 5), and aP lies in a residue class
of the form {r,∞} modulo 29 only when a ≡ 0, 1, 4 (mod 5). Thus the only
rational points on CA lie in the coset of J(Q)/kerφ7 which contains ∞. The
differential killing the Mordell-Weil group modulo 7, ω = x, does not vanish
on any of the residue classes thus each coset contains at most one rational
point, and so ∞ is the only rational points on CA(Q).

5.5.3 A = 25

In this case we can apply results from the theory of ternary diophantine equa-
tions to get our result. Any rational solution to the equation y2 = x5 + 25 is of
the form (x, y) = (a/e2, b/e5) for some a, b, e ∈ Z with (a, e) = (b, e) = 1. Thus
a, b, e is a solution to

b2 = a5 + (2e2)5. (5.4)

Let g = (a, b), then g2 divides (2e2)5, but (g, e) = 1, so g2 | 25. Therefore,
g = 1, 2, 4. Since 5.4 has no solutions with a, b, 2e2 pairwise coprime (see Dar-
mon and Merel [28]) then g 6= 1. Also, g 6= 4 since otherwise 2 | (b, e), a
contradiction. It must be the case that g = 2, and so dividing the equation
through by 25 we have

2(b/8)2 = (a/2)5 + (e2)5,

where b/8, a/2, e are pairwise coprime. By a result of Bennett and Skinner (see
Theorem 4.4) the only solutions are with (a/e2, b/e5) = (2,±8), (−2, 0).

5.5.4 Rank ≥ 2 cases

We’ve shown in Section 5.3 that the curves of the form y2 = x5 + 2α3β , whose
Mordell-Weil group has rank ≥ 2, correspond to the following values of α

and β:

(α, β) = (0, 4), (1, 0), (1, 1), (1, 8), (4, 1), (4, 5), (5, 1), (5, 2), (7, 4).
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Similarly, the curves of the form y2 = x5 − 2α3β with rank ≥ 2 are the follow-
ing:

(α, β) = (1, 2), (1, 6), (5, 4), (5, 6), (7, 4).

For these fourteen remaining curves the classical method of Chabauty can-
not be applied to bound the number of rational points since the rank is not
smaller that the genus. In this case, we would need to use covering methods. In
this method, finitely many curves Di are constructed which are unramified
covers of C, φi : Di → C. In such a situation, there is a number field K such
that C(Q) ⊂

⋃
i φi(Di(K)). Hence, determining K-rational points on all Di

will allow us to determine all Q-rational points on C. The covering curves Di

that typically arise have genus 17 and thus it seems we have made the prob-
lem harder. However, Di may possess maps down to some elliptic curve E,
for which the Elliptic Curve Chabauty method may be applied. This method is
described by Bruin in [9], [10], [11], and much of the method has been imple-
mented in MAGMA by Bruin (some of which is still unavailable in the current
release [12]). The methods, though implemented, require a high level of so-
phistication on the part of the user. Bruin verified the results for these final
fourteen cures for us [12].

It is interesting to note that one of these curves can be taken care of using
a result of Bruin [10]. A rational point (X, Y ) on the curve Y 2 = X5 + 2 has
the form X = x/s2, Y = y/s5 for integers x, y, s such that (x, s) = (y, s) = 1.
The equation can then be written as

y2 = x5 + 2(s2)5

where we are now interested in coprime integer solutions x, y, s. It follows
from [10] (see also [36]) that the only solutions are with (x, y, s2) = (−1,±1, 1).
These pull back to the solutions (X, Y ) = (−1,±1).



Chapter 6
Classification of Elliptic Curves over Q with
2-torsion and conductor 2αp2

As we mentioned before we have broken up our attempt to classify curves
of conductor 2αp2 into two stages. In the first stage, we showed if there is
an elliptic curve of conductor 2αp2 then p must satisfy one of finitely many
explicitly determined Diophantine equations, and we have explicit formulae
for the coefficients of the elliptic curve. All this information is given in the
theorems of Section 3.1.1. The second stage is to refine the theorems of Section
3.1.1 by using Diophantine lemmata of Chapter 4. It is stage two that is the
focus of this chapter.

In Section 6.1 we state the classification theorems for curves of conductor
2αp2. The novelty of these theorems is that, given a prime p, it is straightfor-
ward to check whether there are any elliptic curves of conductor 2αp2 (with
2-torsion), and to determine all such curves. Of course, for small values of p

(say p ≤ 17) one could (and should!) consult the tables of Cremona. For larger
values, however, we believe the work in this chapter will prove valuable.

6.1 Statement of Results

Let p be a prime number and N an integer satisfying the inequalities

p ≥ 5, and 0 ≤ N ≤ 8.

In what follows, we announce nine theorems which describe, up to Q-isomor-
phism, all the elliptic curves over Q, of conductor 2Np2, having a rational

209
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point of order 2 over Q. Each theorem corresponds to a value of N . The re-
sults obtained are presented in the form of tables analogous to those of [26]
and [37]. Each row consists of an elliptic curve of Q realizing the desired con-
ditions. The columns of the table consist of the following properties of E:

1. A minimal model of E of the form

y2 + a1xy = x3 + a2x
2 + a4x + a6,

where the ai are in Z. If N ≥ 2, we can choose a model such that
a1 = a6 = 0. In the statements of these theorems we omit the columns
corresponding to these coefficients.

2. The order |T2| of the group T2 consisting of Q-rational 2-torsion points
of E.

3. The factorization of the minimal discriminant ∆ of E.

4. The j-invariant of E.

5. The Kodaira symbols of E at 2 and p.

Also appearing in the table are the letters of identification (A,B,...) for each
elliptic curve. The curves which are labeled by the same letter are linked by an
isogeny over Q of degree 2 or a composition of two such isogenies. Moreover,
they are numbered in the order of how they are to be determined.

As in Chapter 3 we will use the following notation.

a. For each elliptic curve E over Q, we denote by E′ the elliptic curve over
Q obtained from E by a twist by

√
−1.

b. Given an integer n which is a square in Z we denote, for the rest of this
work, by

√
n the square root of n satisfying the following condition:{√

n ≡ 1 mod 4 if n is odd
√

n ≥ 0 if n is even .
(6.1)

Theorem 6.1 The elliptic curves E defined over Q, of conductor p2, and having
at least one rational point of order 2, are the ones such that one of the following
conditions is satisfied:



Chapter 6. Classification of Elliptic Curves of conductor 2αp2 211

1. p = 7 and E is Q-isomorphic to one of the elliptic curves:

minimal model T2 j ∆

A1 [1,−1, 0,−2,−1] 2 −153 73

A2 [1,−1, 0,−107, 552] 2 −153 79

B1 [1,−1, 0,−37,−78] 2 2553 73

B2 [1,−1, 0,−1822, 30393] 2 2553 79

2. p = 17 and E is Q-isomorphic to one of the elliptic curves:

minimal model T2 j ∆

C1 [1,−1, 1,−1644,−24922] 4 2733

172 178

C2 [1,−1, 1,−26209,−1626560] 2 188633

17 177

C3 [1,−1, 1,−199, 510] 4 333

17 177

C4 [1,−1, 1,−199,−68272] 2 −333

174 1710

3. p− 64 is a square and E is Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 |T2| ∆ j Kodaira

A1 1 p
√

p−64−1
4 −p2 0 2 p7 (p−16)3

p I0; I∗1
A2 1 p

√
p−64−1

4 4p2 p3
√

p− 64 2 −p8 (256−p)3

p2 I0; I∗2

Theorem 6.2 The elliptic curves E/Q of conductor 2p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 7 or 17 and E is Q-isomorphic to one of the curves in the table in Appendix
C.

2. 1 p = 2k + 1, where k ≥ 5, and E is Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j Kodaira

A1 1 p(2p−1)−1
4

p3(p−1)
16 0 22k−8p8 (2kp+1)3

22k−8p2 I2k−8; I∗2

A2 1 p(2p−1)−1
4

−p3(p−1)
4

−p4(p−1)(2p−1)
16 2k−4p7 (2k+4p+1)3

2k−4p
Ik−4; I∗1

B1 1 −p(p−2)−1
4

−p2(p−1)
16 0 22k−8p8 (p2−2k)3

22k−8p2 I2k−8; I∗2

B2 1 −p(p−2)−1
4

p2(p−1)
4

−p3(p−1)(p−2)
16 −2k−4p10 (2k+4−p2)3

2k−4p4 Ik−4; I∗4

1These are Fermat primes; it is necessary that k be a power of 2 for 2k + 1 to be prime.
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|T2| = 4 for A1 and B1, and |T2| = 2 for the other two.

3. 2 p = 2q − 1, where q ≥ 5 is a prime, and E is Q-isomorphic to one of the
elliptic curves:

a1 a2 a4 a6 ∆ j Kodaira

C1 1 p(2p+1)−1
4

p3(p+1)
16 0 22q−8p8 (2qp+1)3

22q−8p2 I2q−8; I∗2

C2 1 p(2p+1)−1
4

−p3(p+1)
4

−p4(p+1)(2p+1)
16 2q−4p7 (2q+4p+1)3

2q−4p Iq−4; I∗1

D1 1 −p(p+2)−1
4

p2(p+1)
16 0 22q−8p8 (p2+2q)3

22q−8p2 I2q−8; I∗2

D2 1 −p(p+2)−1
4

−p2(p+1)
4

p3(p+1)(p+2)
16 2q−4p10 (p2+2q+4)3

2q−4p4 Iq−4; I∗4

|T2| = 4 for C1 and D1, and |T2| = 2 for the other two.

4. there exists m ≥ 7 such that p − 2m = d2, for some d ≡ 1 (mod 4), and E is
Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j Kodaira

E1 1 pd−1
4 −2m−6p2 0 22m−12p7 (p−2m−2)3

22m−12p I2m−12; I∗1
E2 1 pd−1

4 2m−4p2 2m−6p3d −2m−6p8 (2m+2−p)3

2m−6p2 Im−6; I∗2

|T2| is 2 for both curves.

5. there exists m ≥ 7 such that p + 2m = d2, for some d ≡ 1 (mod 4), and E is
Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j Kodaira

F1 1 pd−1
4 2m−6p2 0 22m−12p7 (p+2m−2)3

22(m−6)p
I2m−12; I∗1

F2 1 pd−1
4 −2m−4p2 −2m−6p3d 2m−6p8 (p+2m+2)3

2m−6p2 Im−6; I∗2

|T2| is 2 for both curves.

6. there exists m ≥ 7 such that 2m − p = d2, for some d ≡ 1 (mod 4), and E is
Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j Kodaira

G1 1 −pd−1
4 2m−6p2 0 22m−12p7 (p−2m−2)3

22m−12p I2m−12; I∗1

G2 1 −pd−1
4 −2m−4p2 2m−6p3d 2m−6p8 (2m+2−p)3

2m−6p2 Im−6; I∗2

2These are Mersenne primes; it is necessary that q be a prime for 2q − 1 to be prime.
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|T2| is 2 for both curves.

7. there exists m ≥ 7 such that 2m−1
p is a square integer, say pd2 = 2m − 1 with

d ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j-invariant Kodaira

H1 1 −pd−1
4 2m−6p 0 −22m−12p3 (1−2m−2)3

22m−12 I2m−12; III

H2 1 −pd−1
4 −2m−4p 2m−6p2d 2m−6p3 (2m+2−1)3

2m−6 Im−6; III

I1 1 p2d−1
4 2m−6p3 0 −22m−12p9 (1−2m−2)3

22m−12 I2m−12; III∗

I2 1 p2d−1
4 −2m−4p3 −2m−6p5d 2m−6p9 (2m+2−1)3

2m−6 Im−6; III∗

|T2| is 2 for all four curves.

8. there exists m ≥ 7 such that 2m+1
p is a square integer, say pd2 = 2m + 1 with

d ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic curves:

a1 a2 a4 a6 ∆ j-invariant Kodaira

J1 1 pd−1
4 2m−6p 0 22m−12p3 (2m−2+1)3

22m−12 I2m−12; III

J2 1 pd−1
4 −2m−4p −2m−6p2d 2m−6p3 (2m+2+1)3

2m−6 Im−6; III

K1 1 p2d−1
4 2m−6p3 0 22m−12p9 (2m−2+1)3

22m−12 I2m−12; III∗

K2 1 p2d−1
4 −2m−4p3 −2m−6p5d 2m−6p9 (2m+2+1)3

2m−6 Im−6; III∗

|T2| is 2 for all four curves.

Theorem 6.3 The elliptic curves E/Q of conductor 4p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 5 and E is Q-isomorphic to one of the elliptic curves in the table in Ap-
pendix C.

2. p− 4 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

A1 p
√

p− 4 −p2 2 24p7 256(p−1)3

p IV; I∗1
A2 −2p

√
p− 4 p3 2 −28p8 p4(16−p)3

p2 IV∗; I∗2
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Theorem 6.4 The elliptic curves E/Q of conductor 8p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 5, 7, 17, 23 or 31 and E is Q-isomorphic to one of the elliptic curves in the
table in Appendix C.

2. p− 2m is a square for m = 4 or 5 and E is Q-isomorphic to one of the elliptic
curves:

a2 a4 ∆ j-invariant Kodaira

A1 p
√

p− 2m −2m−2p2 22mp7 212−2m(p−2m−2)3

p I∗1, III
∗; I∗1

A2 −2p
√

p− 2m p3 −2m+6p8 26−m(2m+2−p)3

p2 III∗, II∗; I∗2

|T2| is 2 for both curves.

3. p + 32 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

B1 p
√

p + 32 23p2 2 210p7 4(p+8)3

p III∗; I∗1
B2 −2p

√
p + 32 p3 2 −211p8 −2(p+128)3

p2 II∗; I∗2

Theorem 6.5 The elliptic curves E/Q of conductor 16p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 5, 7, 17, 23 or 31 and E is Q-isomorphic to one of the elliptic curves in the
table in Appendix C.

2. p = 2k + 1, where k ≥ 4, and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

A1 −p(2p− 1) (p− 1)p3 4 22k+4p8 (2kp+1)3

22k−8p2 I∗2k−4; I
∗
2

A2 2p(2p− 1) p2 2 2k+8p7 (2k+4p+1)3

2k−4p
I∗k; I∗1

A3 −2p(p + 1) p2(p− 1)2 2 24k−4p7 (p+22k−4)3

22(2k−8)p
I∗4k−12; I

∗
1

A4 −2p(p− 2) p4 2 −2k+8p10 (2k+4−p2)3

2k−4p4 II∗; I∗4

3. p = 2q−1, where q ≥ 3 is a prime, and E is Q-isomorphic to one of the elliptic
curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

B1 −p(2p + 1) (p + 1)p3 4 22q+4p8 (2qp+1)3

22q−8p2 I∗2q−4; I
∗
2

B2 2p(2p + 1) p2 2 2q+8p7 (2q+4p+1)3

2q−4p2 I∗q ; I
∗
1

B3 −2p(p− 1) p2(p + 1)2 2 −24q−4p7 (p−22q−4)3

22(2q−8)p
I∗4q−12; I

∗
1

B4 −2p(p + 2) p4 2 2q+8p7 (p2+2q+4)3

2q−4p4 II∗; I∗4

4. p − 2m is a square for m = 2 or m ≥ 4, and E is Q-isomorphic to one of the
elliptic curves:

a2 a4 ∆ j-invariant Kodaira

C1 −p
√

p− 2m −2m−2p2 22mp7 (p−2m−2)3

22m−12p II∗, I∗2m−8; I
∗
1

C2 2p
√

p− 2m p3 −2m+6p8 (2m+2−p)3

2m−6p2 I∗0, I
∗
m−2; I

∗
2

|T2| is 2 for both curves.

5. p + 32 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

D1 −p
√

p + 32 23p2 2 210p7 4(p+8)3

p I∗2; I
∗
1

D2 2p
√

p + 32 p3 2 211p8 2(p+27)3

p2 I∗3; I
∗
2

6. there exists an odd integer m ≥ 7 such that p + 2m is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

E1 −p
√

p + 2m 2m−2p2 2 22mp7 (p+2m−2)3

22m−12p I∗2m−8; I
∗
1

E2 2p
√

p + 2m p3 2 2m+6p8 (p+2m+2)3

2m−6p2 I∗m−2; I
∗
2

7. there exists an odd integer m ≥ 7 such that 2m − p is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

F1 p
√

2m − p 2m−2p2 2 −22mp7 (p−2m−2)3

22(m−6)p
I∗2m−8; I

∗
1

F2 −2p
√

2m − p −p3 2 2m+6p8 (2m+2−p)3

2m−6p2 I∗m−2; I
∗
2

8. there exists m ≥ 7 such that 2m−1
p is a square integer and E is Q-isomorphic

to one of the elliptic curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

G1 p
√

2m−1
p 2m−2p 2 −22mp3 (1−2m−2)3

22m−12 I∗2m−8; III

G2 −2p
√

2m−1
p −p 2 2m+6p3 (2m+2−1)3

2m−6 I∗m−2; III

H1 −p2
√

2m−1
p 2m−2p3 2 −22mp9 (1−2m−2)3

22m−12 I∗2m−8; III
∗

H2 2p2
√

2m−1
p −p3 2 2m+6p9 (2m+2−1)3

2m−6 I∗m−2; III
∗

9. there exists m ≥ 5 such that 2m+1
p is a square integer and E is Q-isomorphic

to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

I1 −p
√

2m+1
p 2m−2p 2 22mp3 (2m−2+1)3

22m−12 I∗2m−8; III

I2 2p
√

2m+1
p p 2 2m+6p3 (2m+2+1)3

2m−6 I∗m−2; III

J1 −p2
√

2m+1
p 2m−2p3 2 22mp9 (2m−2+1)3

22m−12 I∗2m−8; III
∗

J2 2p2
√

2m+1
p p3 2 2m+6p9 (2m+2+1)3

2m−6 I∗m−2; III
∗

Theorem 6.6 The elliptic curves E/Q of conductor 32p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 7 and E is Q-isomorphic to one of the elliptic curves in the table in Ap-
pendix C.

2. p ≥ 5 and E is Q-isomorphic to one of the elliptic curves:

(i) p ≡ 1 (mod 4),

a2 a4 |T2| ∆ j-invariant Kodaira

A1 0 −p2 4 26p6 1728 III; I∗0
A2 0 22p2 2 −212p6 1728 I∗3; I

∗
0

A3 6p p2 2 29p6 2333113 I∗0; I
∗
0

A4 −6p p2 2 29p6 2333113 I∗0; I
∗
0

B1 0 −p 2 26p3 1728 III; III
B2 0 22p 2 −212p3 1728 I∗3; III

C1 0 −p3 2 26p9 1728 III; III∗

C2 0 22p3 2 −212p9 1728 I∗3; III
∗

(ii) p ≡ 3 (mod 4),
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a2 a4 |T2| ∆ j-invariant Kodaira

D1 0 −p2 4 26p6 1728 III; I∗0
D2 0 22p2 2 −212p6 1728 I∗3; I

∗
0

D3 6p p2 2 29p6 2333113 I∗0; I
∗
0

D4 −6p p2 2 29p6 2333113 I∗0; I
∗
0

E1 0 p 2 −26p3 1728 III; III
E2 0 −22p 2 212p3 1728 I∗3; III

F1 0 p3 2 −26p9 1728 III; III∗

F2 0 −22p3 2 212p9 1728 I∗3; III
∗

3. p− 1 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

G1 2p
√

p− 1 −p2 2 26p7 64(4p−1)3

p III; I∗1
G2 −22p

√
p− 1 22p3 2 −212p8 64(4−p)3

p2 I∗3; I
∗
2

G1’ −2p
√

p− 1 −p2 2 26p7 64(4p−1)3

p III; I∗1
G2’ 22p

√
p− 1 22p3 2 −212p8 64(4−p)3

p2 I∗3; I
∗
2

4. p− 8 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

H1 p
√

p− 8 −2p2 2 26p7 64(p−2)3

p III; I∗1
H2 −2p

√
p− 8 p3 2 −29p8 −8(p−32)3

p2 I∗0; I
∗
2

H1’ −p
√

p− 8 −2p2 2 26p7 64(p−2)3

p III; I∗1
H2’ 2p

√
p− 8 p3 2 −29p8 −8(p−32)3

p2 I∗0; I
∗
2

5. p + 8 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

I1 p
√

p + 8 2p2 2 26p7 64(p+2)3

p III; I∗1
I2 −2p

√
p + 8 p3 2 29p8 8(p+32)3

p2 I∗0; I
∗
2

I1’ −p
√

p + 8 2p2 2 26p7 64(p+2)3

p III; I∗1
I2’ 2p

√
p + 8 p3 2 29p8 8(p+32)3

p2 I∗0; I
∗
2

Theorem 6.7 The elliptic curves E/Q of conductor 64p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:
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1. p = 5, 7, 17 and E is Q-isomorphic to one of the elliptic curves in the table in
Appendix C.

2. p ≥ 5 and E is Q-isomorphic to one of the elliptic curves:

(i) p ≡ 1 (mod 4),

a2 a4 |T2| ∆ j-invariant Kodaira

A1 0 −22p2 4 212p6 1728 I∗2; I
∗
0

A2 0 p2 2 −26p6 1728 II; I∗0
A3 12p 22p2 2 215p6 2333113 I∗5; I

∗
0

A4 −12p 22p2 2 215p6 2333113 I∗5; I
∗
0

B1 0 p 2 −26p3 1728 II; III
B2 0 −22p 2 212p3 1728 I∗2; III

C1 0 p3 2 −26p9 1728 II; III∗

C2 0 −22p3 2 212p9 1728 I∗2; III
∗

(ii) p ≡ 3 (mod 4),

a2 a4 |T2| ∆ j-invariant Kodaira

D1 0 −22p2 4 212p6 1728 I∗2; I
∗
0

D2 0 p2 2 −26p6 1728 II; I∗0
D3 12p 22p2 2 215p6 2333113 I∗5; I

∗
0

D4 −12p 22p2 2 215p6 2333113 I∗5; I
∗
0

E1 0 −p 2 26p3 1728 II; III
E2 0 22p 2 −212p2 1728 I∗2; III

F1 0 −p3 2 26p9 1728 II; III∗

F2 0 22p3 2 −212p9 1728 I∗2; III
∗

3. p = 2k + 1, where k ≥ 4, and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 ∆ j-invariant Kodaira

G1 2p(2p− 1) 22(p− 1)p3 22k+10p8 (2kp+1)3

22k−8p2 I∗0; I
∗
2

G2 −22p(2p− 1) 22p2 2k+14p7 (2k+4p+1)3

2k−4p
I∗k+4; I

∗
1

G3 p(p + 1) 22k−2p2 24k+2p7 (p+22k−4)3

22(2k−8)p
I∗4k−8; I

∗
1

G4 22p(p− 2) 22p4 −2k+14p10 (2k+4−p2)3

2k−4p4 I∗k+4; I
∗
4

G1’ −2p(2p− 1) 22(p− 1)p3 22k+10p8 (2kp+1)3)3

22k−8p2 I∗0; I
∗
2

G2’ 22p(2p− 1) 22p2 2k+14p7 (2k+4p+1)3

2k−4p
I∗k+4; I

∗
1

G3’ −p(p + 1) 22k−2p2 24k+2p7 (p+22k−4)3

22(2k−8)p
I∗4k−8; I

∗
1

G4’ −22p(p− 2) 22p4 −2k+14p10 (2k+4−p2)3

2k−4p4 I∗k+4; I
∗
4

|T2| = 4 for G1 and G1’, and |T2| = 2 for all others.

4. p = 2q−1, where q ≥ 3 is a prime, and E is Q-isomorphic to one of the elliptic
curves:

a2 a4 ∆ j-invariant Kodaira

H1 2p(2p + 1) 22(p + 1)p3 22q+10p8 (2qp+1)3

22q−8p2 I∗0; I
∗
2

H2 −22p(2p + 1) 22p2 2q+14p7 (2q+4p+1)3

2q−4p I∗q+4; I
∗
1

H3 p(p− 1) 22q−2p2 −24q+2p7 (p−22q−4)3

22(2q−8)p
I∗4q−8; I

∗
1

H4 22p(p + 2) 22p4 2q+14p10 (p2+2q+4)3

2q−4p4 I∗q+4; I
∗
4

H1’ −2p(2p + 1) 22(p + 1)p3 22q+10p8 (2qp+1)3

22q−8p2 I∗0; I
∗
2

H2’ 22p(2p + 1) 22p2 2q+14p7 (2q+4p+1)3

2q−4p I∗q+4; I
∗
1

H3’ −p(p− 1) 22q−2p2 −24q+2p7 (p−22q−4)3

22(2q−8)p
I∗4q−8; I

∗
1

H4’ −22p(p + 2) 22p4 2q+14p10 (p2+2q+4)3

2q−4p4 I∗q+4; I
∗
4

|T2| = 4 for H1 and H1’, and |T2| = 2 for all others.

5. p− 1 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

I1 2p
√

p− 1 p3 2 −26p8 −64(p−4)3

p2 II; I∗2
I2 −22p

√
p− 1 −22p2 2 212p7 64(4p−1)3

p I∗2; I
∗
1

I1’ −2p
√

p− 1 p3 2 −26p8 −64(p−4)3

p2 II; I∗2
I2’ 22p

√
p− 1 −22p2 2 212p7 64(4p−1)3

p I∗2; I
∗
1
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6. there exists m ≥ 2 such that p− 2m is a square and E is Q-isomorphic to one
of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

J1 2p
√

p− 2m −2mp2 2 22m+6p7 (p−2m−2)3

22m−12p I∗2m−4; I
∗
1

J2 −22p
√

p− 2m 22p3 2 −2m+12p8 (2m+2−p)3

2m−6p2 I∗m+2; I
∗
2

J1’ −2p
√

p− 2m −2mp2 2 22m+6p7 (p−2m−2)3

22m−12p I∗2m−4; I
∗
1

J2’ 22p
√

p− 2m 22p3 2 −2m+12p8 (2m+2−p)3

2m−6p2 I∗m+2; I
∗
2

7. there exists an odd integer m ≥ 2 such that p + 2m is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

K1 2p
√

p + 2m 2mp2 2 22m+6p7 (p+2m−2)3

22m−12p I∗2m−4; I
∗
1

K2 −22p
√

p + 2m 22p3 2 2m+12p8 (p+2m+2)3

2m−6p2 I∗m+2; I
∗
2

K1’ −2p
√

p + 2m 2mp2 2 22m+6p7 (p+2m−2)3

22m−12p I∗2m−4; I
∗
1

K2’ 22p
√

p + 2m 22p3 2 2m+12p8 (p+2m+2)3

2m−6p2 I∗m+2; I
∗
2

8. there exists an odd integer m ≥ 3 such that 2m − p is a square and E is
Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

L1 2p
√

2m − p 2mp2 2 −22m+6p7 (p−2m−2)3

22m−12p I∗2m−4; I
∗
1

L2 −22p
√

2m − p −22p3 2 2m+12p8 (2m+2−p)3

2m−6p2 I∗m+2; I
∗
2

L1’ −2p
√

2m − p 2mp2 2 −22m+6p7 (p−2m−2)3

22m−12p I∗2m−4; I
∗
1

L2’ 22p
√

2m − p −22p3 2 2m+12p8 (2m+2−p)3

2m−6p2 I∗m+2; I
∗
2

9. there exists m ≥ 3 such that 2m−1
p is a square and E is Q-isomorphic to one of

the elliptic curves:
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a2 a4 ∆ j-invariant Kodaira

M1 2p
√

2m−1
p 2mp −22m+6p3 −(2m−2−1)3

22m−12 I∗2m−4; III

M2 −22p
√

2m−1
p −22p 2m+12p3 (2m+2−1)3

2m−6 I∗m+2; III

M1’ −2p
√

2m−1
p 2mp −22m+6p3 −(2m−2−1)3

22m−12 I∗2m−4; III

M2’ 22p
√

2m−1
p −22p 2m+12p3 (2m+2−1)3

2m−6 I∗m+2; III

N1 2p2
√

2m−1
p 2mp3 −22m+6p9 −(2m−2−1)3

22m−12 I∗2m−4; III
∗

N2 −22p2
√

2m−1
p −22p3 2m+12p9 (2m+2−1)3

2m−6 I∗m+2; III
∗

N1’ −2p2
√

2m−1
p 2mp3 −22m+6p9 −(2m−2−1)3

22m−12 I∗2m−4; III
∗

N2’ 22p2
√

2m−1
p −22p3 2m+12p9 (2m+2−1)3

2m−6 I∗m+2; III
∗

|T2| = 2 for all these curves.

10. there exists m ≥ 2 such that 2m+1
p is a square and E is Q-isomorphic to one of

the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

O1 2p
√

2m+1
p 2mp 2 22m+6p3 (2m−2−1)3

22m−12 I∗2m−4; III

O2 −22p
√

2m+1
p 22p 2 2m+12p3 (2m+2+1)3

2m−6 I∗m+2; III

O1’ −2p
√

2m+1
p 2mp 2 22m+6p3 (2m−2−1)3

22m−12 I∗2m−4; III

O2’ 22p
√

2m+1
p 22p 2 2m+12p3 (2m+2+1)3

2m−6 I∗m+2; III

P1 2p2
√

2m+1
p 2mp3 2 22m+6p9 (2m−2−1)3

22m−12 I∗2m−4; III
∗

P2 −22p2
√

2m+1
p 22p3 2 2m+12p9 (2m+2+1)3

2m−6 I∗m+2; III
∗

P1’ −2p2
√

2m+1
p 2mp3 2 22m+6p9 (2m−2−1)3

22m−12 I∗2m−4; III
∗

P2’ 22p2
√

2m+1
p 22p3 2 2m+12p9 (2m+2+1)3

2m−6 I∗m+2; III
∗

Theorem 6.8 The elliptic curves E/Q of conductor 128p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 13 and E is Q-isomorphic to one of the elliptic curves in the table in
Appendix C.

2. p is a prime ≥ 5 and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

A1 2p 2p2 2 −28p6 27 III; I∗0
A2 −22p −22p2 2 213p6 2573 I∗2; I

∗
0

A1’ −2p 2p2 2 −28p6 27 III; I∗0
A2’ 22p −22p2 2 213p6 2573 I∗2; I

∗
0

B1 2p −p2 2 27p6 2573 III; I∗0
B2 −22p 23p2 2 −214p6 27 I∗2; I

∗
0

B1’ −2p −p2 2 27p6 2573 III; I∗0
B2’ 22p 23p2 2 −214p6 27 I∗2; I

∗
0

3. 2p− 1 is a square, p ≡ 1 (mod 4), p 6= 13 and E is Q-isomorphic to one of the
elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

C1 2p
√

2p− 1 2p3 2 −28p8 −128(p−2)3

p2 III; I∗2
C2 −22p

√
2p− 1 −22p2 2 213p7 32(8p−1)3

p I∗2; I
∗
1

C1’ −2p
√

2p− 1 2p3 2 −28p8 −256(p−2)3

p2 III; I∗2
C2’ 22p

√
2p− 1 −22p2 2 213p7 32(8p−1)3

p I∗2; I
∗
1

D1 2p
√

2p− 1 −p2 2 27p7 32(8p−1)3

p II; I∗1
D2 −22p

√
2p− 1 23p3 2 −214p8 −128(p−2)3

p2 III∗; I∗2

D1’ −2p
√

2p− 1 −p2 2 27p7 32(8p−1)3

p II; I∗1
D2’ 22p

√
2p− 1 23p3 2 −214p8 −128(p−2)3

p2 III∗; I∗2

4. 2p2−1 is a square, p ≡ 1 (mod 4), and E is Q-isomorphic to one of the elliptic
curves:

a2 a4 |T2| ∆ j-invariant Kodaira

E1 2p
√

2p2 − 1 2p4 2 −28p10 −128(p2−2)3

p4 III; I∗4
E2 −22p

√
2p2 − 1 −22p2 2 213p8 32(8p2−1)3

p2 I∗2; I
∗
2

E1’ −2p
√

2p2 − 1 2p4 2 −28p10 −128(p2−2)3

p4 III; I∗4
E2’ 22p

√
2p2 − 1 −22p2 2 213p8 32(8p2−1)3

p2 I∗2; I
∗
2

F1 2p
√

2p2 − 1 −p2 2 27p8 32(8p2−1)3

p2 II; I∗2
F2 −22p

√
2p2 − 1 23p4 2 −214p10 −128(p2−2)3

p4 III∗; I∗4

F1’ −2p
√

2p2 − 1 −p2 2 27p8 32(8p2−1)3

p2 II; I∗2
F2’ 22p

√
2p2 − 1 23p4 2 −214p10 −128(p2−2)3

p4 III∗; I∗4



Chapter 6. Classification of Elliptic Curves of conductor 2αp2 223

5. p− 2 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

G1 2p
√

p− 2 p3 2 −27p8 −32(p−8)3

p2 II; I∗2
G2 −22p

√
p− 2 −23p2 2 214p7 128(2p−1)3

p III∗; I∗1

G1’ −2p
√

p− 2 p3 2 −27p8 −32(p−8)3

p2 II; I∗2
G2’ 22p

√
p− 2 −23p2 2 214p7 128(2p−1)3

p III∗; I∗1

H1 2p
√

p− 2 −2p2 2 28p7 128(2p−1)3

p III; I∗1
H2 −22p

√
p− 2 22p3 2 −213p8 −32(p−8)3

p2 I∗2; I
∗
2

H1’ −2p
√

p− 2 −2p2 2 28p7 128(2p−1)3

p III; I∗1
H2’ 22p

√
p− 2 22p3 2 −213p8 −32(p−8)3

p2 I∗2; I
∗
2

6. pn + 2 is a square for some integer n ≥ 1 and E is Q-isomorphic to one of the
elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

I1 2p
√

pn + 2 pn+2 2 27p2n+6 32(pn+8)3

p2n II; I∗2n

I2 −22p
√

pn + 2 23p2 214pn+6 128(2pn+1)3

pn III∗; I∗n

I1’ −2p
√

pn + 2 pn+2 2 27p2n+6 32(pn+8)3

p2n II; I∗2n

I2’ 22p
√

pn + 2 23p2 214pn+6 128(2pn+1)3

pn III∗; I∗n

J1 2p
√

pn + 2 2p2 28pn+6 128(2pn+1)3

pn III; I∗n
J2 −22p

√
pn + 2 22pn+2 2 213p2n+6 32(pn+8)3

p2n I∗2; I
∗
2n

J1’ −2p
√

pn + 2 2p2 28pn+6 128(2pn+1)3

pn III; I∗n
J2’ 22p

√
pn + 2 22pn+2 2 213p2n+6 32(pn+8)3

p2n I∗2; I
∗
2n

Theorem 6.9 The elliptic curves E/Q of conductor 256p2 with a rational point of
order 2 are the ones such that one of the following conditions is satisfied:

1. p = 23 and E is Q-isomorphic to one of the elliptic curves in the table in
Appendix C.

2. p is a prime ≥ 5 and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

A1 0 2p 2 −29p3 1728 III; III
A2 0 −23p 2 215p3 1728 III∗; III

B1 0 −2p 2 29p3 1728 III; III
B2 0 23p 2 −215p3 1728 III∗; III

C1 0 2p2 2 −29p6 1728 III; I∗0
C2 0 −23p2 2 215p6 1728 III∗; I∗0
D1 0 −2p2 2 29p6 1728 III; I∗0
D2 0 23p2 2 −215p6 1728 III∗; I∗0
E1 0 2p3 2 −29p9 1728 III; III∗

E2 0 −23p3 2 215p9 1728 III∗; III∗

F1 0 −2p3 2 29p9 1728 III; III∗

F2 0 23p3 2 −215p9 1728 III∗; III∗

G1 22p 2p2 2 29p6 2653 III; I∗0
G2 −23p 23p2 2 215p6 2653 III∗; I∗0
G1’ −22p 2p2 2 29p6 2653 III; I∗0
G2’ 23p 23p2 2 215p6 2653 III∗; I∗0

3. p−1
2 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

H1 22p
√

p−1
2 2p3 2 −29p8 −64(p−4)3

p2 III; I∗2

H2 −23p
√

p−1
2 −23p2 2 215p7 64(4p−1)3

p III∗; I∗1

H1’ −22p
√

p−1
2 2p3 2 −29p8 −64(p−4)3

p2 III; I∗2

H2’ 23p
√

p−1
2 −23p2 2 215p7 64(4p−1)3

p III∗; I∗1

I1 22p
√

p−1
2 −2p2 2 29p7 64(4p−1)3

p III; I∗1

I2 −23p
√

p−1
2 23p3 2 −215p8 −64(p−4)3

p2 III∗; I∗2

I1’ −22p
√

p−1
2 −2p2 2 29p7 64(4p−1)3

p III; I∗1

I2’ 23p
√

p−1
2 23p3 2 −215p8 −64(p−4)3

p2 III∗; I∗2

4. p2−1
2 is a square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

J1 22p
√

p2−1
2 2p4 2 −29p10 64(p2−4)3

p4 III; I∗4

J2 −23p
√

p2−1
2 −23p2 2 215p8 64(4p2−1)3

p2 III∗; I∗2

J1’ −22p
√

p2−1
2 2p4 2 −29p10 64(p2−4)3

p4 III; I∗4

J2’ 23p
√

p2−1
2 −23p2 2 215p8 64(4p2−1)3

p2 III∗; I∗2

K1 22p
√

p2−1
2 −2p2 2 29p8 64(4p2−1)3

p2 III; I∗2

K2 −23p
√

p2−1
2 23p4 2 −215p10 64(p2−4)3

p4 III∗; I∗4

K1’ −22p
√

p2−1
2 −2p2 2 29p8 64(4p2−1)3

p2 III; I∗2

K2’ 23p
√

p2−1
2 23p4 2 −215p10 64(p2−4)3

p4 III∗; I∗4

5. p+1
2 is a square and E is Q-isomorphic to one of the elliptic curves:

a2 a4 |T2| ∆ j-invariant Kodaira

L1 22p
√

p+1
2 2p3 2 29p8 64(p+4)3

p2 III; I∗2

L2 −23p
√

p+1
2 23p2 2 215p7 64(4p+1)3

p III∗; I∗1

L1’ −22p
√

p+1
2 2p3 2 29p8 64(p+4)3

p2 III; I∗2

L2’ 23p
√

p+1
2 23p2 2 215p7 64(4p+1)3

p III∗; I∗1

M1 22p
√

p+1
2 2p2 2 29p7 64(4p+1)3

p III; I∗1

M2 −23p
√

p+1
2 23p3 2 215p8 64(p+4)3

p2 III∗; I∗2

M1’ −22p
√

p+1
2 2p2 2 29p7 64(4p+1)3

p III; I∗1

M2’ 23p
√

p+1
2 23p3 2 215p8 64(p+4)3

p2 III∗; I∗2

6. p2+1
2 is a square and E is Q-isomorphic to one of the elliptic curves:
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a2 a4 |T2| ∆ j-invariant Kodaira

N1 22p
√

p2+1
2 2p4 2 29p10 64(p2+4)3

p4 III; I∗4

N2 −23p
√

p2+1
2 23p2 2 215p8 64(4p2+1)3

p2 III∗; I∗2

N1’ −22p
√

p2+1
2 2p4 2 29p10 64(p2+4)3

p4 III; I∗4

N2’ 23p
√

p2+1
2 23p2 2 215p8 64(4p2+1)3

p2 III∗; I∗2

O1 22p
√

p2+1
2 2p2 2 29p8 64(4p2+1)3

p2 III; I∗2

O2 −23p
√

p2+1
2 23p4 2 215p10 64(p2+4)3

p4 III∗; I∗4

O1’ −22p
√

p2+1
2 2p2 2 29p8 64(4p2+1)3

p2 III; I∗2

O2’ 23p
√

p2+1
2 23p4 2 215p10 64(p2+4)3

p4 III∗; I∗4

In Chapter 8 we will be interested in knowing, up to isogeny, the elliptic
curves with conductor of the form 32p2 or 256p2, and their j-invariants. We
have the following corollaries to Theorems 6.6 and 6.9.

Corollary 6.10 Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with a
rational 2-torsion point and conductor 32p2. Then E is isogenous over Q to a curve
of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.

p a2 a4 j-invariant

any 0 −p2 1728
any 0 (−1)(p+1)/2p 1728
any 0 (−1)(p+1)/2p3 1728
7 ±7 2 · 72 8000/7
7 ±7 2 · 7 −26

7 ±72 2 · 73 −26

s2 + 1, s ∈ Z 2ps −p2 64(4p−1)3

p

s2 + 8, s ∈ Z ps −2p2 64(p−2)3

p

s2 − 8, s ∈ Z ps 2p2 64(p+2)3

p
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Corollary 6.11 Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with a
rational 2-torsion point and conductor 256p2. Then E is isogenous over Q to a curve
of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.

p a2 a4 j-invariant

any 0 ±2p 1728
any 0 ±2p2 1728
any 0 ±2p3 1728
any ±4p 2p2 2653

23 ±23 · 23 · 39 2 · 235 263340573

236

23 ±24 · 23 · 39 23 · 235 263340573

236

2s2 + 1, s ∈ Z ±4ps 2p3 −64(p−4)3

p2

2s2 + 1, s ∈ Z ±4ps −2p2 64(4p−1)3

p√
2s2 + 1, s ∈ Z ±4ps 2p4 64(p2−4)3

p4√
2s2 + 1, s ∈ Z ±4ps −2p2 64(4p2−1)3

p2

2s2 − 1, s ∈ Z ±4ps 2p3 64(p+4)3

p2

2s2 − 1, s ∈ Z ±4ps 2p2 64(4p+1)3

p√
2s2 − 1, s ∈ Z ±4ps 2p4 64(p2+4)3

p4√
2s2 − 1, s ∈ Z ±4ps 2p2 64(4p2+1)3

p2

6.2 The Proof

We will only sketch the proof of Theorem 6.2, it should be clear from this
how the proofs of the remaining theorems follow from their counterparts in
Section 3.1.1 and the Diophantine lemmata of Chapter 4.

Let E be an elliptic curve over Q with a rational 2-torsion point and con-
ductor N = 2p2 for a fixed prime p ≥ 5. Then E is Q-isomorphic to one of the
curves in Theorem 3.2 and p satisfies one of the corresponding Diophantine
equations:

1) d2 = 2mpn + 1,
2) d2 = 2m + pn,
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3) d2 = 2m − pn,
4) d2 = pn − 2m,
5) pd2 = 2m + 1,
6) pd2 = 2m − 1,

with n ≥ 0 and m ≥ 7.
Applying the Diophantine lemmata from Chapter 4, the solutions of these

are respectively as follows:
1) (p, d, n) = (2m−2 + 1, 2p− 1, 1) and (p, d, n) = (2m−2 − 1, 2p + 1, 1),
2) (p, d, m, n) = (17, 71, 7, 3), (p, d, n) = (2m−2 − 1, p + 2, 2), and solutions

with n = 1,
3) (p, d, m, n) = (7, 13, 9, 3), and solutions with n = 1,
4) (p, d, n) = (2m−2 + 1, p− 2, 2), and solutions with n = 1.
5) 2m+1

p is a square,
6) 2m−1

p is a square.
Thus, p must satisfy one of these conditions. Suppose p satisfies the first con-
dition in 1, that is p = 2m−2+1, d = 2p−1, and n = 1. Then E is Q-isomorphic
to one of

y2 = x3 + p(2p− 1)x2 + 2m−2p3x,

y2 = x3 − 2p(2p− 1)x2 + p2x,

by part (1) of Theorem 3.2 (neither curve is minimal at 2). The minimal models
of these curves can be computed using Corollary 2.2:

y2 + xy = x3 +
p(2p− 1)− 1

4
x2 +

p3(p− 1)
16

x,

y2 + xy = x3 +
p(2p− 1)− 1

4
x2 +

−p3(p− 1)
4

x +
−p4(p− 1)(2p− 1)

16
.

Thus E is isomorphic to either A1 or A2 in Theorem 6.2.
Suppose that p satisfies the first condition in 4, that is, p = 2m−2 + 1,

d = p− 2, and n = 2. Then a similar argument shows that E is isomorphic to
either B1 or B2 in Theorem 6.2.

Similarly, one can verify the rest of Theorem 6.2 by considering p of each
form in 1 through 6 listed above.

This completes the sketch of the proof for these tables.



Chapter 7
On the Classification of Elliptic Curves over
Q with 2-torsion and conductor 2α32p

A more appropriate title for this chapter would be ”Classification of primes for
which there exist elliptic curves over Q with 2-torsion and conductor 2α32p

with α ∈ {1, 2, 3}”, since it is the collection of primes we will be study-
ing, not the curves themselves. The tables in Section 3.2 provide a classifi-
cation of elliptic curves of conductor 2α32p in which the prime p must sat-
isfy one of a list of Diophantine equations. In this chapter, we use the lem-
mata of Chapter 4 to resolve all the Diophantine equations which occurred.
Hence, we can list, rather explicitly, all the primes that can occur. In Chapter
9, we will be interested in the primes for which there are no elliptic curves
of conductor 2α32p, with α ∈ {1, 2, 3}. Our main focus here will be to de-
termine properties of this set of primes. We will show that for all primes
p ≡ 317 or 1757 (mod 2040) there are no elliptic curves with 2-torsion and
conductor 2α32p with α ∈ {1, 2, 3}.

7.1 Statement of Results

Theorem 7.1 The primes p for which there exists an elliptic curve E/Q of conductor
18p, and having at least one rational point of order 2, satisfy one of the following:

1. p ∈ {5, 7, 11, 17, 19, 23, 73};

2. p = 2m−23` ± 1 with m ≥ 7, ` ≥ 0;

3. p = 2m−2+1
3` with m ≥ 7, ` ≥ 1;

229
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4. p = 3` + 2m−2 with m ≥ 7, ` ≥ 0;

5. p = 3` − 2m−2 with m ≥ 7, ` ≥ 0;

6. p = 2m−2 − 3` with m ≥ 7, ` ≥ 0;

7. p = d2 + 2m3` with m ≥ 7 and ` ≥ 0;

8. p = d2 − 2m3` with m ≥ 7 and ` ≥ 0;

9. p = 2m3` − d2 with m ≥ 7 and ` ≥ 0;

10. p = d2+2m

3` with m ≥ 7, ` ≥ 1;

11. p = 3d2 + 2m with m ≥ 7;

12. p = 3d2 − 2m with m ≥ 7;

13. p = 2m − 3d2 with m ≥ 7;

Theorem 7.2 The primes p for which there exists an elliptic curve E/Q of conductor
36p, and having at least one rational point of order 2, satisfy one of the following:

1. p ∈ {5, 13};

2. pn = d2 + 4 · 3` with ` ≥ 0 even, n = 1 or Pmin(n) ≥ 7;

3. pn = d2 − 4 · 3` with ` ≥ 1 odd, n = 1 or Pmin(n) ≥ 7;

4. pn = 4 · 3` − d2 with ` ≥ 1 odd, n = 1 or Pmin(n) ≥ 7;

5. pn = d2+3`

4 with ` ≥ 1 odd, n = 1 or Pmin(n) ≥ 7, p ≡ −1 (mod 4);

6. 4pn = 3d2 + 1 with n ∈ {1, 2} and pn ≡ 1 (mod 4);

7. p = 3d2 − 4;

Theorem 7.3 The primes p for which there exists an elliptic curve E/Q of conductor
72p, and having at least one rational point of order 2, satisfy one of the following:

1. p ∈ {5, 7, 13, 23, 29, 31, 47, 67, 73, 193, 1153};

2. p = 3`+1
4 with ` odd;
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3. pn = d2 + 4 · 3` with ` ≥ 1 odd, n = 1 or Pmin(n) ≥ 7;

4. pn = d2 − 4 · 3` with ` ≥ 0 even, n = 1 or Pmin(n) ≥ 7;

5. pn = 4 · 3` − d2 with ` ≥ 0 even, n = 1 or Pmin(n) ≥ 7;

6. p = 2m−23` ± 1 with m ∈ {4, 5}, ` ≥ 0;

7. pn = d2 + 2m · 3` with m ∈ {4, 5}, ` ≥ 0, n = 1 or Pmin(n) ≥ 7;

8. pn = d2 − 2m · 3` with m ∈ {4, 5}, ` ≥ 0, n = 1 or Pmin(n) ≥ 7;

9. pn = 2m · 3` − d2 with m ∈ {4, 5}, ` ≥ 0, n = 1 or Pmin(n) ≥ 7;

10. pn = d2+3`

4 with ` odd, p ≡ 1 (mod 12), n = 1 or Pmin(n) ≥ 7;

11. p = 3` ± 4 with ` ≥ 0;

12. p = 3` ± 8 with ` ≥ 0;

13. p = d2+2m

3` with m ∈ {4, 5} and ` odd;

14. pn = d2+32
3` with ` odd, n = 1 or Pmin(n) ≥ 7;

15. p = 3d2+1
4 ;

16. p2 = 3d2+1
4 ;

17. p = 3d2 − 2m with m ∈ {4, 5};

18. p = 3d2 + 2m with m ∈ {2, 4, 5}.

Corollary 7.4 Let p ≥ 5 be a prime.

1. If there exists an elliptic curve over Q with 2-torsion and conductor 18p then
one of the following must hold: p = 5, p 6≡ 2 (mod 3), p 6≡ 2 (mod 5), p 6≡
5 (mod 8), or p 6≡ 6 and 11 (mod 17).

2. If there exists an elliptic curve over Q with 2-torsion and conductor 36p then
one of the following must hold: p = 5, p 6≡ 2 (mod 3), or p 6≡ 1 and 5 (mod 8).
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3. If there exists an elliptic curve over Q with 2-torsion and conductor 72p then
one of the following must hold: p = 5, p = 29, p 6≡ 2 (mod 3), or p 6≡
5 (mod 8).

It follows that there are no elliptic curves over Q with 2-torsion and conductor
2α9p, where α ∈ {1, 2, 3}, for p satisfying p ≡ 317 or 1757 (mod 2040) (i.e. p ≡
5 (mod 8), p ≡ 2 (mod 3), p ≡ 2 (mod 5), and p ≡ 6 or 11 (mod 17)).

By Dirichlet’s theorem on primes in arithmetic progression, we have that
there are infinitely many primes p for which there are no elliptic curves over Q
with 2-torsion and conductor 2α9p, with α ∈ {1, 2, 3}; since primes congruent
to 317 or 1757 modulo 2040 have this property. Though this list is infinite, it
misses a lot of primes with the property. Indeed, a quick search through Cre-
mona’s tables of elliptic curves up to conductor 130000 reveals the following
list of the first few primes:

197, 317, 439, 557, 653, 677, 701, 773, 797, 821, 1013, 1039,

1061, 1109, 1231, 1277, 1279, 1289, 1301, 1399, 1447, 1471, 1493

1613, 1637, 1663, 1709, 1733.

Let S denote set of primes which satisfy one of the forms in the statements
of Theorems 7.1, 7.2, and 7.3. We would like to show that S has density zero
in the set of all primes. By this we mean, if #S(X) is the number of primes in
S less than X then

lim
X→∞

#S(X)
π(X)

= 0,

where π(X) is the number of all primes less than X . Determining the density
of primes of the form p = d2+2m

3` is somewhat problematic. So, let S ′ denote
set of primes which satisfy one of the forms in the statements of Theorems
7.1, 7.2, and 7.3, except pn = d2+2m

3` . Also, let S ′(X) = {p ∈ S ′ : p ≤ X}. We
prove the following.

Lemma 7.5

lim
X→∞

#S ′(X)
π(X)

= 0.
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7.2 The Proofs

7.2.1 Proof of Theorem 7.1

We proceed through the cases of Theorem 7.1 (with b = 2) and use the lem-
mata of Chapter 4 to resolve the Diophantine equations that arise. Notice that
in all cases we are only concerned with solutions to the Diophantine equa-
tions with m ≥ 7. In what follows, by ”solvable”, we mean there are solutions
for which m ≥ 7, ` ≥ 0 and n ≥ 1

1) According to Lemma 4.7 if d2 = 2m3`pn + 1 is solvable then the prime p

is of one of the following forms

p = 2m−23` ± 1, p =
2m−2 + 1

3`
, or p = 17.

2) If d2 = 2m3` + pn is solvable then the prime p is of one of the following
forms (see Lemma 4.9):

d2 − 2m3`, 2m−23` − 1, 3` − 2m−2, 2m−2 − 3`, 5, 7, 17, or 73.

3) If d2 = 2m3` − pn is solvable then the prime p is of one of the following
forms (see Lemma 4.9):

7, 23, or 2m3` − d2.

4) If d2 = 2mpn + 3` is solvable then the prime p is of one of the following
forms (see Lemma 4.8):

2m−2 ± 3`/2, or 5.

5) If d2 = 2m + 3`pn is solvable then the prime p is of one of the following
forms (see Lemma 4.10):

2m/2+1 + 1
3`

, 3` ± 2m/2+1, d2 − 2m, 7, 2m−2 − 1, or 17.

6) If d2 = 2m − 3`pn is solvable then the prime p is of one of the following
forms (see Lemma 4.10):

2m/2+1 − 3`, 2m − d2, 5, or 7.
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7) If d2 = 3`pn − 2m is solvable then the prime p is of one of the following
forms (see lemma 4.10):

2m+1 + 1
3`/2

, 11, 17, 19, or
d2 + 2m

3`
.

8) If d2 = 3` − 2mpn is solvable then the prime p is of one of the following
forms (see Lemma 4.8):

3`/2 − 2m−2, or 7.

9) If d2 = pn − 2m3` is solvable then the prime p is of one of the following
forms (see Lemma 4.9):

2m−23` + 1, 3` + 2m−2, 17, or 2m3` + d2.

10) If 3d2 = 2m + pn is solvable then the prime p is of one of the following
forms (see Lemma 4.11):

11, or 3d2 − 2m.

11) If 3d2 = 2m − pn is solvable then the prime p is of one of the following
forms (see Lemma 4.11):

5, or 2m − 3d2.

12) If 3d2 = pn − 2m is solvable then the prime p is of the form 3d2 + 2m

(see Lemma 4.11).
This proves Theorem 7.1.

7.2.2 Proof of Theorem 7.2

Again, we proceed through the cases of Theorem 7.2 (with b = 2) and use
the lemmata of Chapter 4 to resolve the Diophantine equations that arise. In
all cases, we are only concerned with solutions to the Diophantine equations
with m = 2. In what follows, by ”solvable”, we mean there are solutions for
which ` ≥ 0 and n ≥ 1

1) If d2 = 4 · 3` + pn is solvable then the prime p is of one of the following
forms (see Lemma 4.9):

13, d2 − 4 · 3`,

or pn = d2 − 4 · 3` with Pmin(n) ≥ 7.
2) If d2 = 4 · 3`− pn is solvable then n = 1 or Pmin(n) ≥ 7 (see Lemma 4.9).



Chapter 7. On the Classification of Elliptic Curves of conductor 2α32p 235

3) If d2 = 4pn − 3` is solvable then n = 1 or Pmin(n) ≥ 7 (see Lemma 4.8)
and p ≡ −1 (mod 4).

4) If d2 = pn − 4 · 3` is solvable then either p = 5, n = 1 or Pmin(n) ≥ 7 (see
Lemma 4.9).

5) If 3d2 = 4pn − 1 is solvable then n ∈ {1, 2} (see Lemma 4.11).
6) If 3d2 = pn + 4 is solvable then n = 1 so p = 3d2 − 4 (see Lemma 4.11).
This proves Theorem 7.2.

7.2.3 Proof of Theorem 7.3

Again, we proceed through the cases of Theorem 7.3 (with b = 2) and use the
Diophantine lemmata. In all cases, we are only concerned with solutions to
the Diophantine equations with m = 2, 4, 5. So, by ”solvable”, we mean there
are solutions for which m ∈ {4, 5}, ` ≥ 0 and n ≥ 1

1) If d2 = 2m3`pn +1 is solvable then the prime p is of one of the following
forms (see Lemma 4.7):

2m−23` ± 1,
3` + 1

4
, or 5.

2) If d2 = 4 · 3` + pn is solvable with ` even then the prime p is of the form
pn = d2 − 4 · 3` with n = 1 or Pmin(n) ≥ 7 (see Lemma 4.9).

3) If d2 = 2m3` + pn is solvable then the prime p is of one of the following
forms (see Lemma 4.9):

d2 − 2m3`, 2m−23` − 1, 3` − 2m−2, 2m−2 − 3`.

or pn = d2 − 2m3` with Pmin(n) ≥ 7.
4) If d2 = 4 · 3` − pn is solvable with ` even then n = 1 or Pmin(n) ≥ 7 (see

Lemma 4.9).
5) If d2 = 2m3`−pn is solvable then one of the following must hold: p = 47,

n = 1 or Pmin(n) ≥ 7 (see Lemma 4.9) .
6) If d2 = 2mpn + 3` is solvable then the prime p is of one of the following

forms (see Lemma 4.9):

3`/2 + 1
4

, 2m−2 + 3`/2, 5, or 7.
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7) If d2 = 4pn− 3` with p ≡ 1 (mod 4) is solvable then the prime p is of the
form 3`+1

4 or n = 1 or Pmin(n) ≥ 7 (see Lemma 4.8).
8) If d2 = 4 + 3`pn is solvable then the prime p is of one of the following

forms (see Lemma 4.10):

5 or
3` ± 1

4
.

9) If d2 = 2m + 3`pn is solvable then the prime p is of one of the following
forms (see Lemma 4.10):

d2 − 32, 3` ± 8, or 7.

10) If d2 = 2m− 3`pn is solvable then the prime p is of one of 5, 7, 23, or 31.
11) If d2 = 3`pn− 2m is solvable then the prime p is of one of the following

forms (see Lemma 4.10):
2m−1 + 1

3`/2
, 5, 67,

or n = 1 or Pmin(n) ≥ 7.
12) If d2 = 3`−2mpn is solvable then the prime p is of the form 3`/2−2m−2

(see Lemma 4.8).
13) If d2 = 4pn − 3`, with ` odd, is solvable then p = 13 or n = 1 or

Pmin(n) ≥ 7 (see Lemma 4.8).
14) If d2 = pn− 2m3` is solvable then the prime p is of one of the following

forms (see Lemma 4.9):

2m−23` + 1, 3` + 2m−2, 72, 193, 1153, 5,

or n = 1 or Pmin(n) ≥ 7.
15) If 3d2 = 2m+pn is solvable then n = 1 and so p = 3d2−2m (see Lemma

4.11).
16) If 3d2 = 2m + pn is solvable p is either 5, 13 or 29 (see Lemma 4.11).
17) If 3d2 = 4pn − 1 is solvable then n ∈ {1, 2} so p = 3d2+1

4 or p2 = 3d2+1
4

(see Lemma 4.11).
18) If 3d2 = pn − 4 is solvable then n = 1 so p = 3d2 + 4 (see Lemma 4.11).
19) If 3d2 = pn − 2m is solvable then n = 1 so p = 3d2 + 16 or p = 3d2 + 32

(see Lemma 4.11).
This proves Theorem 7.3.
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7.2.4 Proof of Corollary 7.4

We show that all the primes appearing in Theorems 7.1, 7.2 and 7.3 satisfy at
least one of

p 6≡ 5 (mod 8), p 6≡ 2 (mod 3), p 6≡ 2 (mod 5), or p 6≡ 6 and 11 (mod 17)
(7.1)

This will prove the corollary.
Theorem 7.1: Certainly the primes in (1) satisfy (7.1). Primes of the form

(2) satisfy p ≡ ±1 (mod 8) and primes of the form (3), (4) or (5) satisfy p ≡
1 or 3 (mod 8). Primes of the form (7) or (8) satisfy p ≡ 1 (mod 8) and primes
of the form (9) satisfy p ≡ −1 (mod 8). Primes of the form (10) satisfy p ≡
1 or 3 (mod 8) and primes of the form (11) or (12) satisfy satisfy p ≡ 3 (mod 8).
All that remains is to consider primes of the form (6) and (13) and show they
satisfy at least one of the congruences in 7.1.

Suppose p is a prime of the form p = 2m−2 − 3` with m ≥ 7 and ` ≥ 1.
If m and ` are both even then p is a difference of squares from which we find
p = 7. If m is even and ` is odd then p ≡ 1 (mod 3) and p ≡ 1 (mod 4). If m is
odd and ` is even then p ≡ 2 (mod 3) and p ≡ −1 (mod 4). If m and ` both odd
then p ≡ 2 (mod 3) and p ≡ 5 (mod 8) so we need to consider the congruence
class of p modulo 5, which is as follows:

if m− 2 ≡ 1 (mod 4), ` ≡ 1 (mod 4) then p ≡ 2− 3 ≡ −1 (mod 5);

if m− 2 ≡ 1 (mod 4), ` ≡ 3 (mod 4) then p ≡ 2− 2 ≡ 0 (mod 5);

if m− 2 ≡ 3 (mod 4), ` ≡ 1 (mod 4) then p ≡ 3− 3 ≡ 0 (mod 5);

if m− 2 ≡ 3 (mod 4), ` ≡ 3 (mod 4) then p ≡ 3− 2 ≡ 1 (mod 5).

Thus, p of the form (6) satisfies one of the congruences in 7.1.
Suppose p is a prime of the form p = 2m − 3d2 with m ≥ 7. Modulo 3 we

have

p ≡

{
1 (mod 3) if m is even,

2 (mod 3) if m is odd.
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So, assume m is odd. In this case we have

p ≡



3 (mod 5) if m ≡ 3 (mod 4) and d2 ≡ 0 (mod 5),

0 (mod 5) if m ≡ 3 (mod 4) and d2 ≡ 1 (mod 5),

0 (mod 5) if m ≡ 3 (mod 4) and d2 ≡ 4 (mod 5),

2 (mod 5) if m ≡ 1 (mod 4) and d2 ≡ 0 (mod 5),

4 (mod 5) if m ≡ 1 (mod 4) and d2 ≡ 1 (mod 5),

4 (mod 5) if m ≡ 1 (mod 4) and d2 ≡ 4 (mod 5),

Thus, the only trouble seems to occur when m ≡ 1 (mod 4) and 5 | d, In this
case the prime is of the form

p = 2m − 75k2 with m ≡ 1 (mod 4). (7.2)

Some primes of this form are as follows

4517, 6317, 7517, 8117, 91397, 103997, 109397, 1760477,

1818077, 1994477, 2042477, 33197357, 536675837.

This is not even close to being a complete list of such primes up to 54 ×
107 however we chose this collection of primes since their reductions hit ev-
ery congruence class modulo 7, 11 and 13. This means, to characterize such
primes locally, we have to go as far as 17. We will show for p of the form (7.2)
that p 6≡ 6 (mod 17).

In the multiplicative group U(Z/17Z) the element 2 is of order 8, and the
quadratic residues are {0, 1, 2, 4, 8, 9, 13, 15, 16}. Since m ≡ 1 (mod 4) and 2
has order 8 in U(Z/17Z), we consider the two case, m ≡ 1 (mod 8) and m ≡
5 (mod 8), separately. Considering each possible quadratic residue in turn we
have

p = 2m − 75k2 ≡

{
2, 12, 5, 8, 14, 7, 13, 16, or 9 (mod 17) if m ≡ 1 (mod 8),

15, 8, 1, 4, 10, 3, 9, 12, or 5 (mod 17) if m ≡ 5 (mod 8),

Thus, for p = 2m − 3d2 with m ≡ 1 (mod 4) and 5 | d we have p 6≡ 6 and
11 (mod 17).

This proves the corollary for the primes appearing in Theorem 7.1.
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Theorem 7.2: If p is of the form (2), (3) or (5) then p ≡ 1 (mod 3). If p is of
the form (4) then p ≡ 3 (mod 8). If p is of the form (6) then p ≡ 1 (mod 3); for
n = 1 this is clear, whereas for n = 2 we factor as (2p + 1)(2p − 1) = 3d2 to
obtain 4p = 3d2

1 + d2
2 ≡ 1 (mod 3), where d − d1d2. Finally, if p is of the form

(7) then p ≡ −1 (mod 8). Therefore, the curves of conductor 36p have p = 5 or
p ≡ 1 (mod 3) or p ≡ −1 or 3 (mod 8).

Theorem 7.3: It is easy to check that the result holds for primes in (1). If
p is of the form (2), (3), (4), (10), (15) or (16) then p ≡ 1 (mod 3). If p is of the
form (5), (13), (14), (17) or (18) then p ≡ −1 (mod 4). If p is of the form (7) or
(8) then p ≡ 1 (mod 8). If p is of the form (6) then if ` = 0 we have p = 5 or
7, else if ` ≥ 1 then p ≡ 1 (mod 3) or p ≡ −1 (mod 4) depending on whether
the sign is positive or negative. If p is of the form (9) then p ≡ −1 (mod 8). If
p is of the form (11) then p ≡ 1 (mod 3) if the sign is positive, whereas if the
sign is negative then p ≡ −1 (mod 4) for ` odd and p = 5 or 17 for ` even.
Finally, If p is of the form (12) then p ≡ 1 or 3 (mod 8). Therefore, the curves
of conductor 2332p satisfy one of the following p = 5, p = 29, p ≡ 1 (mod 3),
or p ≡ ±1 or 3 (mod 8).

7.2.5 Proof of Lemma 7.5

We list the primes appearing in (7.1), (7.2), and (7.3) (except pn = d2+2m

3` ) in
the following table. Unless otherwise stated ` ≥ 0.
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p conditions p conditions

2m−23` ± 1 m = 4, 5 or ≥ 7 ±(d2 − 4 · 3`) ` odd
2m−2 + 1

3`
m = 5 or ≥ 7 pn = ±(d2 − 4 · 3`) n = 1 or Pmin(n) ≥ 7,

` even
±(2m−2 − 3`) m = 4, 5 or ≥ 7, pn = d2 + 4 · 3` n = 1 or Pmin(n) ≥ 7

` ≥ 4

2m−2 + 3` m = 4, 5 or ≥ 7 pn =
d2 + 3`

4
n = 1 or Pmin(n) ≥ 7,

` odd

±(d2 − 2m3`) m ≥ 7 pn =
3d2 + 1

4
n = 1 or 2

d2 + 2m3` m ≥ 7 pn = d2 ± 2m · 3` n = 1 or Pmin(n) ≥ 7
m = 4, 5

±(3d2 − 2m) m = 4, 5, or ≥ 7 pn = 2m3` − d2 n = 1 or Pmin(n) ≥ 7
m = 4, 5

3d2 + 2m m = 2, 4, 5, or ≥ 7
3` + 1

4
` odd

3d2 − 4

We are interested in counting the number of primes of each of these forms
up to X . First we observe that for the forms in the second column there are
only finitely many primes satisfying the conditions with Pmin(n) ≥ 7. Indeed,
if p, `, m, n, d satisfy one of the equations then Shorey and Tijdeman ([68], page
180) implies that n is bounded by a constant, and Darmon and Granville ([27],
Theorem 2) implies there are only finitely many solutions for p, `, m, n, d.

From now on, we only consider the case when n = 1. This just ignores
some finite (density zero) collection of primes. Also, we will just bound the
number of integers of each form listed in the table. This will then bound the
number of primes as well. If η(X) is an upper bound on the number of inte-
gers up to X satisfying one of the forms in the table then we want to show
η(X) is ”little-Oh” of π(X); denoted η(X) = o(π(X)). Here π(X) denotes the
number of primes up to X and η(X) = o(π(X)) means limX→∞

η(X)
π(X) = 0.

1) If 2m−23` ± 1 ≤ X then m, ` ≤ c log X for a fixed constant c (i.e. c = 2
works). So there are at most η1(X) = c2 log2 X = o(π(X)) such integers.

2) If 2m−2+1
3` is an integer then 2m−2 ≡ −1 (mod 3`). It follows that the order

of 2 modulo 3`, which is 2 ·3`−1, must divide 2(m−2). Thus, 3`−1|m−2, hence
` ≤ c log m for a fixed constant c. Now if 2m−2+1

3` ≤ X then m ≤ c1 log2 X for
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some constant c1. The number of integers of this form is bounded by η2(X) =
(c1 log X)(c log (c1 log X))= o(π(X)).

3) If ±(2m−2 − 3`) is an integer such that |2m−2 − 3`| ≤ X , it follows from
a result of Ellison that m ≤ c log X for some fixed constant c. Thus,

` ≤


log (X + 2c log X)

log 3
if 2m−2 − 3` ≤ 0

c2 log X if 2m−2 − 3` ≥ 0
,

for some fixed constant c2. Therefore, the number of primes of this form up to
X is bounded above by

η3(X) ≤

c log X
log (X + 2c log X)

log 3
if 2m−2 − 3` ≤ 0,

c3 log2 X if 2m−2 − 3` ≥ 0,

where C3 is some fixed constant. Thus, η3(X) = o(π(X)).
4) If 2m−2 + 3` ≤ X then m, ` ≤ c log X for some fixed constant c. Thus,

the number of primes of this form up to X is η4(X) ≤ c2 log2 X = o(π(X)).
5) Consider the set of primes of the form p = |d2− 2m3`| up to X . If m and

` are even then factor to obtain

p = |d + 2m/23`/2| · |d− 2m/23`/2|.

It follows that p = d + 2m/23`/2 and 1 = |d − 2m/23`/2|. Eliminate d to obtain
p = 2m/2+13`/2 ± 1. Thus, m, ` ≤ c log X for some constant c, and the number
of primes of this form is o(π(X)).

Now suppose m odd and ` even; m = 2m0 + 1, ` = 2`0. Factoring over
Z[
√

2] gives
p = |d− 2m03`0

√
2||d + 2m03`0

√
2| ≤ X.

Let ε = |
√

2− d
2m03`0

| and F = |d + 2m03`0
√

2|. The equation can be written as

2m03`0εF ≤ X. (7.3)

According to Ridout [62], ε cannot be too small,

ε =
∣∣∣∣√2− d

2m03`0

∣∣∣∣ ≥̃ 1
(2m03`0)1+δ

,
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for any δ > 0, where ≥̃means ”except for finitely many m0 and n0” (indepen-
dent of X). From (7.3) it follows that

F

(2m03`0)δ
≤̃ X,

that is, ∣∣∣∣ d

(2m03`0)δ
+
√

2(2m03`0)1−δ

∣∣∣∣ ≤̃ X.

This implies
(2m03`0)1−δ ≤̃ X,

and so,
2m03`0 ≤̃ X1+δ1 ,

where δ1 satisfies (1− δ)(1 + δ1) = 1. Therefore,

2m3` ≤̃ X2+δ2

where δ2 = 2δ1, whence
m, ` ≤ c log X

for some fixed constant c.
It now remains to bound d as a function of X . For this, we consider two

cases: (i) 2m3` ≤ X2−δ2 , (ii) X2−δ2 ≤ 2m3` ≤ X2+δ2 . In the first case, it follows
directly from |d2 − 2m3`| ≤ X that

d < cX1−δ2/2.

In the second case, if d is large, say d ≥ d0 := [
√

2m3`] + 1, write d = d0 + k.
Then |d2 − 2m3`| ≤ X becomes

|d2
0 − 2m3` + 2d0k + k2| ≤ X,

from which it follows that
2d0k + k2 ≤ X.

But 2d0 ≥ X1−δ2/2 so k ≤ Xδ2/2. Thus, the number of primes of the form
|d2 − 2m3`| up to X is bounded above by

max(Xδ2/2 log2 X, X1−δ2/2 log2 X = o(π(X)).
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A similar argument works in the case when m is even, ` is odd, and in the
case when both m and ` are odd. Here, we would apply Ridout’s Theorem for
the algebraic numbers

√
3 and

√
6 to get the same bound on m and ` as above.

6) If d2 + 2m3` ≤ X then m, ` ≤ c log X and d ≤
√

X thus the number of
primes of this form, η6(X), satisfies

η6(X) ≤ c
√

X log2 X = o(π(X)).

7) A similar argument as to the one used in (5) shows that the number of
primes of the form 3d2 ± 2m, up to X , is of order o(π(X)).

8) If 3d2 + 2m ≤ X then m ≤ c1 log X and d ≤ c2

√
X , for some fixed

constants c1 and c2, thus the number of primes of this form, η8(X), satisfies

η8(X) ≤ c
√

X log2 X = o(π(X)).

9) If 3`
+1

4 ≤ X then ` ≤ c log X hence the number of such primes is of order
o(π(X)).

10) The number of primes of the form 3d2− 4 up to X is bounded by c
√

X

and hence of order o(π(X)).
11) The argument in (5) shows that the number of primes of the form |d2−

4 · 3`| is of order o(π(X)).
For the rest of the forms in the table we can assume that n = 1, as we stated

at the beginning of the proof. It is then easy to see that the number primes
satisfying these conditions are of order o(π(X)), since may forms reduce to
the ones considered above.

This completes the proof of Lemma 7.5.



Chapter 8
On the equation xn + yn = 2αpz2

In this chapter, we show, if p is prime, that the equation xn + yn = 2pz2 has
no solutions in coprime integers x and y with |xy| ≥ 1 and n > p132p2

, and if
p 6= 7, the equation xn + yn = pz2 has no solutions in coprime integers x and
y with |xy| ≥ 1, z even, and n > p12p2

. A modified version of the contents of
this chapter has been published [4].

8.1 Introduction

Inspired by the work of Wiles [Wi95] and subsequently that of Breuil, Conrad,
Diamond and Taylor [BCDT01], there has been a great amount of research
centered around applying techniques from modular forms and Galois repre-
sentations to Diophantine equations of the form

Axp + Byq = Czr, (8.1)

for p, q and r positive integers with 1/p + 1/q + 1/r < 1.
We briefly outlined in Section 1.2 some of the more notable works in this

area. The reader is directed to [45] for a survey,
In this chapter we study the insolubility of

xn + yn = 2αpz2, (8.2)

in coprime integers (x, y, z), for α ∈ {0, 1}. We use the approach of [BVY04],
though here we will need a classification of elliptic curves over Q with ratio-
nal 2-torsion and conductor 2αp2. In the case when p = 2 or 3 it is shown in
[BS04] that the only solution in nonzero pairwise coprime integers (x, y, z) is

244
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(p, α, x, y, z, n) = (2, 0, 3,−1,±11, 5). Thus, in this chapter, we may take p to
be a prime ≥ 5.

Our main results are as follows:

Theorem 8.1 If n an odd prime and p ≥ 5 a prime (p 6= 7), then the Diophantine
equation

xn + yn = pz2

has no solutions in coprime integers x, y and z with |xy| > 1, z even, and n > p12p2 .

Theorem 8.2 If n an odd prime and p ≥ 5 a prime then the Diophantine equation

xn + yn = 2pz2

has no solutions in coprime integers x, y and z with |xy| > 1 and n > p132p2 .

An immediate corollary of these theorems is:

Corollary 8.3 If p ≥ 5 is a prime, then

i) if p 6= 7 the Diophantine equation

xn + yn = pz2

has at most finitely many solutions in integers x, y, z, α, and n with x and y

coprime, |xy| > 1, z even and n divisible by an odd prime.

ii) the Diophantine equation
xn + yn = 2pz2

at most finitely many solutions in integers x, y, z, α, and n with x and y

coprime, |xy| > 1 and n divisible by an odd prime.

8.2 Elliptic Curves

We always assume that n is an odd prime and (a, b, c) is an integral solution
to (8.2) where α ∈ {0, 1}, |ab| > 1. In the case that α = 0 we further assume
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that c ≡ 0 (mod 2). As in [5] we associate to the solution (a, b, c) an elliptic
curve

Eα(a, b, c) : Y 2 = X3 + 2α+1cpX2 + 2αpbnX.

The following lemma, which follows from [BS04] Lemma 2.1 and corollary
2.2, summarizes some useful facts about these curves.

Lemma 8.4 Let α = 0 or 1.

(a) The discriminant ∆(E) of the curve E = Eα(a, b, c) is given by

∆(E) = 23α+6p3(ab2)n.

(b) The conductor N(E) of the curve E = Eα(a, b, c) is given by

N(E) = 23α+5p2
∏
q|ab

q.

In particular, E has multiplicative reduction at each odd prime p dividing ab.

(c) The curve Eα(a, b, c) has a Q-rational point of order 2, namely (0, 0).

(d) The curve Eα(a, b, c) obtains good reduction over Q( 4
√

2αp) at all primes ideals
dividing p. Over any quadratic field K, the curve Eα(a, b, c) has bad reduction at all
prime ideals dividing p.

(e) If n ≥ 7 is prime and ab is divisible by an odd prime q, then the j-invariant j(E)
of the curve E = Eα(a, b, c) satisfies

ordq(j(E)) < 0.

In particular, if ab 6= ±1 then Eα(a, b, c) does not have complex multiplication.

8.3 Outline of the Proof of the main theorems

To the elliptic curve Eα(a, b, c) we will associate a weight 2 cuspidal newform
f of level 32p2 (if α = 0) or 256p2 (if α = 1). This is done in section 8.4. Let
{ci}∞i=1 be the Fourier coefficients of f and Kf their field of definition. We will
refer to [Kf : Q] as the dimension of f .

If f has dimension ≥ 2 then c` 6∈ Q for some `. We will see that n must
divide NormKf /Q(c`− a`), for some a` ∈ Z such that |a`| ≤ ` + 1 (Proposition
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8.6). This gives a bound on n in terms of `. The question then arises: How
small can ` be? That is, how far must we go to find a coefficient ci which
reveals f is not of dimension 1? This is answered by a proposition of Kraus
(see Proposition 8.11), from which we derive our big bound on n in the main
theorem.

Now suppose f is of dimension 1, that is ci ∈ Z for all i. We again have
that n must divide NormKf /Q(ci − ai). It may happen that ci and ai are equal
from which we derive no information on n. However, the ai are all even so in
the case that one of the ci’s is odd, say c`, we are able to obtain a bound on n

in terms of `. Again, the question arises of how small ` can be. This question is
answered by another proposition of Kraus (see Proposition 8.12). The bound
on n we receive in this case is much smaller than the one we obtained above.
The only case that remains now is when all the coefficients ci are even rational
integers. In this case f corresponds to an elliptic curve F over Q with ratio-
nal 2-torsion and conductor 32p2 or 256p2. By Lemma 8.4 (d) Eα(a, b, c) has
potentially good reduction at p, we will see (Proposition 8.7) that this implies
F has potentially good reduction at p, i.e. p does not divide the denomina-
tor of j(F ). Also, by Lemma 8.4 (e) Eα(a, b, c) does not have CM, we will see
(Proposition 8.7) that if F has CM then we obtain a bound on n of 13. Thus, if
F is an elliptic curve over Q with rational 2-torsion, conductor 32p2 or 256p2,
potentially good reduction at p and without CM we will not be able to derive
any information on n. The question then arises; Are there any such elliptic
curves? This question is answered Section 8.6.

8.4 Galois Representations and Modular Forms

In this section we describe how to associate to the elliptic curve Eα(a, b, c) a
weight 2 modular form.

Let E = Eα(a, b, c) for some primitive solution (a, b, c) to (8.2). We asso-
ciate to the elliptic curves E a Galois representation

ρE
n : Gal(Q/Q) → GL2(Fn),

the representation of Gal(Q/Q) on the n-torsion points E[n] of the elliptic
curve E. If n ≥ 7 and ab 6= 1 then ρE

n is absolutely irreducible (see [BS04]
Corollary 3.1).
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Let Fn be an algebraic closure of the finite field Fn and ν be any prime of
Q extending n. To a holomorphic newform f of weight k ≥ 1 and level N , we
associate a continuous, semisimple representation

ρf,ν : Gal(Q/Q) → GL2(Fn)

unramified outside of Nn and satisfying, if f(z) =
∑∞

n=1 cnqn for q := e2πiz ,

traceρf,ν(Frobp) ≡ cp (mod ν)

for all p coprime to Nn. Here, Frobp is a Frobenius element at the prime p.
If the representation ρE

n , after extending scalars to Fn, is equivalent to ρf,ν ,
for some newform f , then we say that ρE

n is modular, arising from f .
The next lemma follows from [5] Lemma 3.3.

Lemma 8.5 Suppose that n ≥ 7 is a prime and that ρE
n is associated to a primitive

solution (a, b, c) to (8.2) with ab 6= ±1. Put

Nn(E) =

{
32p2 α = 0,

256p2 α = 1.

The representation ρE
n arises from a cuspidal newform of weight 2, level Nn(E), and

trivial Nebentypus character.

This lemma says that we can associate to the elliptic curve E = Eα(a, b, c)
a weight 2 modular form of level 32p2 (if α = 0) or 256p2 (if α = 1).

8.5 Useful Propositions

In this section we collect together some results concerning the newforms of
level Nn(E) from which our representation ρE

n can arise. The proofs of these
propositions can be found in [5]. The first proposition gives a relationship be-
tween n and the coefficients of the newform. We will use this result to obtain
the bounds on n in the main theorem.

Proposition 8.6 Suppose n ≥ 7 is a prime and E = Ei(a, b, c) is a curve associated
to a primitive solution of (8.2) with ab 6= ±1. Suppose further that

f =
∞∑

m=1

cmqm (q := e2πiz)
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is a newform of weight 2 and level Nn(E) giving rise to ρE
n and that Kf is a number

field containing the Fourier coefficients of f . If q is a prime, coprime to 2pn, then n

divides one of either
NormKf /Q (cq ± (q + 1))

or
NormKf /Q(cq ± 2r),

for some integer r ≤ √
q.

In the case when the space of cuspforms of level Nn(E) contains newforms
associated to elliptic curves with rational 2-torsion we will find the following
result useful.

Proposition 8.7 Suppose n 6= p is an odd prime and E = Eα(a, b, c) is a curve
associated to a primitive solution of (8.2). Suppose also that E′ is another elliptic
curve defined over Q such that ρE

n
∼= ρE′

n . Then the denominator of the j-invariant
j(E′) is not divisible by p.

Finally, in the case when the space of cuspforms of level Nn(E) contains
newforms associated to elliptic curves with rational 2-torsion and CM we will
need the following result.

Proposition 8.8 Suppose n ≥ 7 is a prime and E = Ei(a, b, c) is a curve associated
to a primitive solution of (8.2) with ab 6= ±1. Suppose that ρE

n arises from a newform
having CM by an imaginary quadratic field K. Then one of the following holds:

(a) ab = ±2r, r > 0, 2 6 |ABC and 2 splits in K.

(b) n = 7 or 13, n splits in K and either E(K) has infinite order for all elliptic curves
of conductor 2n or ab = ±2r3s with s > 0 and 3 ramifies in K.

8.6 Elliptic curves with rational 2-torsion

It is possible that the modular form associated to E = Eα(a, b, c) has rational
integer coefficients in which case the results of the previous section will not
help in eliminating the existence of such a form. In this case however, the
modular form must correspond to an isogeny class of elliptic curves over Q
with 2-torsion and conductor equal to the level of the modular form: 32p2
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or 256p2. We use the classification of such elliptic curves found in Chapter 6.
We restate the relevant results (Corollaries 6.10 and 6.11) of Chapter 6 in the
following two propositions.

Proposition 8.9 Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with a
rational 2-torsion point and conductor 32p2. Then E is isogenous over Q to a curve
of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.

p a2 a4 j-invariant

any 0 −p2 1728
any 0 (−1)(p+1)/2p 1728
any 0 (−1)(p+1)/2p3 1728
7 ±7 2 · 72 8000/7
7 ±7 2 · 7 −26

7 ±72 2 · 73 −26

s2 + 1, s ∈ Z 2ps −p2 64(4p−1)3

p

s2 + 8, s ∈ Z ps −2p2 64(p−2)3

p

s2 − 8, s ∈ Z ps 2p2 64(p+2)3

p

Proposition 8.10 Suppose p ≥ 5 is prime and that E/Q is an elliptic curve with a
rational 2-torsion point and conductor 256p2. Then E is isogenous over Q to a curve
of the form

y2 = x3 + a2x
2 + a4x

with coefficients given in the following table.
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p a2 a4 j-invariant

any 0 ±2p 1728
any 0 ±2p2 1728
any 0 ±2p3 1728
any ±4p 2p2 2653

23 ±23 · 23 · 39 2 · 235 263340573

236

23 ±24 · 23 · 39 23 · 235 263340573

236

2s2 + 1, s ∈ Z ±4ps 2p3 −64(p−4)3

p2

2s2 + 1, s ∈ Z ±4ps −2p2 64(4p−1)3

p√
2s2 + 1, s ∈ Z ±4ps 2p4 64(p2−4)3

p4√
2s2 + 1, s ∈ Z ±4ps −2p2 64(4p2−1)3

p2

2s2 − 1, s ∈ Z ±4ps 2p3 64(p+4)3

p2

2s2 − 1, s ∈ Z ±4ps 2p2 64(4p+1)3

p√
2s2 − 1, s ∈ Z ±4ps 2p4 64(p2+4)3

p4√
2s2 − 1, s ∈ Z ±4ps 2p2 64(4p2+1)3

p2

The main feature of these propositions we will use is that an elliptic curve
E/Q with rational 2-torsion and conductor 32p2 or 256p2 either has CM or
p dividing the denominator of j(E), with one exception: there are curves of
conductor 32p2 when p = 7 without CM and potentially good reduction at p,
namely

y2 = x3 ± 7x2 + 14x and y2 = x3 ± 49x2 + 686x.

It is the presence of these curves which prevents us from extending the results
of Theorem 8.1 to include p = 7.

8.7 Theorems 8.1 and 8.2

To prove Theorems 8.1 and 8.2, we will combine Propositions 8.9 and 8.10
with a result of Kraus (Lemma 1 of [43]) and the proposition of Appendice II
of Kraus and Oesterlé [46] (regarding this last assertion, note the comments
in the Appendice of [43]). We define

µ(N) = N
∏
l|N

(
1 +

1
l

)
,
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where the product is over prime l.

Proposition 8.11 (Kraus) Let N be a positive integer and f =
∑

n≥1 cnqn be a
weight 2, level N newform, normalized so that c1 = 1. Suppose that for every prime
p with (p, N) = 1 and p ≤ µ(N)/6 we have cp ∈ Z. Then we may conclude that
cn ∈ Z for all n ≥ 1.

Proposition 8.12 (Kraus and Oesterlé) Let k be a positive integer, χ a Dirichlet
character of conductor N and f =

∑
n≥0 cnqn be a modular form of weight k, char-

acter χ for Γ0(N), with cn ∈ Z. Let p be a rational prime. If cn ≡ 0 (mod p) for all
n ≤ µ(N)k/12, then cn ≡ 0 (mod p) for all n.

We now proceed with the proofs of Theorems 8.1 and 8.2; in each case,
from Lemma 8.5, we may assume the existence of a weight 2, level N cuspidal
newform f (with trivial character), where

N ∈
{
32p2, 256p2

}
.

If f has at least one Fourier coefficient that is not a rational integer, then, from
Proposition 8.11, there is a prime l coprime to 2p with

l ≤

{
8p(p + 1) if N = 32p2,

64p(p + 1) if N = 256p2.
(8.3)

such that cl 6∈ Z. It follows from Proposition 8.6 that n divides NormKf /Q(cl−
al), where al is the lth Fourier coefficient corresponding to the Frey curve
E(a, b, c). Since al ∈ Z (whereby al 6= cl), and l is coprime to 2p, the Weil
bounds; |c`| ≤ 2

√
`, |a`| ≤ ` + 1, imply that

n ≤
(
l + 1 + 2

√
l
)[Kf :Q]

=
(√

l + 1
)2[Kf :Q]

, (8.4)

where, as previously, Kf denotes the field of definition for the Fourier co-
efficients of the form f . Next, we note that [Kf : Q] ≤ g+

0 (N) where g+
0 (N)

denotes the dimension (as a C-vector space) of the space of cuspidal, weight
2, level N newforms. Applying Theorem 2 of Martin [49] we have

g+
0 (32p2) ≤ 32p2 + 1

12
≤ 3p2,
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and

g+
0 (256p2) ≤ 256p2 + 1

12
≤ 22p2.

Combining these with inequalities (8.3) and (8.4), we may therefore con-
clude that

n ≤


(√

8p(p + 1) + 1
)6p2

if N = 32p2,(√
64p(p + 1) + 1

)44p2

if N = 256p2.
(8.5)

It follows, after routine calculation, that

n ≤

{
p12p2

if N = 32p2,

p132p2
if N = 256p2.

where these inequalities are a consequence of (8.5) for p ≥ 5.
It remains, then, to consider the case when the form f has rational integer

Fourier coefficients cn for all n ≥ 1. In such a situation, f corresponds to an
isogeny class of elliptic curves over Q with conductor N . Define

f∗ =
∑

n≥1,(n,2p)=1

cnqn and g∗ =
∑

n≥1,(n,2p)=1

σ1(n)qn,

where σ1(n) is the usual sum of divisors function; i.e. σ1(n) =
∑

d|n d. Lemma
4.6.5 of Miyake [Mi:1989] ensures that f∗ and g∗ are weight 2 modular forms
of level dividing 512p3. Applying Proposition 8.12 (at the prime 2) to f∗ − g∗

and using the fact that σ(l) = l + 1, for all primes l one of the following
necessarily occurs :

(i) There exists a prime l, coprime to 2p, satisfying l ≤ 128p2(p + 1) and
cl ≡ 1 (mod 2).

(ii) cl ≡ 0 (mod 2) for all prime l coprime to 2p.

In the former case, since n divides the (nonzero) integer cl − al, we obtain the
inequality

n ≤ l + 1 + 2
√

l ≤ 128p2(p + 1) + 1 + 16p
√

p + 1 < p2p, (8.6)

where the last inequality is valid for p ≥ 5. In the latter situation, there neces-
sarily exists a curve, say F , in the given isogeny class, with a rational 2-torsion



Chapter 8. On the equation xn + yn = 2αpz2 254

point. Propositions 8.9 and 8.10 then immediately imply Theorems 8.1 and
8.2. Regarding Theorem 8.1, where N = 32p2, we may apply Proposition 8.9
to conclude that, for p 6= 7, F has j-invariant whose denominator is divisible
by p or CM by an order in Q(

√
−1). In the former case, we get a contradiction

with Proposition 8.7, thus the latter case must hold, from which it follows
from Proposition 8.8 that n ≤ 13 (note, part (a) of Proposition cannot hold in
this case since we are assuming c ≡ 0 (mod 2) and a, b, c pairwise coprime).
Regarding Theorem 8.2, where N = 256p2, we apply Proposition 8.10 to con-
clude that F has j-invariant whose denominator is divisible by p or CM by an
order in Q(

√
−1) or Q(

√
−2). In the former case, we again get a contradiction

with Proposition 8.7, thus the latter case must hold, from which it follows
from Proposition 8.8 that n ≤ 13. Combining these observations with (8.6)
and the inequalities following (8.5) completes the proofs of Theorems 8.1 and
8.2.

Corollary 8.3 is an easy consequence of Theorems 8.1 and 8.2, after apply-
ing a result of Darmon and Granville [DG95] (which implies, for fixed values
of n ≥ 4 and α, that the equation xn + yn = 2αpz2 has at most finitely many
solutions in coprime, nonzero integers x, y and z.

8.8 Concluding Remarks

In case p ∈ {2, 3, 5}, equation 8.2 is solved completely in [5], for n ≥ 4. Further,
the equation

xn + yn = 7z2

with x, y and z coprime nonzero integers, may, as in e.g. Kraus [38], be treated
for fixed values for n. We will not undertake this here.



Chapter 9
On the equation x3 + y3 = ±pmzn

In this chapter we restrict our attention to determining primes p for which
x3 + y3 = ±pmzn can be shown to be unsolvable in integers (x, y, z) for all
suitable large primes n.

9.1 Introduction

Let T denote the set of primes p for which there are no elliptic curves over
Q with rational 2-torsion and conductor in {18p, 36p, 72p}. We have already
seen in Chapter 7 that T is infinite, in fact it contains all primes p satisfying
p ≡ 317 or 1757 (mod 2040) (see Corollary 7.4). It is believed that T contains
all primes except for a set of density zero. Corollary 7.5 is the most we can
prove in this direction. The first few elements of T are

197, 317, 439, 557, 653, 677, 701, 773, 797, 821, 1013, 1039,

1061, 1109, 1231, 1277, 1279, 1289, 1301, 1399, 1447, 1471, 1493

1613, 1637, 1663, 1709, 1733.

In this chapter we prove the following.

Theorem 9.1 Let p ∈ T and m ≥ 1 an integer. Then the equation

x3 + y3 = ±pmzn (9.1)

has no solutions in coprime nonzero integers x, y and z, and prime n satisfying
n ≥ p8p and n - m.

255
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We remark that in the case that n | m the equation can be written as x3 +
y3 = zn. Kraus has treated these equations in [44]. So, in what follows, we
will assume n - m.

As an almost immediate consequence of this theorem, we have:

Corollary 9.2 Let p ∈ T . Then equation (9.1) has at most finitely many solutions
in coprime nonzero integers x, y and z, and integers m ≥ 1, n ≥ 5 with n - m.

9.2 Frey Curve

Let p be a prime number ≥ 5, n a prime ≥ 7 and m a positive integer. We con-
sider a proper, nontrivial solution (a, b, c) of the equation a3 +b3 = ±pmcn, i.e.
pgcd(a, b, pc) = 1 1. We suppose, without loss of generality, that the following
conditions are satisfied:

ac is even, and b ≡

{
−1 (mod 4) if c is even,

1 (mod 4) if c is odd.
(9.2)

Darmon and Granville [27] associate to the triple (a, b, c) an elliptic curve
defined over Q. It is, up to Q-isomorphism, the elliptic curve that we denote
Ea,b, with equation

y2 = x3 + 3abx + b3 − a3, (9.3)

which has a point of order 2; (a−b, 0). The standard invariants c4(a, b), c6(a, b)
and ∆(a, b) associated with the equation 9.3 are the following:

c4(a, b) = −2432ab

c6(a, b) = 2533(a3 − b3)

∆(a, b) = −2433p2mc2n

(9.4)

We determine the conductor NEa,b
of Ea,b. We designate by R the product

of the prime numbers distinct from 2, 3, and p that divide c, which is to say the
largest squarefree integer prime to 6p which divides c. Given an integer k and
a prime number l, we denote by vl(k) the exponent of l in the decomposition
of k into prime factors.

1pgcd denotes the pairwise gcd.
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Lemma 9.3 We have (under conditions (9.2) on a, b, and c)

NEa,b
=


2 · 32pR if c even, b ≡ −1 (mod 4),

2332pR if c odd, v2(a) = 1 and b ≡ 1 (mod 4),

2232pR if c odd, v2(a) ≥ 2 and b ≡ 1 (mod 4).

Proof. We will use Theorems 2.1, 2.3, and 2.4 to compute v`(NEa,b
) for all

primes l. To do this we first need to move the point of order 2 to (0, 0). Apply-
ing the change of variables

x = X + (a− b), y = Y,

the curve Ea,b is Q-isomorphic to

Ea,b : Y 2 = X3 + 3(a− b)X2 + 3(a2 − ab + b2)X. (9.5)

The invariants of this model are still as in (9.4).
1) Let l be a prime number≥ 5 which divides pc. As the integers a, b and pc

are prime to each other we have l - a− b and equation (9.5) is minimal at l. On
the other hand, if l is a prime number≥ 5 and is prime to pc then vl(∆(a, b)) =
0 and again equation (9.5) is minimal at l. It follows from Theorem 2.4 that

vl(NEa,b
) =

{
1 if ` divides pc,

0 if ` does not divide pc.
(9.6)

2) We determine the exponent of 2 in NEa,b
.

2.1) Suppose that c is even. In this case ab is odd, because pgcd(a, b, pc) = 1.
We have ±pmcn = (a + b)(a2 − ab + b2) and the number a2 − ab + b2 is odd.
As n is ≥ 5, we have

a + b ≡ 0 (mod 32).

As a and b are odd, it follows that 4 does not divide a− b. Therefore{
v2(3(a− b)) = v2(a− b) = 1,

v2(3(a2 − ab + b2)) = 0.

Thus, from Theorem 2.1, the value of v2(NE(a,b)) depends on the congruence
class of 3(a− b) modulo 8 (note v2(∆) ≥ 4 + 2n ≥ 14). It follows from a + b ≡
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0 (mod 32), a − b ≡ 2 (mod 4) and the assumption b ≡ −1 (mod 4) (see 9.2)
that a− b ≡ 2 (mod 8), hence

3(a− b) ≡ 6 (mod 8).

So, from theorem 2.1, v2(NEa,b
) = 1.

2.2) Suppose that c is odd. It follows from condition (9.2) that a is even and
b ≡ 1 (mod 4). We therefore have{

v2(3(a− b)) = 0,

v2(3(a2 − ab + b2)) = 0,

thus, from Theorem 2.1 the value of v2(NE(a,b)) depends on the congruence
classes of 3(a− b) and 3(a2 − ab + b2) modulo 4. Since b ≡ 1 (mod 4) then

3(a− b) ≡

{
1 (mod 4) if a ≡ 0 (mod 4),

−1 (mod 4) if a ≡ 2 (mod 4),

and

3(a2 − ab + b2) ≡

{
−1 (mod 4) if a ≡ 0 (mod 4),

1 (mod 4) if a ≡ 2 (mod 4).

It follows from Theorem 2.1 that

v2(NEa,b
) =

{
2 if a ≡ 0 (mod 4),

3 if a ≡ 2 (mod 4).

3) We now determine the exponent of 3 in NEa,b
.

3.1) Suppose that 3 divides c. Under this hypothesis 3 does not divide ab.
From the equality a3 + b3 = pmcn we have a ≡ −b (mod 3) and 3 does not
divide a− b or a3− b3. It follows that 3 divides a2−ab+ b2. Therefore v3(3(a−
b)) = 1 and v3(3(a2− ab + b2)) ≥ 2. The Néron type of Ea,b at 3 is then I∗v with
v = 2nv3(c)− 3 and v3(NEa,b

) = 2 by Theorem 2.3.
3.2) Suppose that 3 divides ab. We have in this case 3 does not divide a− b or
a2 − ab + b2 since gcd(a, b) = 1. Therefore v3(3(a− b)) = 1 and v3(3(a2 − ab +
b2)) = 1. The Néron type of Ea,b at 3 is thus III and again v3(NEa,b

) = 2 by
Theorem 2.3.
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3.3) Suppose that 3 does not divide abc. As 3 does not divide pc, we have from
the equality a3 + b3 = pmcn that a ≡ b (mod 3) and so a− b ≡ 0 (mod 3) and 3
does not divide a2−ab+ b2. Thus v3(3(a− b)) ≥ 2 and v3(3(a2−ab+ b2)) = 1.
The Néron type of Ea,b at 3 is thus III, and we have again v3(NEa,b

) = 2. This
completes the proof of Lemma 9.3.

9.3 The Modular Galois Representation ρa,b
n

Let Q be an algebraic closure of Q and Ea,b[n] the subgroup of n-torsion points
of Ea,b(Q). Ea,b[n] is a vector space of dimension 2 over Z/nZ on which the
Galois group Gal(Q/Q) acts naturally. We denote the corresponding mod n

Galois representation on Ea,b[n] by

ρa,b
n : Gal(Q/Q) → GL2(Fn).

Let k and N(ρa,b
n ) denote the weight and conductor of ρa,b

n respectively, which
are defined by Serre in [64].

Lemma 9.4 1. k = 2.

2. N(ρa,b
n ) =


18p if c even, b ≡ −1 (mod 4),

36p if c odd, v2(a) ≥ 2 and b ≡ 1 (mod 4),

72p if c odd, v2(a) = 1 and b ≡ 1 (mod 4).

3. The representation ρa,b
n is irreducible.

Proof. 1) Recall n 6= p by assumption. If n - c then Ea,b has good reduction at
p. Otherwise, Ea,b has multiplicative reduction at n and the exponent of n in
the minimal discriminant is a multiple of n. From which the above assertion
follows, see ([64], P. 191, Proposition 5).

2) Let q be a prime distinct from p and n. The curve Ea,b has multiplicative
reduction at q (Lemma 9.3) and the exponent of q in the minimal discrimi-
nant of Ea,b is a multiple of n (see 9.4). This assertion then follows as a direct
consequence of Lemma 9.3 and a proposition of Kraus [42]; see also ([64], p.
120).
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3) Suppose ρa,b
n is reducible. Since Ea,b has a point of order 2 there exists a

subgroup of Ea,b(Q) of order 2 stable under Galois G(Q/Q).
If n ≥ 11 then the modular curve Y0(2n) does not have any Q-rational

points (see [39] which uses the results of [50]), from which the lemma follows.
Suppose n = 7. The modular curve Y0(14) is the elliptic curve 14a1 in

the table of [26]. It follows that Y0(14) has a rational point of order 2 and so
there corresponds two Q-isomorphism classes of elliptic curves over Q with
j invariants −153 and 2553, respectively. These are precisely the curves 49a1
and 49a2 in the tables of [26], each of which contains a subgroup of order 14
stable under Galois. Since Ea,b has j-invariant

j =
6912(ab)3

p2mc2n

the lemma follows.

Given an integer N ≥ 1 we let S2(Γ0(N)) denote the C-vector space of cus-
pidal modular forms of weight 2 for the congruence subgroup Γ0(N). Denote
by S+

2 (N) the subspace of newforms of S2(Γ0(N)), and g+
0 (N) its dimension

as a C-vector space. See [49] for an explicit determination of g+
0 (N).

Since the representation ρa,b
n is irreducible of weight 2 and Ea,b is modular

(by the extraordinary work of Breuil, Conrad, Diamond, Taylor, and Wiles:
[80], [77], [8]) there exists a newform f ∈ S+

2 (N(ρa,b
n )) whose Taylor expansion

is
t 7→ g +

∑
n≥2

an(f)qn where q = e2πt

and a place B of Q of residual characteristic n such that for all prime numbers
l which do not divide nNEa,b

one has

al(f) ≡ al(Ea,b) (mod B).

It follows that

n | NormKf /Q(al(f)− al(Ea,b)), (9.7)

where Kf denotes the field of definition of the coefficients.
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9.4 Proof of Theorem 9.1

We now proceed with the proof of Theorem 9.1. Let us suppose that f is a
weight 2, level N cuspidal newform (with trivial character), where

N ∈ {18p, 36p, 72p},

corresponding, as in Section 9.3, to a nontrivial solution to equation (9.1).
From Theorem 3 of [43], we may suppose that f has rational integer Fourier
coefficients, provided n ≥ p4p (in case N = 18p or 36p) or n ≥ p8p (in case
N = 72p). This follows from 9.7 and applying Theorem 1 of [49] to obtain

g+
0 (N) ≤

{
p if N = 18p, 36p

5p/4 if N = 72p.

To finish the proof of Theorem 9.1 we will combine the results of Chapter
7 with the Proposition of Kraus and Oesterlé, see Proposition 8.12.

Since the form f has rational integer Fourier coefficients am(f) for all m ≥
1, f corresponds to an isogeny class of elliptic curves over Q with conductor
N = 18p, 32p, or 72p. Define f∗ and g∗ as in section 8.7, though this time
they are both weight 2 cusp forms with level dividing 2433p2. Applying the
Proposition of Kraus and Oesterlé to f∗ − g∗, and using σ(l) = l + 1, for all
primes l one of the following necessarily occurs:

(i) There exists a prime l, coprime to 6p, satisfying l ≤ 144p(p + 1) and
al(f) ≡ 1 (mod 2).

(ii) al(f) ≡ 0 (mod 2) for all prime l coprime to 6p.

In the former case, since n divides the (nonzero) integer al(f) − al(Ea,b) we
obtain the inequality

n ≤ l + 1 + 2
√

l ≤ 144p(p + 1) + 1 + 24
√

p(p + 1) < pp,

where the last inequality is valid for p ≥ 5. In the latter case, there exists and
elliptic curve F , in the given isogeny class, with a rational 2-torsion point.
That is, F is an elliptic curves over Q with 2-torsion and conductor 18p, 36p or
72p. It follows that p 6∈ T . Therefore, for p ∈ T such an F cannot exist, hence
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n ≤ p4p (if N = 18p or 36p) or n ≤ p8p (if N = 72p). This completes the proof
of Theorem 9.1.

Corollary 9.2 is an easy consequence of Theorem 9.1, after applying a re-
sult of Darmon and Granville [27] (which implies, for fixed values of n ≥ 4
and m, that the equation x3 +y3 = ±pmzn has at most finitely many solutions
in coprime, nonzero integers x, y and z).
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Appendix A
On the Q-Isomorphism Classes of Elliptic
Curves with 2-Torsion and Conductor 2α3βpδ

In this appendix, we provide the proof of the main lemmata used in our clas-
sification of elliptic curves. In particular, we will give a list of elliptic curves
which contains a representative for each Q-isomorphism class of curves con-
taining 2 torsion and having conductor of the form 2α3βpδ.

Let E be an elliptic curve over Q of conductor 2M3LpN , with 0 ≤ M ≤ 8
and 0 ≤ L,N ≤ 2, and having at least one rational point of order 2. We may
assume that E is given by a model of the form

y2 = x3 + ax2 + bx,

where a and b are integers both divisible by p iff N = 2, both divisible by 3
iff L = 2, and a, b have no other common odd divisors (see results of Chapter
2). We may also assume that this model is minimal outside of 2. From the
hypothesis on the conductor of E there exist three natural numbers α, β and
δ such that

b2(a2 − 4b) = ±2α3βpδ (A.1)

We have b 6= 0 and the only possible divisors of b are 2, 3 and p. We consider
the two cases: (i) b > 0, (ii) b < 0. The first case is treated in Section A.1 and
the second in A.2.

A.1 b > 0

Lemma A.1 Suppose b > 0. Then there exists an integer d, and non-negative in-
tegers m, `, and n satisfying one of the equations in the first column and E is Q-

270
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isomorphic to the corresponding curve in the second column, for some r1, r2, r3 ∈
{0, 1}; except in cases 1 through 9, where if m = 1 then r1 ∈ {1, 2}.

y2 = x3 + a2x
2 + a4x

Diophantine Equation a2 a4

1 d2 − 2m3`pn = ±1 2r13r2pr3d 2m+2r1−23`+2r2pn+2r3

2 d2 − 2m3` = ±pn 2r13r2pr3d 2m+2r1−23`+2r2p2r3

3 d2 − 2mpn = ±3` 2r13r2pr3d 2m+2r1−232r2pn+2r3

4 d2 − 2m = ±3`pn 2r13r2pr3d 2m+2r1−232r2p2r3

5 pd2 − 2m3` = ±1 2r13r2pr3+1d 2m+2r1−23`+2r2p2r3+1

6 pd2 − 2m = ±3` 2r13r2pr3+1d 2m+2r1−232r2p2r3+1

7 3d2 − 2mpn = ±1 2r13r2+1pr3d 2m+2r1−232r2+1pn+2r3

8 3d2 − 2m = ±pn 2r13r2+1pr3d 2m+2r1−232r2+1p2r3

9 3pd2 − 2m = ±1 2r13r2+1pr3+1d 2m+2r1−232r2+1p2r3+1

10 d2 − 3`pn = ±2m 2r1+13r2pr3d 22r13`+2r2pn+2r3

11 d2 − 3` = ±2mpn 2r1+13r2pr3d 22r13`+2r2p2r3

12 d2 − pn = ±2m3` 2r1+13r2pr3d 22r132r2pn+2r3

13 d2 − 1 = ±2m3`pn 2r1+13r2pr3d 22r132r2p2r3

14 pd2 − 3` = ±2m 2r1+13r2pr3+1d 22r13`+2r2p2r3+1

15 pd2 − 1 = ±2m3` 2r1+13r2pr3+1d 22r132r2p2r3+1

16 3d2 − pn = ±2m 2r1+13r2+1pr3d 22r132r2+1pn+2r3

17 3d2 − 1 = ±2mpn 2r1+13r2+1pr3d 22r132r2+1p2r3

18 3pd2 − 1 = ±2m 2r1+13r2+1pr3+1d 22r132r2+1p2r3+1

19 2d2 − 3`pn = ±1 2r1+23r2pr3d 22r1+13`+2r2pn+2r3

20 2d2 − 3` = ±pn 2r1+23r2pr3d 22r1+13`+2r2p2r3

21 2d2 − pn = ±3` 2r1+23r2pr3d 22r1+132r2pn+2r3

22 2d2 − 1 = ±3`pn 2r1+23r2pr3d 22r1+132r2p2r3

23 2pd2 − 3` = ±1 2r1+23r2pr3+1d 22r1+13`+2r2p2r3+1

24 2pd2 − 1 = ±3` 2r1+23r2pr3+1d 22r1+132r2p2r3+1

25 6d2 − pn = ±1 2r1+23r2+1pr3d 22r1+132r2+1pn+2r3

26 6d2 − 1 = ±pn 2r1+23r2+1pr3d 22r1+132r2+1p2r3

27 6pd2 − 1 = ±1 2r1+23r2+1pr3+1d 22r1+132r2+1p2r3+1

Remark. To avoid trivial redundancies in the list above we are free to make
the following convention: m,` and n may be zero if they appear on the right-
hand side of the Diophantine equation, otherwise they must be ≥ 1.

A warning to the reader. The following proof is tedious and very repeti-
tive. We have included all the details only for the purpose of completeness.
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For those interested in getting an idea of the flavor of the proof, we suggest
only reading a few cases.
Proof. It follows from (A.1) that the only possible divisors of b are 2, 3 and p.
Thus, there exist integers i, j and k such that

b = 2i3jpk, and 0 ≤ 2i ≤ α, 0 ≤ 2j ≤ β, 0 ≤ 2k ≤ δ.

We obtain from (A.1)

a2 − 2i+23jpk = ±2α−2i3β−2jpδ−2k (A.2)

In what follows we consider the following twenty-seven cases:
1) i + 2 > α− 2i, j > β − 2j, k > δ − 2k,
2) i + 2 > α− 2i, j > β − 2j, k < δ − 2k,
3) i + 2 > α− 2i, j > β − 2j, k = δ − 2k,
4) i + 2 > α− 2i, j < β − 2j, k > δ − 2k,
5) i + 2 > α− 2i, j < β − 2j, k < δ − 2k,
6) i + 2 > α− 2i, j < β − 2j, k = δ − 2k,
7) i + 2 > α− 2i, j = β − 2j, k > δ − 2k,
8) i + 2 > α− 2i, j = β − 2j, k < δ − 2k,
9) i + 2 > α− 2i, j = β − 2j, k = δ − 2k,
10) i + 2 < α− 2i, j > β − 2j, k > δ − 2k,
11) i + 2 < α− 2i, j > β − 2j, k < δ − 2k,
12) i + 2 < α− 2i, j > β − 2j, k = δ − 2k,
13) i + 2 < α− 2i, j < β − 2j, k > δ − 2k,
14) i + 2 < α− 2i, j < β − 2j, k < δ − 2k,
15) i + 2 < α− 2i, j < β − 2j, k = δ − 2k,
16) i + 2 < α− 2i, j = β − 2j, k > δ − 2k,
17) i + 2 < α− 2i, j = β − 2j, k < δ − 2k,
18) i + 2 < α− 2i, j = β − 2j, k = δ − 2k,
19) i + 2 = α− 2i, j > β − 2j, k > δ − 2k,
20) i + 2 = α− 2i, j > β − 2j, k < δ − 2k,
21) i + 2 = α− 2i, j > β − 2j, k = δ − 2k,
22) i + 2 = α− 2i, j < β − 2j, k > δ − 2k,
23) i + 2 = α− 2i, j < β − 2j, k < δ − 2k,
24) i + 2 = α− 2i, j < β − 2j, k = δ − 2k,
25) i + 2 = α− 2i, j = β − 2j, k > δ − 2k,
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26) i + 2 = α− 2i, j = β − 2j, k < δ − 2k,
27) i + 2 = α− 2i, j = β − 2j, k = δ − 2k.

1. We have i + 2 > α− 2i, j > β − 2j and k > δ − 2k. In this case v2(a2) =
α− 2i, v3(a2) = β − 2j and vp(a2) = δ − 2k so α, β, and δ are even. Therefore,
v2(a) = α

2 − i, v3(a) = β
2 − j, and vp(a) = δ

2 − k. Let

u =
a

2
α
2
−i3

β
2
−jp

δ
2
−k

so (A.2) becomes
u2 − 23i−α+233j−βp3k−δ = ±1,

with 3i− α + 2 ≥ 1, 3j − β ≥ 1 and 3k − δ ≥ 1.
Let

d = u, m = 3i− α + 2, ` = 3j − β, n = 3k − δ,

then (d,m, `, n, p) is a solution to

d2 − 2m3`pn = ±1,

with m, `, n ≥ 1. The model for E can be written

y2 = x3 + 2
α
2
−i3

β
2
−jp

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

β

2
− j = 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. There are two cases to consider:
1.i) We have (m, r1) = (1, 0). Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 233`+2r2pn+2r3X

which is the curve in case 1 of the lemma with r1 = 2.
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1.ii) We have (m, r1) > (1, 0)1. Putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−23`+2r2pn+2r3X

which is the curve in case 1 of the lemma with r1 = 0 or 1.
2. We have i + 2 > α− 2i, j > β − 2j and k < δ − 2k. In this case v2(a2) =

α − 2i, v3(a2) = β − 2j and vp(a2) = k so α, β, and k are even. Therefore,
v2(a) = α

2 − i, v3(a) = β
2 − j, and vp(a) = k

2 . Let

u =
a

2
α
2
−i3

β
2
−jp

k
2

so (A.2) becomes
u2 − 23i−α+233j−β = ±pδ−3k,

with 3i− α + 2 ≥ 1, 3j − β ≥ 1 and δ − 3k ≥ 1.
Let

d = u, m = 3i− α + 2, ` = 3j − β, n = δ − 3k,

then (d,m, `, n, p) is a solution to

d2 − 2m3` = ±pn,

with m, `, n ≥ 1. The the model for E can be written

y2 = x3 + 2
α
2
−i3

β
2
−jp

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

β

2
− j = 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. There are, again, two cases to consider:
2.i) We have (m, r1) = (1, 0). Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

1Lexicographic order.
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we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 233`+2r2p2r3X

which is the curve in case 2 of the lemma with r1 = 2.
2.ii) We have (m, r1) > (1, 0). Putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−23`+2r2p2r3X

which is the curve in case 2 of the lemma with r1 = 0 or 1.
3. We have i+2 > α−2i, j > β−2j and k = δ−2k. In this case v2(a2) = α−

2i, v3(a2) = β−2j so α and β are even. Therefore, v2(a) = α
2 − i, v3(a) = β

2 −j.
Also, vp(a2) ≥ k = δ − 2k so vp(a2) ≥ k+ε3

2 where ε3 denotes the residue of k

modulo 2. Let
u =

a

2
α
2
−i3

β
2
−jp

k+ε3
2

so (A.2) becomes
pε3u2 − 23i−α+233j−β = ±1,

with 3i− α + 2 ≥ 1 and 3j − β ≥ 1. Let

d = u, m = 3i− α + 2, ` = 3j − β,

then (d,m, `) is a solution to

pε3d2 − 2m3` = ±1,

with m, ` ≥ 1. The model for E can be written

y2 = x3 + 2
α
2
−i3

β
2
−jp

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

β

2
− j = 2q2 + r2,

k

2
= 2q3 + r3,
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with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
3.1) Suppose ε3 = 0.
3.1.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 233`+2r2p2r3X

which is the curve in case 2 of the lemma with n = 0 and r1 = 2.
3.1.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−23`+2r2p2r3X

which is the curve in case 2 of the lemma with n = 0 and r1 = 0 or 1.
3.2) Suppose ε3 = 1.
3.2.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 223r2p2−r3dX2 + 233`+2r2p3−2r3X

which is the curve in case 5 of the lemma with r1 = 2 and r3 = 1− r3.
3.2.ii) We have (m, r1) > (1, 0) and r3 = 0. Putting

X =
x

22q132q2p2(q3−1+r3)
, Y =

y

23q133q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 2r13r2p2−r3dX2 + 2m+2r1−23`+2r2p3−2r3X

which is the curve in case 5 of the lemma with r1 = 0 or 1 and r3 = 1− r3.
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4. We have i + 2 > α− 2i, j < β − 2j and k > δ − 2k. In this case v2(a2) =
α − 2i, v3(a2) = j and vp(a2) = δ − 2k so α, j, and δ are even. Therefore,
v2(a) = α

2 − i, v3(a) = j
2 , and vp(a) = δ

2 − k. Let

u =
a

2
α
2
−i3

j
2 p

δ
2
−k

so (A.2) becomes
u2 − 23i−α+2p3k−δ = ±3β−3j ,

with 3i− α + 2 ≥ 1, β − 3j ≥ 1 and 3k − δ ≥ 1.
Let

d = u, m = 3i− α + 2, ` = β − 3j, n = 3k − δ,

then (d,m, `, n, p) is a solution to

d2 − 2mpn = ±3`,

with m, `, n ≥ 1. The the model for E can be written

y2 = x3 + 2
α
2
−i3

j
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j

2
= 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. There are, again, two cases to consider:
4.i) We have (m, r1) = (1, 0). Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2pn+2r3X

which is the curve in case 3 of the lemma with r1 = 2.
4.ii) We have (m, r1) > (1, 0). Putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,
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we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2pn+2r3X

which is the curve in case 3 of the lemma with r1 = 0 or 1.
5. We have i+2 > α−2i, j < β−2j and k < δ−2k. In this case v2(a2) = α−

2i, v3(a2) = j and vp(a2) = k so α, j, and k are even. Therefore, v2(a) = α
2 − i,

v3(a) = j
2 , and vp(a) = k

2 . Let

u =
a

2
α
2
−i3

j
2 p

k
2

so (A.2) becomes
u2 − 23i−α+2 = ±3β−3jpδ−3k,

with 3i− α + 2 ≥ 1, β − 3j ≥ 1 and δ − 3k ≥ 1.
Let

d = u, m = 3i− α + 2, ` = β − 3j, n = δ − 3k,

then (d,m, `, n, p) is a solution to

d2 − 2m = ±3`pn,

with m, `, n ≥ 1. The the model for E can be written

y2 = x3 + 2
α
2
−i3

j
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j

2
= 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. There are, again, two cases to consider:
5.i) We have (m, r1) = (1, 0). Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2p2r3X
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which is the curve in case 4 of the lemma with r1 = 2.
5.ii) We have (m, r1) > (1, 0). Putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2p2r3X

which is the curve in case 4 of the lemma with r1 = 0 or 1.
6. We have i + 2 > α− 2i, j < β − 2j and k = δ − 2k. In this case v2(a2) =

α − 2i and v3(a2) = j so α and j are even. Therefore, v2(a) = α
2 − i and

v3(a) = j
2 . Also, vp(a2) ≥ k = δ − 2k so vp(a) ≥ k+ε3

2 where ε3 denotes the
residue of k modulo 2. Let

u =
a

2
α
2
−i3

j
2 p

k+ε3
2

so (A.2) becomes
pε3u2 − 23i−α+2 = ±3β−3j ,

with 3i− α + 2 ≥ 1 and β − 3j ≥ 1. Let

d = u, m = 3i− α + 2, ` = β − 3j,

then (d,m, `, p) is a solution to

pε3d2 − 2m = ±3`,

with m, ` ≥ 1, and the model for E can be written

y2 = x3 + 2
α
2
−i3

j
2 p

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j

2
= 2q2 + r2,

k + ε3
2

= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
6.1) Suppose ε3 = 0.
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6.1.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2p2r3X

which is the curve in case 4 of the lemma with n = 0 and r1 = 2.
6.1.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2p2r3X

which is the curve in case 4 of the lemma with n = 0 and r1 = 0 or 1.
6.2) Suppose ε3 = 1.
6.2.i) If (m, r1) = (1, 0) and r3 = 0, then putting

X =
x

22(q1−1)32q2p2(q3−1)
, Y =

y

23(q1−1)33q2p3(q3−1)
,

we obtain the new model for E

Y 2 = X3 + 223r2p2dX2 + 2332r2p3X

which is the curve in case 6 of the lemma with r1 = 2 and r3 = 1.
6.2.ii) If (m, r1) = (1, 0) and r3 = 1, then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pdX2 + 2332r2pX

which is the curve in case 6 of the lemma with r1 = 2, r3 = 0.
6.2.iii) If (m, r1) > (1, 0) and r3 = 0, then putting

X =
x

22q132q2p2(q3−1)
, Y =

y

23q133q2p3(q3−1)
,
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we obtain the new model for E

Y 2 = X3 + 2r13r2p2dX2 + 2m+2r1−232r2p3X

which is the curve in case 6 of the lemma with r1 = 0 or 1 and r3 = 1.
6.2.iv) If (m, r1) > (1, 0) and r3 = 0, then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pdX2 + 2m+2r1−232r2pX

which is the curve in case 6 of the lemma with r1 = 0 or 1 and r3 = 0.
7. We have i + 2 > α− 2i, j = β − 2j and k > δ − 2k. In this case v2(a2) =

α− 2i, and vp(a2) = δ − 2k so α and δ are even. Therefore, v2(a) = α
2 − i and

vp(a) = δ
2 − k. Also, v3(a2) ≥ j = β − 2j so v3(a) ≥ j+ε2

2 where ε2 denotes the
residue of j modulo 2. Let

u =
a

2
α
2
−i3

j+ε2
2 p

δ
2
−k

so (A.2) becomes
3ε2u2 − 23i−α+2p3k−δ = ±1,

with 3i− α + 2 ≥ 1 and 3k − δ ≥ 1. Let

d = u, m = 3i− α + 2, n = 3k − δ,

then (d,m, n, p) is a solution to

d2 − 2mpn = ±1,

with m,n ≥ 1, and the model for E can be written

y2 = x3 + 2
α
2
−i3

j+ε2
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j + ε2
2

= 2q2 + r2,
δ

2
− k = 2q3 + r3,



Appendix A. Q-Isomorphism Classes 282

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
7.1) Suppose ε2 = 0.
7.1.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2pn+2r3X

which is the curve in case 3 of the lemma with ` = 0 and r1 = 2.
7.1.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2pn+2r3X

which is the curve in case 3 of the lemma with ` = 0 and r1 = 0 or 1.
7.2) Suppose ε2 = 1.
7.2.i) If (m, r1) = (1, 0) and r2 = 0, then putting

X =
x

22(q1−1)32(q2−1)p2q3
, Y =

y

23(q1−1)33(q2−1)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2232pr3dX2 + 2333pn+2r3X

which is the curve in case 7 of the lemma with r1 = 2 and r2 = 1.
7.2.ii) If (m, r1) = (1, 0) and r2 = 1, then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223pr3dX2 + 233pn+2r3X

which is the curve in case 7 of the lemma with r1 = 2, r2 = 0.
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7.2.iii) If (m, r1) > (1, 0) and r2 = 0, then putting

X =
x

22q132(q2−1)p2q3
, Y =

y

23q133(q2−1)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r132pr3dX2 + 2m+2r1−233pn+2r3X

which is the curve in case 7 of the lemma with r1 = 0 or 1 and r2 = 1.
7.2.iv) If (m, r1) > (1, 0) and r2 = 1, then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13pr3dX2 + 2m+2r1−23pn+2r3X

which is the curve in case 7 of the lemma with r1 = 0 or 1 and r2 = 0.
8. We have i + 2 > α− 2i, j = β − 2j and k < δ − 2k. In this case v2(a2) =

α − 2i, and vp(a2) = k so α and k are even. Therefore, v2(a) = α
2 − i and

vp(a) = k
2 . Also, v3(a2) ≥ j = β − 2j so v3(a2) ≥ j+ε2

2 where ε2 denotes the
residue of j modulo 2. Let

u =
a

2
α
2
−i3

j+ε2
2 p

k
2

so (A.2) becomes
3ε2u2 − 23i−α+2 = ±pδ−3k,

with 3i− α + 2 ≥ 1 and δ − 3k ≥ 1. Let

d = u, m = 3i− α + 2, n = δ − 3k,

then (d,m, n, p) is a solution to

d2 − 2m = ±pn,

with m,n ≥ 1 and the model for E can be written

y2 = x3 + 2
α
2
−i3

j
2 p

k
2 dx2 + 2i3jpkx.
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There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j

2
= 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
8.1) Suppose ε2 = 0.
8.1.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2p2r3X

which is the curve in case 4 of the lemma with ` = 0 and r1 = 2.
8.1.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2p2r3X

which is the curve in case 4 of the lemma with ` = 0 and r1 = 0 or 1.
8.2) Suppose ε2 = 1.
8.2.i) If (m, r1) = (1, 0) and r2 = 0, then putting

X =
x

22(q1−1)32(q2−1)p2q3
, Y =

y

23(q1−1)33(q2−1)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2232pr3dX2 + 2333p2r3X

which is the curve in case 8 of the lemma with r1 = 2 and r2 = 1.
8.2.ii) If (m, r1) = (1, 0) and r2 = 1, then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,
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we obtain the new model for E

Y 2 = X3 + 223pr3dX2 + 233p2r3X

which is the curve in case 8 of the lemma with r1 = 2, r2 = 0.
8.2.iii) If (m, r1) > (1, 0) and r2 = 0, then putting

X =
x

22q132(q2−1)p2q3
, Y =

y

23q133(q2−1)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r132pr3dX2 + 2m+2r1−233p2r3X

which is the curve in case 8 of the lemma with r1 = 0 or 1 and r2 = 1.
8.2.iv) If (m, r1) > (1, 0) and r2 = 1,then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13pr3dX2 + 2m+2r1−23p2r3X

which is the curve in case 8 of the lemma with r1 = 0 or 1 and r2 = 0.
9. We have i + 2 > α− 2i, j = β − 2j and k = δ − 2k. In this case v2(a2) =

α − 2i, so α is even. Therefore v2(a) = α
2 − i. Also, v3(a2) ≥ j = β − 2j and

vp(a2) ≥ k = δ − 2k so v3(a) ≥ j+ε2
2 and vp(a) ≥ k+ε3

2 where ε2 denotes the
residue of j modulo 2 and ε3 denotes the residue of k modulo 2. Let

u =
a

2
α
2
−i3

j+ε2
2 p

k+ε3
2

so (A.2) becomes
3ε2pε3u2 − 23i−α+2 = ±1,

with 3i− α + 2 ≥ 1. Let

d = u, m = 3i− α + 2,

then (d,m) is a solution to

3ε2pε3d2 − 2m = ±1,
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with m,n ≥ 1, and the model for E can be written

y2 = x3 + 2
α
2
−i3

j+ε2
2 p

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

α

2
− i = 2q1 + r1,

j + ε2
2

= 2q2 + r2,
k + ε3

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have four cases to consider:
9.1) Suppose ε2 = 0 and ε3 = 0.
9.1.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 223r2pr3dX2 + 2332r2p2r3X

which is the curve in case 4 of the lemma with ` = 0, n = 0 and r1 = 2.
9.1.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2q3
, Y =

y

23q133q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r13r2pr3dX2 + 2m+2r1−232r2p2r3X

which is the curve in case 4 of the lemma with ` = 0, n = 0 and r1 = 0 or 1.
9.2) Suppose ε2 = 0 and ε3 = 1.
9.2.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 223r2p2−r3dX2 + 2332r2p3−2r3X

which is the curve in case 6 of the lemma with ` = 0, r1 = 2 and r3 = 1− r3.
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9.2.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132q2p2(q3−1+r3)
, Y =

y

23q133q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2p2dX2 + 2m+2−2r132r2p3−2r3X

which is the curve in case 6 of the lemma with ` = 0, r1 = 0 or 1 and r3 = 1−r3.
9.3) Suppose ε2 = 1 and ε3 = 0.
9.3.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2232−r2pr3dX2 + 2333−2r2p2r3X

which is the curve in case 8 of the lemma with n = 0, r1 = 2 and r2 = 1− r2.
9.3.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132(q2−1+r2)p2q3
, Y =

y

23q133(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 2m+2−2r133−2r2p2r3X

which is the curve in case 8 of the lemma with n = 0, r1 = 0 or 1 and r2 =
1− r2.

9.4) Suppose ε2 = 1 and ε3 = 1.
9.4.i) If (m, r1) = (1, 0), then putting

X =
x

22(q1−1)32(q2−1+r2)p2(q3−1+r3)
, Y =

y

23(q1−1)33(q2−1+r2)p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 2232−r2p2−r3dX2 + 2333−2r2p3−2r3X
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which is the curve in case 9 of the lemma with r1 = 2, r2 = 1 − r2 and r3 =
1− r3.

9.4.ii) If (m, r1) > (1, 0), then putting

X =
x

22q132(q2−1+r2)p2(q3−1+r3)
, Y =

y

23q133(q2−1+r2)p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2p2−r3dX2 + 2m+2−2r133−2r2p3−2r3X

which is the curve in case 9 of the lemma with r1 = 0 or 1, r2 = 1 − r2 and
r3 = 1− r3.

10. We have i + 2 < α − 2i, j > β − 2j and k > δ − 2k. In this case
v2(a2) = i + 2, v3(a2) = β − 2j and vp(a2) = δ − 2k so i, β, and δ are even.
Therefore, v2(a) = i

2 + 1, v3(a) = β
2 − j, and vp(a) = δ

2 − k. Let

u =
a

2
i
2
+13

β
2
−jp

δ
2
−k

so (A.2) becomes
u2 − 33j−βp3k−δ = ±2α−3i−2,

with α− 3i− 2 ≥ 1, 3j − β ≥ 1 and 3k − δ ≥ 1. Let

d = u, m = α− 3i− 2, ` = 3j − β, n = 3k − δ,

then (d,m, `, n, p) is a solution to

d2 − 3`pn = ±2m,

with m, `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

β
2
−jp

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

β

2
− j = 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,
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we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2pn+2r3X

which is the curve in case 10 of the lemma with r1 = 1− r1.
11. We have i + 2 < α − 2i, j > β − 2j and k < δ − 2k. In this case

v2(a2) = i+2, v3(a2) = β−2j and vp(a2) = k so i, β, and k are even. Therefore,
v2(a) = i

2 + 1, v3(a) = β
2 − j, and vp(a) = k

2 . Let

u =
a

2
i
2
+13

β
2
−jp

k
2

so (A.2) becomes
u2 − 33j−β = ±2α−3i−2pδ−3k,

with α− 3i− 2 ≥ 1, 3j − β ≥ 1 and δ − 3k ≥ 1. Let

d = u, m = α− 3i− 2, ` = 3j − β, n = δ − 3k,

then (d,m, `, n, p) is a solution to

d2 − 3` = ±2mpn,

with m, `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

β
2
−jp

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

β

2
− j = 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2p2r3X

which is the curve in case 11 of the lemma with r1 = 1− r1.
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12. We have i + 2 < α − 2i, j > β − 2j and k = δ − 2k. In this case
v2(a2) = i + 2, v3(a2) = β − 2j so i and β are even. Therefore, v2(a) = i

2 + 1,
v3(a) = β

2 − j. Also, vp(a2) ≥ k = δ − 2k so vp(a) ≥ k+ε3
2 where ε3 denotes the

residue of k modulo 2. Let

u =
a

2
i
2
+13

β
2
−jp

k+ε3
2

so (A.2) becomes
pε3u2 − 33j−β = ±2α−3i−2,

with α− 3i− 2 ≥ 1 and 3j − β ≥ 1. Let

d = u, m = α− 3i− 2, ` = 3j − β,

then (d,m, `) is a solution to

pε3d2 − 3` = ±2m,

with m, ` ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

β
2
−jp

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

β

2
− j = 2q2 + r2,

k + ε3
2

= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
12.1) Suppose ε3 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2p2r3X

which is the curve in case 11 of the lemma with n = 0 and r1 = 1− r1.
12.2) Suppose ε3 = 1. Putting

X =
x

22(q1−1+r1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33q2p3(q3−1+r3)
,
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we obtain the new model for E

Y 2 = X3 + 22−r13r2p2−r3dX2 + 22−2r13`+2r2p3−2r3X

which is the curve in case 14 of the lemma with r1 = 1− r1 and r3 = 1− r3.
13. We have i + 2 < α − 2i, j < β − 2j and k > δ − 2k. In this case

v2(a2) = i+2, v3(a2) = j and vp(a2) = δ−2k so i, j, and δ are even. Therefore,
v2(a) = i

2 + 1, v3(a) = j
2 , and vp(a) = δ

2 − k. Let

u =
a

2
i
2
+13

j
2 p

δ
2
−k

so (A.2) becomes
u2 − p3k−δ = ±2α−3i−23β−3j ,

with α− 3i− 2 ≥ 1, β − 3j ≥ 1 and 3k − δ ≥ 1. Let

d = u, m = α− 3i− 2, ` = β − 3j = `, n = 3k − δ,

then (d,m, `, n, p) is a solution to

d2 − pn = ±2m3`,

with m, `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j

2
= 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2pn+2r3X

which is the curve in case 12 of the lemma with r1 = 1− r1.
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14. We have i + 2 < α − 2i, j < β − 2j and k < δ − 2k. In this case
v2(a2) = i + 2, v3(a2) = j and vp(a2) = k so i, j, and k are even. Therefore,
v2(a) = i

2 + 1, v3(a) = j
2 , and vp(a) = k

2 . Let

u =
a

2
i
2
+13

j
2 p

k
2

so (A.2) becomes
u2 − 1 = ±2α−3i−23β−3jpδ−3k,

with α− 3i− 2 ≥ 1, β − 3j ≥ 1 and δ − 3k ≥ 1. Let

d = u, m = α− 3i− 2, ` = β − 3j, n = δ − 3k,

then (d,m, `, n, p) is a solution to

d2 − 1 = ±2m3`pn,

with m, `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j

2
= 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with r1 = 1− r1.
15. We have i + 2 < α − 2i, j < β − 2j and k = δ − 2k. In this case

v2(a2) = i + 2 and v3(a2) = j so i and j are even. Therefore, v2(a) = i
2 + 1

and v3(a) = j
2 . Also, vp(a2) ≥ k = δ− 2k so vp(a) ≥ k+ε3

2 where ε3 denotes the
residue of k modulo 2. Let

u =
a

2
i
2
+13

j
2 p

k+ε3
2
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so (A.2) becomes
pε3u2 − 1 = ±2α−3i−23β−3j ,

with α− 3i− 2 ≥ 1 and β − 3j ≥ 1. Let

d = u, m = α− 3i− 2, ` = β − 3j,

then (d,m, `) is a solution to

pε3d2 − 1 = ±2m3`,

with m, ` ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j

2
= 2q2 + r2,

k + ε3
2

= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
15.1) Suppose ε3 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with n = 0 and r1 = 1− r1.
15.2) Suppose ε3 = 1. Putting

X =
x

22(q1−1+r1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2p2−r3dX2 + 22−2r132r2p3−2r3X

which is the curve in case 15 of the lemma with r1 = 1− r1 and r3 = 1− r3.
16. We have i + 2 < α − 2i, j = β − 2j and k > δ − 2k. In this case

v2(a2) = i+2, and vp(a2) = δ−2k so i and δ are even. Therefore, v2(a) = i
2 +1
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and vp(a) = δ
2−k. Also, v3(a2) ≥ j = β−2j so v3(a2) ≥ j+ε2

2 where ε2 denotes
the residue of j modulo 2. Let

u =
a

2
i
2
+13

j+ε2
2 p

δ
2
−k

so (A.2) becomes
3ε2u2 − p3k−δ = ±2α−3i−2,

with α− 3i− 2 ≥ 1 and 3k − δ ≥ 1. Let

d = u, m = α− 3i− 2, n = 3k − δ,

then (d,m, n, p) is a solution to

3ε2d2 − pn = ±2m,

with m,n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j+ε2
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j + ε2
2

= 2q2 + r2,
δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
16.1) Suppose ε2 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2pn+2r3X

which is the curve in case 12 of the lemma with ` = 0 and r1 = 1− r1.
16.2) Suppose ε2 = 1. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 22−2r133−2r2pn+2r3X
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which is the curve in case 16 of the lemma with r1 = 1− r1 and r2 = 1− r2.
17. We have i + 2 < α − 2i, j = β − 2j and k < δ − 2k. In this case

v2(a2) = i+2, and vp(a2) = k so i and k are even. Therefore, v2(a) = i
2 +1 and

vp(a) = k
2 . Also, v3(a2) ≥ j = β − 2j so v3(a2) ≥ j+ε2

2 where ε2 is the residue
of j modulo 2. Let

u =
a

2
i
2
+13

j+ε2
2 p

k
2

so (A.2) becomes
3ε2u2 − 1 = ±2α−3i−2pδ−3k,

with α− 3i− 2 ≥ 1 and δ − 3k ≥ 1. Let

d = u, m = α− 3i− 2, n = δ − 3k,

then (d,m, n, p) is a solution to

3ε2d2 − 1 = ±2mpn,

with m,n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j+ε2
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j + ε2
2

= 2q2 + r2,
k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
17.1) Suppose ε2 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with ` = 0 and r1 = 1− r1.
17.2) Suppose ε2 = 0. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3q3
,
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we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 22−2r133−2r2p2r3X

which is the curve in case 17 of the lemma with r1 = 1− r1 and r2 = 1− r2.
18. We have i + 2 < α − 2i, j = β − 2j and k = δ − 2k. In this case

v2(a2) = i + 2, so i is even. Therefore v2(a) = i
2 + 1. Also, v3(a2) ≥ j = β − 2j

and vp(a2) ≥ k = δ − 2k so v3(a) ≥ j+ε2
2 and vp(a) ≥ k+ε3

2 where ε2 denotes
the residue of j modulo 2 and ε3 denotes the residue of k modulo 2. Let

u =
a

2
i
2
+13

j+ε2
2 p

k+ε3
2

so (A.2) becomes
3ε2pε3u2 − 1 = ±2α−3i−2,

with α− 3i− 2 ≥ 1. Let

d = u, m = α− 3i− 2,

then (d,m) is a solution to

3ε2pε3d2 − 1 = ±2m,

with m,n ≥ 1. The model for E can be written

y2 = x3 + 2
i
2
+13

j+ε2
2 p

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i

2
+ 1 = 2q1 + r1,

j + ε2
2

= 2q2 + r2,
k + ε3

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. There are four cases to consider.
18.1) Suppose ε2 = 0 and ε3 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X
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which is the curve in case 13 of the lemma with ` = 0, n = 0 and r1 = 1− r1.
18.2) Suppose ε2 = 0 and ε3 = 1. Putting

X =
x

22(q1−1+r1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2p2−r3dX2 + 22−2r132r2p3−2r3X

which is the curve in case 15 of the lemma with ` = 0, r1 = 1 − r1 and
r3 = 1− r3.

18.3) Suppose ε2 = 1 and ε3 = 0. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 22−2r133−2r2p2r3X

which is the curve in case 17 of the lemma with n = 0, r1 = 1 − r1 and
r2 = 1− r2.

18.4) Suppose ε2 = 1 and ε3 = 1. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r!32−r2p2−r3dX2 + 22−2r133−2r2p3−2r3X

which is the curve in case 18 of the lemma with r1 = 1 − r1, r2 = 1 − r2 and
r3 = 1− r3.

19. We have i + 2 = α− 2i, j > β− 2j and k > δ− 2k. In this case v3(a2) =
β − 2j and vp(a2) = δ − 2k so β, and δ are even. Therefore, v3(a) = β

2 − j and
vp(a) = δ

2 − k. Also, v2(a2) =≥ i + 2 = α− 2i so v2(a) =≥ i+ε1
2 + 1 where ε1 is

the residue of i modulo 2. Let

u =
a

2
i+ε1

2
+13

β
2
−jp

δ
2
−k
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so (A.2) becomes
2ε1u2 − 33j−βp3k−δ = ±1,

with 3j − β ≥ 1 and 3k − δ ≥ 1. Let

d = u, ` = 3j − β = `, n = 3k − δ,

then (d, `, n, p) is a solution to

2ε1d2 − 3`pn = ±1,

with `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

β
2
−jp

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
β

2
− j = 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
19.1) Suppose ε1 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2pn+2r3X

which is the curve in case 10 of the lemma with m = 0 and r1 = 1− r1.
19.2) Suppose ε1 = 1. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+13`+2r2pn+2r3X

which is the curve in case 19 of the lemma.
20. We have i + 2 = α − 2i, j > β − 2j and k < δ − 2k. In this case

v3(a2) = β − 2j and vp(a2) = k so β, and k are even. Therefore, v3(a) = β
2 − j,
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and vp(a) = k
2 . Also, v2(a2) =≥ i + 2 = α − 2i so v2(a) =≥ i+ε1

2 + 1 where ε1
is the residue of i modulo 2. Let

u =
a

2
i+ε1

2
+13

β
2
−jp

k
2

so (A.2) becomes
2ε1u2 − 33j−β = ±pδ−3k,

with 3j − β ≥ 1 and δ − 3k ≥ 1. Let

d = u, ` = 3j − β, n = δ − 3k,

then (d, `, n, p) is a solution to

2ε1d2 − 3` = ±pn,

with `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

β
2
−jp

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
β

2
− j = 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
20.1) Suppose ε1 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2p2r3X

which is the curve in case 11 of the lemma with m = 0 and r1 = 1− r1.
20.2) Suppose ε1 = 0. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+13`+2r2p2r3X
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which is the curve in case 20 of the lemma.
21. We have i + 2 = α− 2i, j > β− 2j and k = δ− 2k. In this case v3(a2) =

β− 2j so β is even. Therefore, v3(a) = β
2 − j. Also, v2(a2) ≥ i+2 = α− 2i and

vp(a2) ≥ k = δ − 2k so let ε1 and ε3 denote the residues of i and k modulo 2,
respectively. Then v2(a) ≥ i+ε1

2 + 1 and vp(a) ≥ k+ε3
2 . Let

u =
a

2
i+ε1

2
+13

β
2
−jp

k+ε3
2

so (A.2) becomes
2ε1pε2u2 − 33j−β = ±1,

with 3j − β ≥ 1. Let
d = u, ` = 3j − β,

then (d,m, `) is a solution to

2ε1pε2d2 − 3` = ±1,

with ` ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

β
2
−jp

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
β

2
− j = 2q2 + r2,

k + ε3
2

= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have four cases to consider:
21.1) Suppose ε1 = 0 and ε3 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r13`+2r2p2r3X

which is the curve in case 11 of the lemma with m = 0, n = 0 and r1 = 1− r1.
21.2) Suppose ε1 = 0 and ε3 = 1. Putting

X =
x

22(q1−1+r1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33q2p3(q3−1+r3)
,
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we obtain the new model for E

Y 2 = X3 + 22−r13r2p2−r3dX2 + 22−2r13`+2r2p3−2r3X

which is the curve in case 14 of the lemma with m = 0, r1 = 1 − r1 and
r3 = 1− r3.

21.3) Suppose ε1 = 1 and ε3 = 0. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+13`+2r2p2r3X

which is the curve in case 20 of the lemma with n = 0.
21.4) Suppose ε1 = 1 and ε3 = 1. Putting

X =
x

22(q1−1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2p2−r3dX2 + 22r1+13`+2r2p3−2r3X

which is the curve in case 23 of the lemma with r3 = 1− r3.
22. We have i + 2 = α − 2i, j < β − 2j and k > δ − 2k. In this case

v3(a2) = j and vp(a2) = δ − 2k so j, and δ are even. Therefore, v3(a) = j
2 and

vp(a) = δ
2 − k. Also, v2(a2) =≥ i + 2 = α− 2i so v2(a) =≥ i+ε1

2 + 1 where ε1 is
the residue of i modulo 2. Let

u =
a

2
i+ε1

2
+13

j
2 p

δ
2
−k

so (A.2) becomes
2ε1u2 − p3k−δ = ±3β−3j ,

with β − 3j ≥ 1 and 3k − δ ≥ 1. Let

d = u, ` = β − 3j, n = 3k − δ,
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then (d, `, n, p) is a solution to

2ε1d2 − pn = ±3`,

with `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

j
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j

2
= 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider.
22.1) Suppose ε1 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2pn+2r3X

which is the curve in case 12 of the lemma with m = 0 and r1 = 1− r1.
22.2) Suppose ε1 = 1. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+132r2pn+2r3X

which is the curve in case 21 of the lemma.
23. We have i+2 = α−2i, j < β−2j and k > δ−2k. In this case v3(a2) = j

and vp(a2) = k so j, and k are even. Therefore, v3(a) = j
2 and vp(a) = k

2 . Also,
v2(a2) =≥ i + 2 = α − 2i so v2(a) =≥ i+ε1

2 + 1 where ε1 is the residue of i

modulo 2. Let
u =

a

2
i+ε1

2
+13

j
2 p

k
2

so (A.2) becomes
2ε1u2 − 1 = ±3β−3jpδ−3k,
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with β − 3j ≥ 1 and δ − 3k ≥ 1. Let

d = u, ` = β − 3j, n = δ − 3k,

then (d, `, n, p) is a solution to

2ε1d2 − 1 = ±3`pn,

with `, n ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

j
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j

2
= 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have two cases to consider:
23.1) Suppose ε1 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with m = 0 and r1 = 1− r1.
23.2) Suppose ε1 = 0. This is impossible since there are no solutions to the

equation 2d2 − 1 = ±3`pn with ` ≥ 1 due to a local obstruction at 3.
24. We have i + 2 = α − 2i, j < β − 2j and k = δ − 2k. In this case

v3(a2) = j so j is even. Therefore, v3(a) = j
2 . Also, v2(a2) ≥ i + 2 = α− 2i and

vp(a2) ≥ k = δ − 2k so let ε1 and ε3 denote the residues of i and k modulo 2,
respectively. Then v2(a) ≥ i+ε1

2 + 1 and vp(a) ≥ k+ε3
2 . Let

u =
a

2
i+ε1

2
+13

j
2 p

k+ε3
2

so (A.2) becomes
2ε1pε2u2 − 1 = ±3β−3j ,
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with β − 3j ≥ 1. Let
d = u, ` = β − 3j,

then (d, `) is a solution to

2ε1pε2d2 − 1 = ±3`,

with ` ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

j
2 p

k+ε3
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j

2
= 2q2 + r2,

k + ε3
2

= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have four cases to consider:
24.1) Suppose ε1 = 0 and ε3 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with m = 0, n = 0 and r1 = 1− r1.
24.2) Suppose ε1 = 0 and ε3 = 1. Putting

X =
x

22(q1−1+r1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1+r1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2p2−r3dX2 + 22−2r132r2p3−2r3X

which is the curve in case 15 of the lemma with m = 0, r1 = 1 − r1 and
r3 = 1− r3.

24.3) Suppose ε1 = 1 and ε3 = 0. This is impossible since there are no
solutions to the equation 2d2 − 1 = ±3`, with ` ≥ 1, due to a local obstruction
at 3.
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24.4) Suppose ε1 = 1 and ε3 = 1. Putting

X =
x

22(q1−1)32q2p2(q3−1+r3)
, Y =

y

23(q1−1)33q2p3(q3−1+r3)
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2p2−r3dX2 + 22r1+132r2p3−2r3X

which is the curve in case 24 of the lemma with r3 = 1− r3.
25. We have i + 2 = α− 2i, j = β− 2j and k > δ− 2k. In this case vp(a2) =

δ− 2k so δ is even. Therefore, vp(a) = δ
2 − k. Also, v2(a2) ≥ i + 2 = α− 2i and

v3(a2) ≥ j = β − 2j so let ε1 and ε2 denote the residues of i and j modulo 2,
respectively. Then v2(a) ≥ i+ε1

2 + 1 and v3(a) ≥ j+ε2
2 . Let

u =
a

2
i+ε1

2
+13

j+ε2
2 p

δ
2
−k

so (A.2) becomes
2ε13ε2u2 − p3k−δ = ±1,

with 3k − δ ≥ 1. Let
d = u, n = 3k − δ,

then (d, n, p) is a solution to

2ε13ε2d2 − pn = ±1,

with n ≥ 1. The model for E can be written

y2 = x3 + 2
i+ε1

2
+13

j+ε2
2 p

δ
2
−kdx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j + ε2

2
− j = 2q2 + r2,

δ

2
− k = 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have four cases to consider:
25.1) Suppose ε1 = 0 and ε2 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,
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we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2pn+2r3X

which is the curve in case 12 of the lemma with m = 0, ` = 0 and r1 = 1− r1.
25.2) Suppose ε1 = 0 and ε2 = 1. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 22−2r133−2r2pn+2r3X

which is the curve in case 16 of the lemma with m = 0, r1 = 1 − r1 and
r2 = 1− r2.

25.3) Suppose ε1 = 1 and ε2 = 0. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+132r2pn+2r3X

which is the curve in case 21 of the lemma with ` = 0.
25.4) Suppose ε1 = 1 and ε2 = 1. Putting

X =
x

22(q1−1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+232−r2pr3dX2 + 22r1+133−2r2pn+2r3X

which is the curve in case 25 of the lemma with r2 = 1− r2.
26. We have i + 2 = α − 2i, j = β − 2j and k < δ − 2k. In this case

vp(a2) = k so k is even. Therefore, vp(a) = k
2 . Also, v2(a2) ≥ i+2 = α−2i and

v3(a2) ≥ j = β − 2j so let ε1 and ε2 denote the residues of i and j modulo 2,
respectively. Then v2(a) ≥ i+ε1

2 + 1 and v3(a) ≥ j+ε2
2 . Let

u =
a

2
i+ε1

2
+13

j+ε2
2 p

k
2
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so (A.2) becomes
2ε13ε2u2 − 1 = ±pδ−3k,

with δ − 3k ≥ 1.
Suppose that (d, n, p) is a solution to

2ε13ε2d2 − 1 = ±pn,

with n ≥ 1. Then we may write

u = d, δ − 3k = n.

Then the model for E can be written

y2 = x3 + 2
i+ε1

2
+13

j+ε2
2 p

k
2 dx2 + 2i3jpkx.

There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j + ε2

2
− j = 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. We have four cases to consider:
26.1) Suppose ε1 = 0 and ε2 = 0. Putting

X =
x

22(q1−1+r1)32q2p2q3
, Y =

y

23(q1−1+r1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r13r2pr3dX2 + 22−2r132r2p2r3X

which is the curve in case 13 of the lemma with m = 0, ` = 0 and r1 = 1− r1.
26.2) Suppose ε1 = 0 and ε2 = 1. Putting

X =
x

22(q1−1+r1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1+r1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 22−r132−r2pr3dX2 + 22−2r133−2r2p2r3X

which is the curve in case 17 of the lemma with m = 0, r1 = 1 − r1 and
r2 = 1− r2.
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26.3) Suppose ε1 = 1 and ε2 = 0. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+132r2p2r3X

which is the curve in case 22 of the lemma with ` = 0.
26.4) Suppose ε1 = 1 and ε2 = 1. Putting

X =
x

22(q1−1)32(q2−1+r2)p2q3
, Y =

y

23(q1−1)33(q2−1+r2)p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+232−r2pr3dX2 + 22r1+133−2r2p2r3X

which is the curve in case 26 of the lemma with r2 = 1− r2.
27. We have i + 2 = α − 2i, j = β − 2j and k = δ − 2k. In this case

v2(a2) ≥ i + 2 = α − 2i, v3(a2) ≥ j = β − 2j and vp(a2) ≥ k = δ − 2k. Let
ε1, ε2 and ε3 denote the residues of i, j and k modulo 2, respectively. Then
v2(a) ≥ i+ε1

2 + 1, v3(a) ≥ j+ε2
2 and vp(a) ≥ k+ε3

2 . Let

u =
a

2
i+ε1

2
+13

j+ε2
2 p

k+ε3
2

so (A.2) becomes
2ε13ε2pε3u2 − 1 = ±1.

Clearly u = 0 is a solution to this equation and this leads to the curve

y2 = x3 + 2r3sptx,

where r, s, t ∈ {0, 1, 2, 3}, which appears in one of the cases 13, 15, 17, 18, 22,
24, 26, 27 of the lemma with d = 0.

The only other solution to 2ε13ε2pε3u2− 1 = ±1 has u = 1 and (ε1, ε2, ε3) =
(1, 0, 0). The model for E can be written

y2 = x3 + 2
i+1
2

+13
j
2 p

k
2 x2 + 2i3jpkx.
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There exist six integers r1, q1, r2, q2, r3, and q3 such that

i + ε1
2

+ 1 = 2q1 + r1,
j

2
= 2q2 + r2,

k

2
= 2q3 + r3,

with r1, r2, r3 ∈ {0, 1}. Putting

X =
x

22(q1−1)32q2p2q3
, Y =

y

23(q1−1)33q2p3q3
,

we obtain the new model for E

Y 2 = X3 + 2r1+23r2pr3dX2 + 22r1+132r2p2r3X

which is the curve in case 22 of the lemma with ` = 0 and n = 0.
This completes the proof of the lemma.

A.2 b < 0

Lemma A.2 Suppose b < 0. Then there exists an integer d, and non-negative in-
tegers m, `, and n satisfying one of the equations in the first column and E is Q-
isomorphic to the corresponding curve in the second column, for some r1, r2, r3 ∈
{0, 1}; except in cases 2 to 8, where if m = 1 then r1 ∈ {1, 2}.
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y2 = x3 + a2x
2 + a4x

Diophantine Equation a2 a4

2 d2 + 2m3` = pn 2r13r2pr3d −2m+2r1−23`+2r2p2r3

3 d2 + 2mpn = 3` 2r13r2pr3d −2m+2r1−232r2pn+2r3

4 d2 + 2m = 3`pn 2r13r2pr3d −2m+2r1−232r2p2r3

6 pd2 + 2m = 3` 2r13r2pr3+1d −2m+2r1−232r2p2r3+1

8 3d2 + 2m = pn 2r13r2+1pr3d −2m+2r1−232r2+1p2r3

10 d2 + 3`pn = 2m 2r1+13r2pr3d −22r13`+2r2pn+2r3

11 d2 + 3` = 2mpn 2r1+13r2pr3d −22r13`+2r2p2r3

12 d2 + pn = 2m3` 2r1+13r2pr3d −22r132r2pn+2r3

13 d2 + 1 = 2m3`pn 2r1+13r2pr3d −22r132r2p2r3

14 pd2 + 3` = 2m 2r1+13r2pr3+1d −22r13`+2r2p2r3+1

15 pd2 + 1 = 2m3` 2r1+13r2pr3+1d −22r132r2p2r3+1

16 3d2 + pn = 2m 2r1+13r2+1pr3d −22r132r2+1pn+2r3

17 3d2 + 1 = 2mpn 2r1+13r2+1pr3d −22r132r2+1p2r3

18 3pd2 + 1 = 2m 2r1+13r2+1pr3+1d −22r132r2+1p2r3+1

20 2d2 + 3` = pn 2r1+23r2pr3d −22r1+13`+2r2p2r3

21 2d2 + pn = 3` 2r1+23r2pr3d −22r1+132r2pn+2r3

22 2d2 + 1 = 3`pn 2r1+23r2pr3d −22r1+132r2p2r3

24 2pd2 + 1 = 3` 2r1+23r2pr3+1d −22r1+132r2p2r3+1

26 6d2 + 1 = pn 2r1+23r2+1pr3d −22r1+132r2+1p2r3

27 6pd2 + 1 = 1 2r1+23r2+1pr3+1d −22r1+132r2+1p2r3+1

The proof of this lemma is entirely analogous to that of lemma A.1. The
only change that needs to be made is that b, i.e. a4, is now negative, and the
minus sign on the right-hand side of the Diophantine equations changes to a
plus sign. We’ve kept the numbering of rows in the table the same as the pre-
vious lemma. This allows one to see the analogy between the two lemmata.
Of course, some of the rows don’t appear, say for example, the row analogous
to row 1. This row would have equation d2 +2m3`pn = 1, but this has no solu-
tions except with d = m = n = ` = 0, and the corresponding curve is already
contained in row 2.



Appendix B
Tables of S-integral Points on Elliptic Curves.

In this section, we present tables listing all the S-integral points on curves of
the form y2 = x3 ± 2a3b, where S = {2, 3,∞}. These results are used in the
proofs of the Diophantine lemmata of Chapter 4 (in the case when 3 divides
n). For the reader interested in a very brief account of the theory behind com-
puting S-integral points on elliptic curves, we sketch this in the the first two
sections. The tables are presented in Section B.3.

B.1 S-integral points on Elliptic Curves

Let S be a finite set of primes (places) including the place at infinity; S =
{p1, . . . , ps−1,∞}. The set of S-integers of Q is

ZS := {x ∈ Q : |x|p ≤ 1 for all p 6∈ S},

where, for p finite, the |x|p’s are the usual (normalized) p-adic absolute values
of Q, and for p infinite, |x|∞ is the usual archimedean absolute value of Q.
In other words, a rational number is an S-integer if the only primes in its
denominator are those in S.

Let E be the elliptic curve over Q given by the following equation, in long
Weierstrass form,

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

ai ∈ Z. The set of integral points of E(Q) is

E(Z) = {P ∈ E(Q) : x(P ) ∈ Z}
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and the set of S-integral points of E(Q) is

E(ZS) = {P ∈ E(Q) : x(P ) ∈ ZS}.

The fact that x(P ) ∈ Z (resp. ZS) implies y(P ) ∈ Z (resp. ZS), provided y(P ) ∈
Q, is straightforward to check using the equation defining E.

Siegel proved in 1929 that the number of integral points on an elliptic
curve over a number field is finite and Mahler generalized this result to S-
integral points in 1934 (see [Sil:1989]). However, the methods they used to
prove these results were not effective, which means that they did not yield an
algorithm to find all of the points.

In 1968, Baker gave an effective upper bound on the size of integral points,
based on his work on linear forms in complex logarithms, thus, theoretically,
producing an algorithm to find all integral points. In some cases, this led to
the complete determination of sets of solutions to a given elliptic Diophantine
equation. However, the bounds one obtains using Baker’s work are usually
astronomical, typically at least of size 1020 or so, which makes naive search-
ing for all points impossible. In his thesis [dW:1989], de Weger developed a
technique using lattice basis reduction (LLL algorithm) to reduce the bounds
obtained from Baker’s work. This resulted in an algorithm to find integral
points on elliptic curves which works well in practice (though, one needs to
deal with computations in various complicated number fields).

This method does not make use of the underlying group structure of the
elliptic curve. That, combined with the need to consider complicated number
fields, led Lang and Zagier to suggest a way to work directly on the elliptic
curve. Moreover, this new approach can be generalized to apply to S-integral
points as well. We discuss this approach in the next section.

B.2 Computing S-integral points on Elliptic Curves

Let S = {p1, . . . , ps−1,∞} and consider the Mordell-Weil group E(Q) of the
elliptic curve

E : y2 = x3 + ax + b,
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over Q. Recall that E(Q) is a finitely generated abelian group so it can be
written as

E(Q) ∼= E(Q)tors × Zr,

where E(Q)tors is the (finite) torsion subgroup of E(Q) and r the rank of E(Q).
The method of Lang and Zagier requires that we know generators for E(Q),
so, let P1, . . . , Pr be generators for the free part E(Q). Every rational point
P ∈ E(Q) has a unique representation

P = T +
r∑

i=1

niPi,

where ni ∈ Z and T ∈ E(Q)tors. In the case when P is an S-integral point we
want to show

N := max{|ni|} ≤ N2

for an effectively computable constant N2 depending only on E and S. Thus,
all S-integral points on E(Q) are contained in the finite set

{T +
r∑

i=1

niPi : 0 ≤ |ni| ≤ N,T ∈ E(Q)tors},

and can be determined, provided N2 is small enough.

We briefly sketch the details involved in finding the upper bound N2. For
all the details the reader should consult [GPZ:1996]. Let P = (x, y) ∈ E(Q) be
an S-integral points and choose p ∈ S such that |x|p = max{|x|q : q ∈ S}. It is
straightforward to show

1

|x|p1/2
≤ C2e

−C3N2
(B.1)

for effectively computable constants C2 and C3 which depend only on a, b,
#S, and the generators Pi. Obtaining a lower bound on |x|−1/2

p together with
(B.1) would then give and upper bound on N . If the upper bound on N is
quite large then an application of de Weger reduction could bring this bound
down to a more manageable level. In practice this is usually the case.
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Lower bounds on |x|−1/2
p are obtained by estimating a linear form in ellip-

tic logarithms. In the case when p = ∞ such estimates were done by David
[Da:1995]. In the case when p = pi ∈ S, estimates for lower bounds of p-adic
elliptic logarithms in general are not known. However, if the rank of E(Q) is
at most 2 then such a bound was obtained by Rémond and Urfels [RU:1996].
Gebel, Pethö and Zimmer [GPZ:1996] applied these lower bounds to find all
S-integeral points on Mordell’s curves y2 = x3 + k, with |k| ≤ 104, and rank
at most 2. Their algorithms were implemented in the SIMATH package, and
have since made their way into the MAGMA package. We will use MAGMA
to generate the tables in the next section.

B.3 Tables of S-integral points on the curves y2 = x3 ± 2a3b

For S = {2, 3,∞}, the following tables list the S-integer points on curves of
the form y2 = x3 ± 2a3b. It is easy to check all these curves have rank ≤ 2.
The points were found using the MAGMA package. If (x0, y0) is a point on
the curve then so is (x0,−y0), thus, in the tables, we list only the points with
non-negative y coordinate. These curves always contain the point at infinity,
∞, so, it suffices to list only the finite points in the tables. Values (a, b) are left
absent from the table if there are no finite S-integral points on the curve.
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y2 = x3 + 2a3b

a b S-integral points \{∞}
0 0 (2, 3), (0, 1), (−1, 0)
0 1 (1, 2), (−23/16, 11/64)
0 2 (0, 3), (−2, 1), (3, 6), (6, 15), (40, 253), (−15/16, 183/64)
0 3 (−3, 0)
0 4 (0, 9)
1 0 (−1, 1), (17/4, 71/8)
1 2 (7, 19)
1 3 (3, 9), (−15/4, 9/8), (19/9, 215/27), (5745/16, 435447/64)
1 5 (−5, 19)
2 0 (0, 2)
2 1 (−2, 2), (13, 47)
2 2 (0, 6), (4, 10), (12, 42), (−3, 3), (105/4, 1077/8)
2 3 (6, 18), (−3, 9), (−2, 10), (33/4, 207/8), (366, 7002)
2 4 (0, 18)
3 0 (−2, 0), (2, 4), (1, 3), (−7/4, 13/8), (46, 3121)
3 1 (−2, 4), (25/4, 131/8), (8158, 736844), (1, 5), (10/9, 136/271),

(10, 32), (−23/9, 73/27), (478/81, 11044/729), (505/256, 23053/4096)
3 2 (−2, 8), (73/16, 827/64)
3 3 (−6, 0)
3 5 (−2, 44)
4 0 (0, 4)
4 1 (1, 7)
4 2 (0, 12)
4 4 (0, 36), (−8, 28), (9, 45), (72, 612)
5 2 (1, 17)
5 5 (−47/9, 2359/27)

Table B.1: S-integral points on y2 = x3 + 2a3b
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y2 = x3 − 2a3b

a b S-integral points \{∞}
0 0 (1, 0)
0 3 (3, 0)
0 4 (13, 46)
0 5 (7, 10)
1 0 (3, 5)
1 2 (3, 3), (57/4, 429/8)
1 3 (7, 17)
2 0 (2, 2), (5, 11), (106/9, 1090/27)
2 4 (10, 26)
2 5 (13, 35)
3 0 (2, 0)
3 2 (6, 12), (33/4, 177/8), (1942/9, 85580/27)
3 3 (6, 0), (10, 28), (33, 189)
3 4 (18, 72), (153/16, 963/64), (657/4, 16839/8), (9, 9),

(22, 100), (1809, 76941), (54, 396), (97, 955)
3 5 (70, 584)
4 1 (4, 4), (28, 148), (73/9, 595/27)
4 3 (12, 36)
4 4 (193, 2681)
5 2 (9, 21)
5 5 (1153, 39151)

Table B.2: S-integral points on y2 = x3 − 2a3b



Appendix C
Tables of Q-Isomorphism Classes of Curves
of Conductor 2αp2 with Small p.

In the theorems of Chapter 6, we classified curves up to primes p which sat-
isfied some family of Diophantine equations. There were some extraneous
small primes and corresponding curves that did not fit into any family and
we referred to the tables in this appendix for a list those extra curves.

Let me emphasize that the following tables list the EXTRA curves that are
not contained in the tables of Chapter 6, they do NOT list all the curves of the
indicated conductor.

In these tables a2 and a4 are the coefficients of the curves as we have found
them (by applying the Diophantine lemmata to the tables of Chapter 3 Section
3.1). The minimal model of the curve is also included as 5-tuple of coefficients
(a′1, a

′
2, a

′
3, a

′
4, a

′
6). It is sufficient to include just the minimal model in the table

but we thought we should include the a2 and a4 for the sake of the reader
who wishes to verify these results.
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Conductor: N = 2p2

p a2 a4 j-invariant minimal model

7 −7 · 13 2772 53433

2673 1, 1, 0, 220, 2192
7 2 · 7 · 13 −75 53113313

2376 1, 1, 0,−1740, 22184
17 2 · 17 · 71 175 5673313

2·176 1, 1, 1,−32663,−1583717
17 −17 · 71 25173 53233433

22·173 1, 1, 1,−29773,−1989473

Table C.1: Extraneous curves of conductor 2p2.

Conductor: N = 22p2

p a2 a4 j-invariant minimal model

5 2 · 5 · 11 55 −241093

56 0,−1, 0,−908,−15688
5 −5 · 11 −52 214313

53 0,−1, 0,−1033,−12438

Table C.2: Extraneous curves of conductor 22p2.
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Conductor: N = 23p2

p a2 a4 j-invariant minimal model

5 5 · 9 22 · 53 243373

52 0, 0, 0,−175,−750

5 −2 · 5 · 9 52 22331073

5 0, 0, 0,−2675,−53250

5 2 · 5 · 3 54 2233133

54 0, 0, 0, 325,−4250

5 5 · 3 52 21133

5 0, 0, 0,−50, 125

5 −5 5 211 0, 1, 0,−3,−2

5 −52 53 211 0,−1, 0,−83,−88

5 2 · 5 5 24173 0, 1, 0,−28, 48

5 2 · 52 53 24173 0,−1, 0,−708, 7412

7 7 · 15 23 · 73 2233193

72 0, 0, 0,−931,−10290

7 −2 · 7 · 15 72 2·33133233

7 0, 0, 0,−14651,−682570

7 2 · 7 · 9 74 233593

74 0, 0, 0,−2891, 47334

7 7 · 3 22 · 72 2433

7 0, 0, 0, 49,−686

7 −7 · 5 23 · 72 −22

7 0, 1, 0,−16, 1392

7 2 · 7 · 5 −73 2·116

72 0, 1, 0,−1976, 32752

17 17 22 · 17 2453 0,−1, 0,−28,−12

17 172 22 · 173 2453 0, 1, 0,−8188,−107904

17 −2 · 17 17 2253133 0,−1, 0,−368,−2596

17 −2 · 172 173 2253133 0, 1, 0,−106448,−13392656

23 23 · 3 23 · 232 223353

23 0, 0, 0, 2645,−73002

23 −2 · 23 · 3 −233 2·335373

232 0, 0, 0,−18515,−754354

31 −31 23 · 312 22233

31 0,−1, 0, 7368, 74780

31 2 · 31 −313 2·973

312 0,−1, 0,−31072, 643692

31 −31 23 · 31 −2273 0,−1, 0,−72, 380

31 312 23 · 313 −2273 0, 1, 0,−69512,−10626560

31 2 · 31 −31 2 · 1273 0,−1, 0,−1312, 18732

31 −2 · 312 −313 2 · 1273 0, 1, 0,−1261152,−545434592

Table C.3: Extraneous curves of conductor 23p2.
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Conductor: N = 24p2

p a2 a4 j-invariant minimal model

5 −5 · 9 22 · 53 243373

52 0, 0, 0,−175, 750

5 2 · 5 · 9 52 22331073

5 0, 0, 0,−2675, 53250

5 −2 · 5 · 11 55 −241093

56 0, 1, 0,−908, 15688

5 5 · 11 −52 214313

53 0, 1, 0,−1033, 12438

5 −2 · 5 · 3 54 2233133

54 0, 0, 0, 325, 4250

5 −5 · 3 52 21133

5 0, 0, 0,−50,−125

5 5 5 211 0,−1, 0,−3, 2

5 52 53 211 0, 1, 0,−83, 88

5 −2 · 5 5 24173 0,−1, 0,−28,−48

5 −2 · 52 53 24173 0, 1, 0,−708,−7412

7 7 · 13 27 · 72 53433

26·73 0, 1, 0, 3512,−133260

7 −2 · 7 · 13 −75 53113313

23·76 0, 1, 0,−27848,−1475468

7 −7 · 3 22 · 72 2433

7 0, 0, 0, 46, 686

7 7 · 5 23 · 72 −22

7 0,−1, 0,−16,−1392

7 −2 · 7 · 5 −73 2·116

72 0,−1, 0,−1976,−32752

7 −7 · 3 24 · 7 −3353 0, 0, 0,−35, 98

7 72 · 3 24 · 73 −3353 0, 0, 0,−1715,−33614

7 2 · 7 · 3 −7 3353173 0, 0, 0,−595, 5586

7 −2 · 72 · 3 −73 3353173 0, 0, 0,−29155,−1915998
17 −2 · 17 · 71 175 5673313

2·176 0, 1, 0,−522608, 100312660

17 17 · 71 25 · 172 53233433

22·173 0, 1, 0,−476368, 126373524

17 −17 · 9 24 · 172 33113

17 0, 0, 0,−3179,−29478

17 −17 22 · 17 2453 0, 1, 0,−28, 12

17 −172 22 · 173 2453 0,−1, 0,−8188, 107904

17 2 · 17 17 2253133 0, 1, 0,−368, 2596

17 2 · 172 173 2253133 0,−1, 0,−106448, 13392656

23 −23 · 3 23 · 232 223353

23 0, 0, 0, 2645, 73002

23 2 · 23 · 3 −233 2·335373

232 0, 0, 0,−18515, 754354

31 31 23 · 312 22233

31 0, 1, 0, 7368,−74780

31 −2 · 31 −313 2·973

312 0, 1, 0,−31072,−643692

31 31 23 · 31 −2273 0, 1, 0,−72,−380

31 −312 23 · 313 −2273 0,−1, 0,−69512, 10626560

31 −2 · 31 −31 2 · 1273 0, 1, 0,−1312,−18732

31 2 · 312 −313 2 · 1273 0,−1, 0,−1261152, 545434592

Table C.4: Extraneous curves of conductor 24p2.
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Conductor: N = 25p2

p a2 a4 j-invariant minimal model

7 7 2 · 72 2653

7 0, 1, 0, 82,−176

7 −7 2 · 72 2653

7 0,−1, 0, 82, 176

7 2 · 7 −73 2356

72 0,−1, 0,−408, 1940

7 −2 · 7 −73 2356

72 0, 1, 0,−408,−1940

7 7 2 · 7 −26 0, 1, 0,−2,−8

7 −7 2 · 7 −26 0,−1, 0,−2, 8

7 72 2 · 73 −26 0, 1, 0,−114,−2528

7 −72 2 · 73 −26 0,−1, 0,−114, 2528

7 2 · 7 −7 23313 0,−1, 0,−72, 260

7 −2 · 7 −7 23313 0, 1, 0,−72,−260

7 2 · 72 −73 23313 0,−1, 0,−3544, 82104

7 −2 · 72 −73 23313 0, 1, 0,−3544,−82104

Table C.5: Extraneous curves of conductor 25p2.
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Conductor: N = 26p2

p a2 a4 j-invariant minimal model

5 2 · 5 · 9 2453 243373

52 0, 0, 0,−700,−6000

5 −2 · 5 · 9 2453 243373

52 0, 0, 0,−700, 6000

5 22 · 5 · 9 2252 22331073

5 0, 0, 0,−10700, 426000

5 −22 · 5 · 9 2252 22331073

5 0, 0, 0,−10700,−426000

5 22 · 5 · 11 2255 −241093

56 0, 1, 0,−3633,−129137

5 −22 · 5 · 11 2255 −241093

56 0,−1, 0,−3633, 129137

5 2 · 5 · 11 −2252 214313

53 0,−1, 0,−4133, 103637

5 −2 · 5 · 11 −2252 214313

53 0, 1, 0,−4133,−103637

5 22 · 5 · 3 2254 2233133

54 0, 0, 0, 1300,−34000

5 −22 · 5 · 3 2254 2233133

54 0, 0, 0, 1300, 34000

5 2 · 5 · 3 −2452 243373

52 0, 0, 0,−700, 6000

5 2 · 5 · 3 −2452 243373

52 0, 0, 0,−700,−6000

7 2 · 7 · 13 2972 53433

2673 0,−1, 0, 14047,−1080127

7 −2 · 7 · 13 2972 53433

2673 0, 1, 0, 14047, 1080127

7 22 · 7 · 13 −2275 53113313

2376 0, 1, 0,−111393, 11692351

7 −22 · 7 · 13 −2275 53113313

2376 0,−1, 0,−111393,−11692351

17 22 · 17 · 71 22175 5673313

2·176 0, 1, 0,−2090433,−804591713

17 −22 · 17 · 71 22175 5673313

2·176 0,−1, 0,−2090433, 804591713

17 2 · 17 · 71 27172 53233433

22·173 0,−1, 0,−1905473, 1012893665

17 −2 · 17 · 71 27172 53233433

22·173 0, 1, 0,−1905473,−1012893665

Table C.6: Extraneous curves of conductor 26p2.
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Conductor: N = 27p2

p a2 a4 j-invariant minimal model

13 2 · 13 · 5 2 · 133 −27113

132 0, 1, 0,−1239,−28079

13 −2 · 13 · 5 2 · 133 −27113

132 0,−1, 0,−1239, 28079

13 2213 · 5 23133 −27113

132 0,−1, 0,−4957,−219675

13 −2213 · 5 23133 −27113

132 0, 1, 0,−4957, 219675

13 2 · 13 · 5 −132 251033

13 0, 1, 0,−5802, 168130

13 −2 · 13 · 5 −132 251033

13 0,−1, 0,−5802,−168130

13 2213 · 5 −22132 251033

13 0,−1, 0,−23209, 1368249

13 −2213 · 5 −22132 251033

13 0, 1, 0,−23209,−1368249

13 2 · 13 · 239 2 · 136 −27285593

138 0, 1, 0,−3217647,−2223146015

13 −2 · 13 · 239 2 · 136 −27285593

138 0,−1, 0,−3217647, 2223146015

13 2213 · 239 23136 −27285593

138 0,−1, 0,−12870589,−17772297531

13 −2213 · 239 23136 −27285593

138 0,−1, 0,−12870589, 17772297531

13 2 · 13 · 239 −132 257646633

134 0, 1, 0,−12871434, 17769846862

13 −2 · 13 · 239 −132 257646633

134 0,−1, 0,−12871434,−17769846862

13 2213 · 239 −22132 257646633

134 0,−1, 0,−51485737, 142210260633

13 −2213 · 239 −22132 257646633

134 0, 1, 0,−51485737,−142210260633

Table C.7: Extraneous curves of conductor 27p2.



Appendix C. Tables with small p 324

Conductor: N = 28p2

p a2 a4 j-invariant minimal model

23 23 · 23 · 39 2 · 235 263340573

236 0, 0, 0,−4292306,−3419024336

23 −23 · 23 · 39 2 · 235 263340573

236 0, 0, 0,−4292306, 3419024336

23 24 · 23 · 39 23235 263340573

236 0, 0, 0,−17169224,−27352194688

23 −24 · 23 · 39 23235 263340573

236 0, 0, 0,−17169224, 27352194688

23 23 · 23 · 39 2 · 232 2633162233

233 0, 0, 0,−17163934, 27369909840

23 −23 · 23 · 39 2 · 232 2633162233

233 0, 0, 0,−17163934,−27369909840

23 24 · 23 · 39 23232 2633162233

233 0, 0, 0,−68655736, 218959278720

23 −24 · 23 · 39 23232 2633162233

233 0, 0, 0,−68655736,−218959278720

Table C.8: Extraneous curves of conductor 28p2.




