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Abstract

In [1] Gorin and Lin gave a presentation for the commutator subgroup

B
0

n
of the braid group Bn, n � 3, which consists of �nitely many genera-

tors and relations. Here we �ll in all the details of their computation.

Introduction

The braid group on n strands, denoted Bn, is de�ned by the presentation

Bn =< �1; :::; �n�1 : �i�j = �j�i for ji� jj � 2;

�i�i+1�i = �i+1�i�i+1 for 1 � i � n� 2 > :

The commutator subgroup B0

n
of the braid group Bn is the group generated by

the commutators; [�1; �2] = �1�2�
�1
1 ��1

2 , for all �1; �2 2 Bn. In [1] Gorin and

Lin outlined the proof of the following theorem giving a presentation for B0

n
.

Theorem 1 For every n � 3 the commutator subgroup B0

n
of the braid group

Bn is a �nitely presented group. B0

3 is a free group with two free generators

u = �2�
�1
1 ; v = �1�2�

�2
1 :

B0

4 is the group generated by

p0 = �2�
�1
2 ; p1 = �1�2�

�2
1 ; a = �3�

�1
1 ; b = �2�

�1
1 �3�

�1
2 ;

with de�ning relations

b = p0ap
�1
0

p0bp
�1
0 = b2a�1b

p1ap
�1
1 = a�1b

p1bp
�1
1 = (a�1b)3a�2b:

For n � 5 the group B0

n
is generated by

p0 = �2�
�1
2 ; p1 = �1�2�

�2
1 ; a = �3�

�1
1 ; b = �2�

�1
1 �3�

�1
2 ; ql = �l�

�1
1 (4 � l � n� 1);
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with de�ning relations

b = p0ap
�1
0 ;

p0bp
�1
0 = b2a�1b;

p1ap
�1
1 = a�1b;

p1bp
�1
1 = (a�1b)3a�2b;

p0qi = qip1 (4 � i � n� 1); p1qi = q1p
�1
0 p1 (4 � i � n� 1)

aqi = qia (5 � i � n� 1); aq4a = q4aq4;

qiqj = qjqi (4 � i < j � 1 � n� 2); qiqi+1qi = qi+1qiqi+1 (4 � i � n� 2):

In this paper we give all the details for the proof of this theorem.

The Presentation

In this section we �ll in all the details of the proof of Theorm 1. To do this we

�rst need to recall the Reidemeister-Schreier method for presenting a subgroup.

For a complete discussion of the Reidemeister-Schreier method see [2].

Let G be an arbitrary group with presentation < a1; : : : ; an : R�(a�); : : : >

and H a subgroup of G. A system of words R in the generators a1; : : : ; an is

called a Schreier system if (i) every right coset of H in G contains exactly one

word of R (i.e. R forms a system of right coset representatives), (ii) for each

word in R any initial segment is also in R (i.e. initial segments of right coset

representatives are again right coset representatives). Such a Schreier system

always exists, see for example [2]. Suppose now that we have �xed a Schreier

system R. For each word W in the generators a1; : : : ; an we let W denote the

unique representative in R of the right coset HW . Denote

sK;av
= Kav �Kav

�1
; (1)

for each K 2 R and generator av . A theorem of Reidemeister-Schreier states

that H has presentation

< sK;a�
; : : : : sM;a�

; : : : ; �(KR�K
�1); : : : > (2)

where K is an arbitrary Schreier representative, av is an arbitrary generator

and R� is an arbitrary de�ning relator in the presentation of G, and M is a

Schreier representative and a� a generator such that

Ma� tMa�;

where t means "freely equal". The function � is a Reidemeister rewriting

function and is de�ned according to the rule

�(a�1
i1
� � � a

�p

ip
) = s�1

Ki1
;ai1

� � � s�1
Kip

;aip
(3)
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where Kij
= a

�1

i1
� � �a

�j�1

ij�1
, if �j = 1, and Kij

= a
�1

i1
� � � a

�j

ij
, if �j = �1. It should

be noted that computation of �(U) can be carried out by replacing a symbol a�
v

of U by the appropriate s-symbol s�
K;a�

. The main property of a Reidemeister

rewriting function is that for an element U 2 H given in terms of the generators

a� the word �(U) is the same element of H rewritten in terms of the generators

sK;a�
.

Now we may begin the study of the commutator subgroups of the braid

groups. Let Hn = f� 2 Bn : exp(�) = 0g , which is easily seen to be a subgroup

of Bn. In fact, this subgroup is precisely B0

n
.

Lemma 2 Hn = B0

n

Proof: Since B0

n
is generated by the commutators [�1; �2], �1; �2 2 Bn, and

exp([�1; �2]) = 0 then B0

n
� Hn. To prove the converse we apply the Reidemeister-

Schreier method to the subgroup Hn to �nd a generating set. Since

Hn�1 = Hn�2 , �1�
�1
2 2 Hn

, exp(�1) = exp(�2);

then a Schreier system of right coset representatives for Bn modulo Hn is

R = f�k1 : k 2 Zg

The discussion above tells us that Hn is generated by the s-symbols

s
�
k

1
;�j

= �k1�j�
k

1�j
�1

= �k1�j�
�(k+1)
1 :

For j = 2 we have

�k1�2�
�(k+1)
1 = �k1�2�

�k

1 (��1
2 �2)�

�1
1

= [�k1 ; �2]�2�
�1
1

= [�k1 ; �2]�
�1
1 ��1

2 �1�2 by �1�2�1 = �2�1�2;

= [�k1 ; �2][�
�1
1 ; ��1

2 ]:

For j > 2 we have

�k1�j�
�(k+1)
1 = �j�

k

1�
�(k+1)
1 by �1�j = �j�1;

= �j�
�1
1

= �j(�
�1
j�1�j�1)�

�1
1

= (�j�
�1
j�1)�j�1�

�1
1

= (��1
j�1�

�1
j
�j�1�j)�j�1�

�1
1

=

(
[��1
j�1; �

�1
j

][��1
1 ; ��1

2 ] if j = 3;

[��1
j�1; �

�1
j

]�k1�j�1�
�(k+1)
1 if j � 4.
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It follows by induction on j that the generators of Hn lie in B0

n
. �

In the proof of the previous lemma we found a Schreier system for Bn mod-

ulo B0

n
, namely R = f�k1 : k 2 Zg, thus, by (2), B0

n
has presentation

< s
�
k

1
;�j
; : : : : s�m

1
;��

; : : : ; �(�l1Ri�
�l

1 ); : : : ; �(�l1Ti;j�
�l

1 ); : : : > (4)

where j 2 f1; : : : ; n � 1g, k; l 2 Z, and m 2 Z, � 2 f1; : : : ; n � 1g such

that �m1 �� t �m1 �� ("freely equal"), and Ti;j , Ri represent the braid relations

�i�j�
�1
i
��1
j
; ji� jj � 2; and �i�i+1�i�

�1
i+1�

�1
i
��1
i+1, respectively. Our goal now

is to clean up this presentation.

The �rst thing to notice is that

�m1 �� t �m1 �� = �m+1
1

if and only if � = 1. Thus, the �rst type of relations in (4) are precisly s�m
1
;�1

=

1, for all m 2 Z.
Next, we use the de�nition of the Reidemeister rewriting function (3) to

express the second and third types of relations in (4) in terms of the generators

s
�
k

1
;�j

:

�(�k1Ti;j�
�k

1 ) = s
�
k

1
;�i
s
�
k+1

1
;�j
s�1

�
k+1

1
;�i

s�1

�
k

1
;�j

(5)

�(�k1Ri�
�k

1 ) = s
�
k

1
;�i
s
�
k+1

1
;�i+1

s
�
k+2

1
;�i
s�1

�
k+2

1
;�i+1

s�1

�
k+1

1
;�i

s�1

�
k

1
;�i+1

(6)

From (5) with i = 1, j � 3, and using the relations s�m
1
;�1

= 1 we get the

relation

s
�
k+1

1
;�j

= s
�
k

1
;�j

Thus, by induction on k, s
�
k

1
;�j

= s1;�j for j � 3 and for all k 2 Z.

Therefore, B0

n
is generated by s

�
k

1
;�2

= �k1�2�
�(k+1)
1 and s1;�l = �l�

�1
1 ,

where k 2 Z , 3 � l � n� 1. To simplify notation let us rename the generators;

let pk := �k1�2�
�(k+1)
1 and ql := �l�

�1
1 , for k 2 Z , 3 � l � n� 1. Now we need

to investigate the relations in (5),(6).

The relations in (6) break up into the following three types (using the rela-

tions s
�
k

1
;�j

= s�1;�j = qj for j � 3):

pk+1p
�1
k+2p

�1
k

(i = 1) (7)

pkq3pk+2q
�1
3 p�1

k+1q
�1
3 (i = 2) (8)

qiqi+1qiq
�1
i+1q

�1
i
q�1
i+1 for 3� i � n� 2. (9)

The relations in (5) break up into the following two types

pkqjp
�1
k+1q

�1
j

for 4 � j � n� 1 (i = 2) (10)

qiqjq
�1
i
q�1
j

for 3 � i < j � n� 1, ji� jj � 2. (11)
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We now have a presentation for B0

n
consisting of the generators pk; ql, where

k 2 Z, 3 � l � n � 1, and de�ning relations (7)-(11). However, notice that

relation (7) splits up into the two relations

pk+2 = p�1
k
pk+1 for k � 0 (12)

pk = pk+1p
�1
k+2 for k < 0: (13)

Thus, for k 6= 0; 1, pk can be expressed in terms of p0 and p1. From this it follows

that B0

n
is �nitely generated. In fact, the presentation for B0

n
with generators

pk; ql, where k 2 Z, 3 � l � n� 1 and de�ning relations (8)-(13) can be Tietze

transformed into a presentation which consists of �nitely many generators and

relations. We do this for the cases n = 3, n = 4, and n = 5 �rst and then

proceed to the general case.

The Case n = 3

For n = 3 the presentation above reduces to < pk; (k 2 Z) : (12); (13) > =

< p0; p1 : > = Z � Z. Thus, B0

3 is a free group with two free generators

u = p0 = �2�
�1
1 and v = p1 = �1�2�

�2
1 .

The Case n = 4

Let n = 4. The set of generators is pk,k 2 Z and a := q3, and the set of de�ning

relations (8)-(13) reduces to

pk+2 = p�1
k
pk+1 for k � 0 pk = pk+1p

�1
k+2 for k < 0 (14)

pkapk+2a
�1p�1

k+1a
�1 = 1: (15)

We know that for k 6= 0; 1, pk can be expressed in terms of p0 and p1 but we

can't delete these generators from the generating set since they appear in the

relation (15). What we want to do is to replace the in�nte set of relations in

(15) with a �nite set of equivalent relations. We do this as follows. Introduce

to the generators pk, a of the group B0

4 a new generator b and to the relations

(14), (15) a new relation

b = p0ap
�1
0 : (16)

By a theorem of Tietze this gives an equivalent representation (see [2]). Now

we show that in the system of relations (14)-(16) we can replace (15) by

p0bp
�1
0 = b2a�1b (17)

p1ap
�1
1 = a�1b (18)

p1bp
�1
1 = (a�1b)3a�2b; (19)

and obtain a system of relations equivalent to the original relations. We do this

in two steps: �rst we show (14),(16)-(19) follow from (14)-(16), then we show

the converse.

5



Taking k = 0 in (15) we get the relation

p0ap2a
�1p�1

1 a�1 = 1;

and, using the relations p2 = p�1
0 p1 and b = p0ap

�1
0 , (18) easily follows. Taking

k = 1 in (15) we get the relation

p1ap3a
�1p�1

2 a�1 = 1:

Using the relations p3 = p�1
1 p2 and p2 = p�1

0 p1 this becomes

p1ap
�1
1 p�1

0 p1a
�1p�1

1 p0a
�1 = 1:

But p1ap
�1
1 = a�1b (by (18)) so this reduces to

a�1bp�1
0 b�1ap0a

�1 = 1:

Isolating bp�1
0 on one side of the equation gives

bp�1
0 = a2p�1

0 a�1b:

Multiplying both sides on the left by p0 and using the relation p0ap
�1
0 = b it

easily follows p0bp
�1
0 = b2a�1b, which is (17). Taking k = 2 in (15) we get the

relation

p2ap4a
�1p�1

3 a�1 = 1:

Using the relation p4 = p�1
2 p3 this becomes

p2ap
�1
2 p3a

�1p�1
3 a�1 = 1: (20)

Note that

p2ap
�1
2 = p�1

0 p1ap
�1
1 p0 by p2 = p�1

0 p1

= p�1
0 a�1bp0 by (18)

= a�2ba�1a by (16) and (17)

= a�2b

and

p3ap
�1
3 = p�1

1 p2ap
�1
2 p1 by p3 = p�1

1 p2

= p�1
1 a�2bp1;

where the second equality follows from the previous statement. Thus, (20)

becomes

a�2bp�1
1 b�1a2p1a

�1 = 1

Isolating bp�1
1 on one side of the equation and using the relation (18) we easily

get the relation (19). Therefore we have that relations (14),(16)-(19) follow from

relations (14)-(16). Next we show the converse holds.

Let R denote the set of relations (14),(16)-(19). We wish to show relations

(14)-(16) follow from R, in particular (15) follows from R. To do this we use

the following lemma.
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Lemma 3 The relations

pkap
�1
k

= akb (21)

pkbp
�1
k

= (a�kb)k+2a�(k+1)b (22)

p�1
k
apk = ab�1ak+2 (23)

p�1
k
bpk = (ab�1ak+2)ka (24)

follow from R.

Proof: We will use induction to prove the result for nonnegative indices k, the

result for negative indices k is similar. Clearly this holds for k = 0; 1. For

k = m+ 2 we have

pm+2ap
�1
m+2 = p�1

m
pm+1ap

�1
m+1pm by R,

= p�1
m
a�(m+1)bpm by induction hypothesis (IH),

= (p�1
m
a�(m+1)pm)(p

�1
m
bpm);

= (p�1
m
apm)

�(m+1)(p�1
m
bpm);

= (ab�1am+2)�(m+1)(ab�1am+2)ma by IH,

= (ab�1am+2)�1a;

= a�(m+2)b;

pm+2bp
�1
m+2 = p�1

m
pm+1bp

�1
m+1pm by R,

= p�1
m
(a�(m+1)b)m+3a�(m+2)bpm by IH,

= ((p�1
m
apm)

�(m+1)(p�1
m
bpm))

m+3(p�1
m
apm)

�(m+2)p�1
m
bpm;

= ((ab�1am+2)�(m+1)(ab�1am+2)ma)(m+3)(ab�1am+2)�(m+2)(ab�1am+2)ma;

= (a�(m+2)b)m+3(ab�1am+2)�2a;

= (a�(m+2)b)m+4a�(m+3)b;

p�1
m+2apm+2 = p�1

m+1pmap
�1
m
pm+1 by R,

= p�1
m+1a

�mbpm+1 by IH,

= (p�1
m+1apm+1)

�m(p�1
m+1bpm+1);

= (ab�1am+3)�m(ab�1am+3)m+1a by IH,

= ab�1am+3a;

= ab�1am+4;
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and

p�1
m+2bpm+2 = p�1

m+1pmbp
�1
m
pm+1 by R,

= p�1
m+1(a

�mb)m+2a�(m+1)bpm+1 by IH,

= ((p�1
m+1apm+1)

�m(p�1
m+1bpm+1))

m+2(p�1
m+1apm+1)

�(m+1)p�1
m+1bpm+1;

= ((ab�1am+3)�m(ab�1am+3)m+1a)(m+2)(ab�1am+3)�(m+1)(ab�1am+3)m+1a;

= (ab�1am+4)m+2a:

Thus, the result follows by induction. �

From the relations (21)-(24) we obtain

pk+1ap
�1
k+1 = a�(k+1)b = a�1 � a�kb = a�1pkap

�1
k
; (25)

and

p�1
k+1apk+1 = ab�1ak+2 = ab�1ak+1a = p�1

k
apka: (26)

Now we are in a position to show that (15) follows from R. For k � 0

pkapk+2a
�1p�1

k+1a
�1 = pkap

�1
k

pk+1a
�1p�1

k+1| {z } a�1 by (14)

= pkap
�1
k
(a�1pkap

�1
k
)�1a�1 by (25)

= 1:

and for k < 0

pkapk+2a
�1p�1

k+1a
�1 = pk+1 p

�1
k+2apk+2| {z } a�1p�1

k+1a
�1 by (14)

= pk+1(p
�1
k+1apk+1a)a

�1p�1
k+1a

�1 by (26)

= 1:

Therefore, the relations

pkapk+2a
�1p�1

k+1a
�1 = 1; k 2 Z

follows from the relations in R. Thus, we have that B0

4 is generated by pk; a; b;

k 2 Z with the set of de�ning relations

pk+2 = p�1
k
pk+1 (k � 0)

pk = pk+1p
�1
k+2 (k < 0)

b = p0ap
�1
0

p0bp
�1
0 = b2a�1b

p1ap
�1
1 = a�1b

p1bp
�1
1 = (a�1b)3a�2b:

Since the generators pk, k 6= 0; 1 appear in only the �rst two relations we have

proved the following theorem.
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Theorem 4 The commutator subgroup B0

4 of the braid group B4 is generated

by

p0 = �2�
�1
2 ; p1 = �1�2�

�2
1 ; a = �3�

�1
1 ; b = �2�

�1
1 �3�

�1
2 ;

with de�ning relations

b = p0ap
�1
0

p0bp
�1
0 = b2a�1b

p1ap
�1
1 = a�1b

p1bp
�1
1 = (a�1b)3a�2b:

�

The Case n = 5

Let n = 5. We have already shown that B0

5 is generated by pk,q3,q4, k 2 Z with

de�ning relations (8)-(13), which in the case for n = 5 become

pk+2 = p�1
k
pk+1 (k � 0); pk = pk+1p

�1
k+2 (k < 0):

pkq4 = q4pk+1

pkq3pk+2 = q3pk+1q3

q3q4q3 = q4q3q4;

for k 2 Z. Let us denote the generator q3 by a. Then the relations can be be

written as

pk+2 = p�1
k
pk+1 (k � 0); pk = pk+1p

�1
k+2 (k < 0): (27)

pkapk+2 = apk+1a (28)

pkq4 = q4pk+1 (29)

aq4a = q4aq4: (30)

As was done in the case for n = 4 we add to the generators pk,q3,q4, k 2 Z of

B0

5 a new generator b, and to the relations (27)-(30) a new relation

b = p0ap
�1
0 :

Notice the relations (27)-(28), and b = p0ap
�1
0 are exactly those that occured

in the case n = 4, and we showed that they are equivalent to the relations

pk+2 = p�1
k
pk+1 (k � 0) (31)

pk = pk+1p
�1
k+2 (k < 0) (32)

b = p0ap
�1
0 (33)

p0bp
�1
0 = b2a�1b (34)

p1ap
�1
1 = a�1b (35)

p1bp
�1
1 = (a�1b)3a�2b: (36)
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So B0

5 is generated by pk,a,b,q4, k 2 Z with eight de�ning relations (29)-(36).

Relations (31),(32) tell us that pk, k 6= 0; 1 can be expressed in terms of p0 and

p1, so the only relations on pk, k 6= 0; 1 are (29); pkq4 = q4pk, k 2 Z. It is these
relations that we want to try to get rid of by replacing them with �nitely many

other relations involving only the generators p0,p1,a,b,q4.

Taking k = 0 and k = 1 in (29) we get the two relations

p0q4 = q4p1 p1q4 = q4p
�1
0 p1:

The following lemma tells us that these two relations can replace the relations

(29).

Lemma 5 The set of relations:

pk+2 = p�1
k
pk+1 (k � 0); pk = pk+1p

�1
k+2 (k < 0);

pkq4 = q4pk+1 (k 2 Z);

is equivalent to the set

pk+2 = p�1
k
pk+1 (k � 0); pk = pk+1p

�1
k+2 (k < 0);

p0q4 = q4p1 p1q4 = q4p
�1
0 p1:

Proof: Clearly the second set of relations follows from the �rst set of rela-

tions. To prove the converse we �rst prove that pkq4 = q4pk+1, k � 0, follows

from the second set of relations by induction on k. It is easy to see then that the

same is true for k < 0. For k = 0; 1 the result clearly holds. Now, for k = m+2;

pm+2q4p
�1
m+3q

�1
4 = pm+2q4p

�1
m+2pm+1q

�1
4 ;

= pm+2(p
�1
m+1q4)pm+1q

�1
4 by IH (k = m+ 1);

= pm+2p
�1
m+1(q4pm+1)q

�1
4 ;

= pm+2p
�1
m+1(pmq4)q

�1
4 by IH (k = m);

= pm+2p
�1
m+1pm;

= 1:

�

It follows that B0

5 is generated by pk,a,b,q4, k 2 Z with de�ning relations

pk+2 = p�1
k
pk+1 (k � 0); pk = pk+1p

�1
k+2 (k < 0);

b = p0ap
�1
0 ;

p0bp
�1
0 = b2a�1b;

p1ap
�1
1 = a�1b;

p1bp
�1
1 = (a�1b)3a�2b;

aq4a = q4aq4;

p0q4 = q4p1; p1q4 = q4p
�1
0 p1:
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Since the generators pk, k 6= 0; 1 now appear in only the �rst two relations

we have proved the following theorem.

Theorem 6 The commutator subgroup B0

5 of the braid group B5 is generated

by

p0 = �2�
�1
2 ; p1 = �1�2�

�2
1 ; a = �3�

�1
1 ; b = �2�

�1
1 �3�

�1
2 ; q = �4�

�1
1 ;

with de�ning relations

b = p0ap
�1
0 ;

p0bp
�1
0 = b2a�1b;

p1ap
�1
1 = a�1b;

p1bp
�1
1 = (a�1b)3a�2b;

aqa = qaq;

p0q = qp1; p1q = qp�1
0 p1:

�

The General Case; n > 5

Having done most of the work in the case n = 5 it is relatively easy to check

the following theorem.

Theorem 7 The commutator subgroup B0

n
of the braid group Bn, n � 5, is

generated by

p0 = �2�
�1
2 ; p1 = �1�2�

�2
1 ; a = �3�

�1
1 ; b = �2�

�1
1 �3�

�1
2 ; ql = �l�

�1
1 (4 � l � n� 1);

with de�ning relations

b = p0ap
�1
0 ;

p0bp
�1
0 = b2a�1b;

p1ap
�1
1 = a�1b;

p1bp
�1
1 = (a�1b)3a�2b;

p0qi = qip1 (4 � i � n� 1); p1qi = q1p
�1
0 p1 (4 � i � n� 1)

aqi = qia (5 � i � n� 1); aq4a = q4aq4;

qiqj = qjqi (4 � i < j � 1 � n� 2); qiqi+1qi = qi+1qiqi+1 (4 � i � n� 2):

�
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