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Abstract

In [1] Gorin and Lin gave a presentation for the commutator subgroup
B, of the braid group B,,, n > 3, which consists of finitely many genera-
tors and relations. Here we fill in all the details of their computation.
Introduction

The braid group on n strands, denoted B,,, is defined by the presentation

B, =<01,.,0p1: oi0; = ojo; for i — j| > 2,

Oi0i410; = 0410041 for1<i<n-—-2>.

The commutator subgroup B], of the braid group B,, is the group generated by
the commutators; [81, f2] = 1620, *B5 *, for all By, B2 € B,. In [1] Gorin and
Lin outlined the proof of the following theorem giving a presentation for B!,.

Theorem 1 For every n > 3 the commautator subgroup B, of the braid group
B, is a finitely presented group. B} is a free group with two free generators

u:agafl, v:ala2al_2.
Bj is the group generated by
-1 —2 -1 -1 1
Po = 0204, p1 =01020; , a=030; , b=o030] 030,",

with defining relations

b = poap;’
pgbpa1 = b b
plapfl = a'b
pibprt = (a'b)3a 2.

For n > 5 the group Bl is generated by

1 2 1 1 1
Po =020, , p1=01020, , a=030; , b=o0y0; 030, , =00 (4<I<n-1),



with defining relations

b = poap;’,
pobpy' = b’a”'b,
papy = a ‘b,
pibpyt = (a7'b)3a?b,
podi = qip1 (4<i<n—1), PG =@py 1 (4<i<n—1)
agi = qa (5<i<n-—1), agsa = qaaqds,
qiq; = qjqi (4<i<j—1<n-2), Cii+14i = i+1¢i¢i1 (4 <i<n—2).

In this paper we give all the details for the proof of this theorem.

The Presentation

In this section we fill in all the details of the proof of Theorm 1. To do this we
first need to recall the Reidemeister-Schreier method for presenting a subgroup.
For a complete discussion of the Reidemeister-Schreier method see [2].

Let G be an arbitrary group with presentation < as,...,a, : Ry(ay),... >
and H a subgroup of G. A system of words R in the generators aq,...,a, is
called a Schreier system if (i) every right coset of H in G contains exactly one
word of R (i.e. R forms a system of right coset representatives), (ii) for each
word in R any initial segment is also in R (i.e. initial segments of right coset
representatives are again right coset representatives). Such a Schreier system
always exists, see for example [2]. Suppose now that we have fixed a Schreier
system R. For each word W in the generators ay,...,a, we let W denote the
unique representative in R of the right coset HW. Denote

SK,a, — Ka, - Kavila (1)

for each K € R and generator a,. A theorem of Reidemeister-Schreier states
that H has presentation

< SKoayse- i SMayr-- - T(KR,K ™Y, 0> (2)

where K is an arbitrary Schreier representative, a, is an arbitrary generator
and R, is an arbitrary defining relator in the presentation of G, and M is a
Schreier representative and ay a generator such that

May = May,

where =~ means "freely equal”. The function 7 is a Reidemeister rewriting
function and is defined according to the rule

(ag! GZ) = S;il,ail e (3)

ipsQip



€5 — . €5 .
where K;, =a$' ---a;’"",ife; =1, and K;, =as'---a;’, if ¢, = —1. It should
J i1 tj—1" J ’ J i1 i) J

be noted that computation of 7(U) can be carried out by replacing a symbol af
of U by the appropriate s-symbol s§ , . The main property of a Reidemeister
rewriting function is that for an element U € H given in terms of the generators
a, the word 7(U) is the same element of H rewritten in terms of the generators

SK,a,,-

Now we may begin the study of the commutator subgroups of the braid
groups. Let H, = {f € B, : exp(f) = 0} , which is easily seen to be a subgroup
of B,,. In fact, this subgroup is precisely B,.

Lemma 2 H, = B),

Proof: Since B!, is generated by the commutators [31,fs], 81,82 € By, and
exp([f1, B2]) = 0then B!, < H,. To prove the converse we apply the Reidemeister-
Schreier method to the subgroup H, to find a generating set. Since

H,py = H,p> & By €H,
& exp(Bi) = exp(f),

then a Schreier system of right coset representatives for B,, modulo H,, is
R={of:kez}

The discussion above tells us that H,, is generated by the s-symbols

—1

ko k..
Sa’f ,0j 01 UJ o1 UJ
(k41
= afajal( ).
For 57 = 2 we have
k —(k+1)  _ k —k( _—1 -1
01020, = oyoq0; (05 02)0;
_ k —1
= [o],02]020,
_ k 11 .
= [o7,02]00 0y 0102 by oi0201 = 020109,
_ k -1 1
= [01702][01 »02 |

For j > 2 we have

k —(k+1 k _—(k+1
0,050, (k1) = 0o 0, (k+1) by o,0; = 0j01,
= ajal_l

= oj(0;105-1)07"

= (0j0;})0j-107"
= (07405 05 105)05 107"
_ {[o;a,a;l][o;l,a;w if j =3,

[affl,ajl]afaj_la;(kﬂ) if j > 4.



It follows by induction on j that the generators of H, lie in B;,. O

In the proof of the previous lemma we found a Schreier system for B, mod-
ulo B!, namely R = {o¥ : k € Z}, thus, by (2), B, has presentation

I —l 1

< Sghigire i Sopans e T(O1R0 ), (ol T jo0h), ... > (4)
where j € {1,. -1}, k1l € Z, and m € Z, A € {l,...,n — 1} such
that ooy = o 0'>\ (”freely equal”), and T; j, R; represent the braid relations
0i0;0; 10'J li — j| > 2, and 00410407, 0; "0, respectively. Our goal now

is to clean up this presentation.
The first thing to notice is that

oo\ x ooy = ot
if and only if A = 1. Thus, the first type of relations in (4) are precisly som 5, =
1, for all m € Z.

Next, we use the definition of the Reidemeister rewriting function (3) to
express the second and third types of relations in (4) in terms of the generators

Salf7aj'
ko _—ky —1 —1
T(Ulngl ) = So'l,a'lsg'k+1 Sa’f“,aisof,aj (5)
kp —ky _ —1 —1 —1
T(o7 Rio; ") = Sob,0iSghH gy Stz sof“,anSa’f+1,oi50fm+1 (6)

From (5) with i = 1, j > 3, and using the relations s,» ,, = 1 we get the
relation

SGTH,J]‘ = Sa’f,aj
Thus, by induction on k, s, ,. = 51,5, for j > 3 and for all k € Z.

07,05
Therefore, B), is generated by Sok oy = ooy ) and $1.0, = OU07 ",

where k € Z , 3 <1 < n—1. To simplify notation let us rename the generators;
let pg := a{“agaf(kﬂ) and q; := alafl, forkeZ ,3<I1<n-—1. Now we need
to investigate the relations in (5),(6).

The relations in (6) break up into the following three types (using the rela-

tions s,x ;. = Sq,,0; = g; for j > 3):

PreiPiepe (=1 (7)
PRAsDi+205 D15 (i =2) 8)
Gidit1 Gl 4 G for3<i<n—2. 9)

The relations in (5) break up into the following two types

Peipra; . ford<j<n—1(i=2) (10)
Gg5q; a; b for3<i<j<n—1,|i—j|>2 (11)



We now have a presentation for B), consisting of the generators pg, g;, where
ke Z,3 <1l <n-—1,and defining relations (7)-(11). However, notice that
relation (7) splits up into the two relations

Pkt2 =Dy Drhy1 for k>0 (12)
Pr = pk+1p,;i2 for k <0. (13)

Thus, for k # 0, 1, pr can be expressed in terms of pg and p;. From this it follows
that BJ, is finitely generated. In fact, the presentation for B], with generators
Dk, q, where k € Z,3 <1 < n — 1 and defining relations (8)-(13) can be Tietze
transformed into a presentation which consists of finitely many generators and
relations. We do this for the cases n = 3, n = 4, and n = 5 first and then
proceed to the general case.

The Case n =3

For n = 3 the presentation above reduces to < pi, (k € Z) : (12),(13) > =
< po,p1: > = ZxZ. Thus, B} is a free group with two free generators
U =py= agafl and v = p; = alagafz.

The Case n =4

Let n = 4. The set of generators is py,k € Z and a := ¢3, and the set of defining
relations (8)-(13) reduces to

Prio = plzlpk+1 for k>0 Pk = pk+1p,;+12 for k<0 (14)
PkOPt20 piia”t = L (15)

We know that for k& # 0,1, pr can be expressed in terms of py and p; but we
can’t delete these generators from the generating set since they appear in the
relation (15). What we want to do is to replace the infinte set of relations in
(15) with a finite set of equivalent relations. We do this as follows. Introduce
to the generators py, a of the group Bj a new generator b and to the relations
(14), (15) a new relation

b= poapgl. (16)

By a theorem of Tietze this gives an equivalent representation (see [2]). Now
we show that in the system of relations (14)-(16) we can replace (15) by

pobpyt = bPa'b (17)
piap;t = a7 'b (18)
mbprt = (a7'b)%a”7, (19)

and obtain a system of relations equivalent to the original relations. We do this
in two steps: first we show (14),(16)-(19) follow from (14)-(16), then we show
the converse.



Taking £ = 0 in (15) we get the relation
poapsa”'pytaTt =1,

and, using the relations p» = py lpy and b = DPoaPy v (18) easily follows. Taking
k=1 in (15) we get the relation

prapsa”'py Tt = 1.
Using the relations p; = pfpo and p2 = pg Lpi this becomes
prap; 'y tpraT py tpoaT! = 1.
But piap;! = a'b (by (18)) so this reduces to
cflbpo_llflapgcf1 =1.
Isolating bp, ! on one side of the equation gives
1

bp, " = a2pgla_1b.

Multiplying both sides on the left by py and using the relation pyap, L=pit
easily follows pobp, * = b®a~'b, which is (17). Taking k = 2 in (15) we get the
relation

pgap4a_1p§1a_1 =1.

Using the relation py = pglpg this becomes

paapy 'psapytat = 1. (20)
Note that
—1 _ —1 —1 _.—1
p2ap,~ = Py piap; Po by p2 =Dy P1
= pyla”'bpy by (18)
= a ?ba'a by (16) and (17)
= a %
and
psap;' = pi'peapy'pi by ps =pi b2
- p1_1072bpl;

where the second equality follows from the previous statement. Thus, (20)
becomes

a 2bpy b raPpra =1

Isolating bp; * on one side of the equation and using the relation (18) we easily
get the relation (19). Therefore we have that relations (14),(16)-(19) follow from
relations (14)-(16). Next we show the converse holds.

Let R denote the set of relations (14),(16)-(19). We wish to show relations
(14)-(16) follow from R, in particular (15) follows from R. To do this we use
the following lemma.



Lemma 3 The relations

pkap,;1 = a®b (21)
prbppt = (aFp)FTPam (22)
plzlapk = ab lakt? (23)
pilbpr = (ab la*T?)a (24)

follow from R.

Proof: We will use induction to prove the result for nonnegative indices k, the
result for negative indices k is similar. Clearly this holds for £ = 0,1. For
k =m + 2 we have

= pu'Pmi1ap, i pm bY R,

= D ~1g~(m+Upp,. by induction hypothesis (IH),

(pfn1 ) (P 0P,
(P aPm )~ (p bpm),

( m+2)—(m+1) (ab—lam+2)ma by IH,
( m+2)71

—1
pm+2apm+2

a7
— *(m+2)b’

Pma2bDny = Dol Pmibpyipm by R,
— pfl(af(m+1)b)m+3a7(m+2)bpm by IH,

= (' apm) ™" (03 0 )™ (03 apim) =) pr oo,
( -1 m+2) (m+1)(ab 1 m+2) a)(m+3)(ab 1 m+2) (m+2)(ab 1 m+2)

a,

(
( m+2 )m+3 (ab 1 m+2) a,
(

a” m+2 )m+4a7(m+3)b

)

Prmya0Pmiz = DpiiPm@Py'Pmir by R,
= p;#la_mbpmﬂ by IH,
(Pt @Pms1) ™ (Dy 1 bPm1),
— (ab 1 m+3) (ab 1 m+3)m+1 by IH,

ab™ lam+3

= ab ta™,



and

PtobPmi2 = DphiPmbpy'Pmir by R,
= p;&_l(afmb)m“a*(mﬂ)bpmﬂ by IH,
= ((Pmi1aPms1) ™ P Pms)) ™ P2 (k1 apms1) " P bpma,

— ((ab—lam+3)—m(ab—lam+3)m+1a)(m+2) (ab—lam+3)—(m+1) (ab—lam+3)m+1a
(ab—lam+4)m+2a-

)

Thus, the result follows by induction. a

From the relations (21)-(24) we obtain
pk+1ap;j_1 = a*(k+1)b —at.qg% = Cflpkap/;l; (25)
and

1ak+2 — ab—lak+1

p,;llapkﬂ =ab~ a= p,;lapka. (26)

Now we are in a position to show that (15) follows from R. For k > 0

PEapri20” 'ppiia”t = prap. pepia'p et by (14)
—_———
= pkaplzl(a_lpkaplzl)_la_l by (25)
1.
and for £ < 0

1

PraDR420” ' Pyt a” P41 Ppio0Pk2a” 'pa” by (14)
—_———

Pr+1(Dptapriia)a” pila™" by (26)
1.
Therefore, the relations
Prapri2a 'ppla”t =1, k€L

follows from the relations in R. Thus, we have that B} is generated by py,a, b,
k € Z with the set of defining relations

Pri2 = Py pkyr (k>0)
Pk = PetiPry, (k<0
b = poap,’
pgbpo_1 = ba'b
plapl_1 = a'b
pibpyt = (a7'b)%a™?b.

Since the generators pg, k # 0,1 appear in only the first two relations we have
proved the following theorem.



Theorem 4 The commutator subgroup Bj of the braid group By is generated

by

_ —1 _ —2 _ —1 _ —1 —1
Po = 020, , p1 = 01020, , a=030; , b=o020 030,

with defining relations
b
Pobpy
prap; "
pibpy!

The Case n =5

poapy '

ba
a lh

(a”

)30 2.

Let n = 5. We have already shown that Bf is generated by p,q3,q4, k € Z with
defining relations (8)-(13), which in the case for n = 5 become

Prt2 = pj Pes1 (k> 0),
Prqa

Prq3Pr+2

434493

Pk = Pet1Pppo (k <0).
q4Pk+1

43DPk+193

444344,

for k € Z. Let us denote the generator ¢z by a. Then the relations can be be

written as

Prt2 =Dy et (k> 0),
PraPr+-2

Pkq4

aqsa

Pk = Pk41Dy o (k <0). (27)
apy41a (28)
q4Pk+1 (29)
q40q4.- (30)

As was done in the case for n = 4 we add to the generators pg,q3,q4, k € Z of
B! a new generator b, and to the relations (27)-(30) a new relation

b= pgapgl.

Notice the relations (27)-(28), and b = ppap, ' are exactly those that occured
in the case n = 4, and we showed that they are equivalent to the relations

Pr+2
Dk

b
pobpy !
prap;
pibp;

Pr 'prs (k> 0) (31)
Prt1Ppyy (k< 0) (32)
poapy (33)
b0~ 1b (34)
a b (35)
(a='b)3a™?b. (36)



So B} is generated by pg,a,b,q4, k € Z with eight defining relations (29)-(36).
Relations (31),(32) tell us that py, k& # 0,1 can be expressed in terms of py and
p1, so the only relations on pg, k # 0,1 are (29); prgs = qupr, k € Z. It is these
relations that we want to try to get rid of by replacing them with finitely many
other relations involving only the generators po,p1,a,b,q4.

Taking £k =0 and k = 1 in (29) we get the two relations

Pods = qap1  Pigs = qapg D1
The following lemma tells us that these two relations can replace the relations
(29).

Lemma 5 The set of relations:

Pr+2 =Py, 'Pry1 (k> 0), Pk = Pk41Dj s (k <0),
Peqs = @pr+1 (k € Z),

18 equivalent to the set

Pri2 =D rer (kK >0),  pr = pepipps, (k<0),
Poqs = qaP1 P1qs = qapy 'p1-

Proof: Clearly the second set of relations follows from the first set of rela-
tions. To prove the converse we first prove that prqs = qupr4+1, £ > 0, follows
from the second set of relations by induction on k. It is easy to see then that the
same is true for k < 0. For k£ = 0,1 the result clearly holds. Now, for k = m +2;

Pm+20Priysds = Prt2iPooPmiids s
P2 (D1 @a)pmy1ay by TH (k= m + 1),
pm+2pr_n{|—1(q4pm+1)q;1,
Pm+2Pmi1(Pmaa)gy - by IH (k =m),

Pmt2Pp 1P
1.

It follows that BY is generated by pg,a,b,qs, k € Z with defining relations

Pi+2 = Dj, 'Prer (k> 0), Pk = Pr41Djr s (k <0),
b = poapy’,
pgbpa1 = b2y,
plapfl = a'b,
pibprt = (a7 ') a3,
aqs@ = (4Q4a,
Poqa = q4p1, P1qs = qapg 'p1-

10



Since the generators pg, k # 0,1 now appear in only the first two relations
we have proved the following theorem.

Theorem 6 The commutator subgroup B of the braid group Bs is generated
by

_ —1 _ —2 _ —1 _ —1 —1 _ —1
Po = 0205, P1 = 010207 , G =030 , b=020] 0305, =040, ,

with defining relations

b = poapy ",
pobpg1 = b2a_1b,
pap;t = a'b,
plbpl_1 = (aflb)?’a*zb,

aga = qaq,
Pod = qp1, PLa = qp, 'pr-

The General Case; n > 5

Having done most of the work in the case n = 5 it is relatively easy to check
the following theorem.

Theorem 7 The commutator subgroup B), of the braid group B,, n > 5, is
generated by

—1 —2 —1 —1 —1 —1
Po = 0205, p1 = 01020, , a=030; , b=o090, 030, , =00, (4<I1<n-1),

with defining relations

b = poap,
pobpy ' = b’a”'b,
papy' = a'b,
pibprt = (a'D)*a b,
pogi = qip1 (4 <i<n—1), Pagi=qpy ;1 (4<i<n-1)
ag; = qa (5<i<n-—1), agsa = qaaqs,
qiq; =q¢jqi (4<i<j—1<n-2), ¢ii+1¢i = €i+1¢igi+1 (4 <i<n—2).

O
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