
Kruskal’s Algorithm: Correctness Analysis

Valentine Kabanets

February 1, 2011

1 Minimum Spanning Trees: Kruskal’s algorithm

A spanning tree of a connected graph G = (V,E) is a subset T ⊆ E of the edges such that
(V, T ) is a tree. (In other words, the edges in T must connect all nodes of G and contain no
cycle.)

If a connected G has a cycle, then there is more than one spanning tree for G, and in
general G may have exponentially many spanning trees, but each spanning tree has the same
number of edges.

We are interested in finding a minimum cost spanning tree for a given connected graph
G, assuming that each edge e is assigned a cost c(e). (Assume for now that the cost c(e) is
a nonnegative real number.) In this case, the cost c(T ) is defined to be the sum of the costs
of the edges in T . We say that T is a minimum cost spanning tree (or an optimal spanning
tree) for G if T is a spanning tree for G, and given any spanning tree T ′ for G, c(T ) ≤ c(T ′).

Given a connected graph G = (V,E) with n vertices and m edges e1, e2, . . . , em, where
c(ei) = “cost of edge ei”, we want to find a minimum cost spanning tree. It turns out
(miraculously) that in this case, an obvious greedy algorithm (Kruskal’s algorithm) always
works. Kruskal’s algorithm is the following: first, sort the edges in increasing (or rather
nondecreasing) order of costs, so that c(e1) ≤ c(e2) ≤ . . . ≤ c(em); then, starting with an
initially empty tree T , go through the edges one at a time, putting an edge in T if it will
not cause a cycle, but throwing the edge out if it would cause a cycle.

Kruskal’s Algorithm:
Sort the edges so that: c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
T ← ∅
for i : 1..m
(*) if T ∪ {ei} has no cycle then

T ← T ∪ {ei}
end if

end for

2 Correctness of Kruskal’s Algorithm

It is not immediately clear that Kruskal’s algorithm yields a spanning tree at all, let alone
a minimum cost spanning tree. We will now prove that it does in fact produce an optimal

1



spanning tree. To show this, we reason that after each execution of the loop, the set T
of edges can be expanded to an optimal spanning tree using edges that have not yet been
considered. Hence after termination, since all edges have been considered, T must itself be
a minimum cost spanning tree.

We can formalize this reasoning as follows:

Definition 1. A set T of edges of G is promising after stage i if T can be expanded to a op-
timal spanning tree for G using edges from {ei+1, ei+2, . . . , em}. That is, T is promising after
stage i if there is an optimal spanning tree Topt such that T ⊆ Topt ⊆ T ∪{ei+1, ei+2, . . . , em}.

Lemma 1. For 0 ≤ i ≤ m, let Ti be the value of T after i stages, that is, after examining
edges e1, . . . , ei. Then the following predicate P (i) holds for every i, 0 ≤ i ≤ m:

P (i) : Ti is promising after stage i.

Proof. We will prove this by induction on i.
Base case: P (0) holds because T is initially empty. Since the graph is connected, there

exists some optimal spanning tree Topt, and T0 ⊆ Topt ⊆ T0 ∪ {e1, e2, . . . , em}.
Induction step: Let 0 ≤ i < m, and assume P (i). We want to show P (i + 1).
Since Ti is promising for stage i, let Topt be an optimal spanning tree such that Ti ⊆

Topt ⊆ Ti ∪ {ei+1, ei+2, . . . , em}.
Case 1: ei+1 is rejected. Then Ti∪{ei+1} contains a cycle and Ti+1 = Ti. Since Ti ⊆ Topt

and Topt is acyclic, ei+1 /∈ Topt. So Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.
Case 2: ei+1 is added to Ti. Then Ti ∪ {ei+1} does not contain a cycle, so we have

Ti+1 = Ti ∪ {ei+1}. We have two sub-cases here.
Case 2.1: ei+1 ∈ Topt. Then we have Ti+1 ⊆ Topt ⊆ Ti+1 ∪ {ei+2, . . . , em}.
Case 2.2: ei+1 /∈ Topt. We’ll show that there is another minimum spanning tree T ′

opt that
witnesses the fact that Ti+1 is promising. Indeed, consider Topt. Imagine adding an edge ei+1

to Topt. This will create a cycle (since Topt was a tree, which is a maximal acyclic graph). In
fact, this will create exactly one cycle! (Prove this!)

Claim 1. The cycle in Topt∪{ei+1} will contain at least one edge from the edges ei+2, . . . , em.

Proof of Claim. Topt contains all edges of Ti, and can be obtained from Ti by adding some
edges from the set {ei+1, . . . , em}. Adding ei+1 doesn’t create a cycle among the edges of Ti.
So, the cycle in Topt ∪ {ei+1} must contain some of the later edges ei+2, . . . , em.

We will continue with our proof of Lemma 1. Let’s pick edge ej of the cycle, for some
j > i + 1 (which, by Claim 1 above, is always possible). Since the edges are ordered in the
increasing order of their costs, we have

c(ej) ≥ c(ei+1). (1)

Now remove ej, and get a tree Topt−{ej}+ {ei+1}. It is clearly a tree since we broke the
only cycle we had. It is also clearly a spanning tree (as it has the same number of edges as
Topt). The cost of this new tree is c(Topt)− c(ej) + c(ei+1) ≤ c(Topt), because of inequality (1)
above. Hence the cost of the new tree as the same or smaller than that of Topt. Since Topt

is optimal, the new tree cannot have smaller cost, and so must in fact have the same cost.

2



It follows that the new tree is also optimal, and this is our new optimal spanning tree T ′
opt

which we will use.
Since T ′

opt differs from Topt by having ei+1 instead of ej for some j > i + 1, we get that
Ti+1 ⊆ T ′

opt, and also that T ′
opt ⊆ Ti+1 ∪ {ei+2, . . . , em}. Hence, Ti+1 is promising.

We have now proven Lemma 1. We therefore know that Tm is promising after stage m;
that is, there is an optimal spanning tree Topt such that Tm ⊆ Topt ⊆ Tm ∪ ∅ = Tm, and so
Tm = Topt. We can therefore state:

Theorem 1. Given any connected edge-weighted graph G, Kruskal’s algorithm outputs a
minimum spanning tree for G.

3 Discussion of Greedy Algorithms

Before we give another example of a greedy algorithm, it is instructive to give an overview of
how these algorithms work, and how proofs of correctness (when they exist) are constructed.

A Greedy algorithm often begins with sorting the input data in some way. The algorithm
then builds up a solution to the problem, one stage at a time. At each stage, we have a
partial solution to the original problem – don’t think of these as solutions to subproblems
(although sometimes they are). At each stage we make some decision, usually to include or
exclude some particular element from our solution; we never backtrack or change our mind.
It is usually not hard to see that the algorithm eventually halts with some solution to the
problem. It is also usually not hard to argue about the running time of the algorithm, and
when it is hard to argue about the running time it is because of issues involved in the data
structures used rather than with anything involving the greedy nature of the algorithm. The
key issue is whether or not the algorithm finds an optimal solution, that is, a solution that
minimizes or maximizes whatever quantity is supposed to be minimized or maximized. We
say a greedy algorithm is optimal if it is guaranteed to find an optimal solution for every
input.

Most greedy algorithms are not optimal! The method we use to show that a greedy
algorithm is optimal (when it is) often proceeds as follows. At each stage i, we define our
partial solution to be promising if it can be extended to an optimal solution by using elements
that haven’t been considered yet by the algorithm; that is, a partial solution is promising
after stage i if there exists an optimal solution that is consistent with all the decisions made
through stage i by our partial solution. We prove the algorithm is optimal by fixing the
input problem, and proving by induction on i ≥ 0 that after stage i is performed, the
partial solution obtained is promising. The base case of i = 0 is usually completely trivial:
the partial solution after stage 0 is what we start with, which is usually the empty partial
solution, which of course can be extended to an optimal solution. The hard part is always
the induction step, which we prove as follows. Say that stage i + 1 occurs, and that the
partial solution after stage i is Si and that the partial solution after stage i + 1 is Si+1, and
we know that there is an optimal solution Sopt that extends Si ; we want to prove that there
is an optimal solution S ′

opt that extends Si+1 . Si+1 extends Si by making only one decision;
if Sopt makes the same decision, then it also extends Si+1, and we can just let S ′

opt = Sopt

3



and we are done. The hard part of the induction step is if Sopt does not extend Si+1. In this
case, we have to show either that Sopt could not have been optimal (implying that this case
cannot happen), or we show how to change some parts of Sopt to create a solution S ′

opt such
that

• S ′
opt extends Si+1, and

• S ′
opt has value (cost, profit, or whatever it is we’re measuring) at least as good as Sopt,

so the fact that Sopt is optimal implies that S ′
opt is optimal.

For most greedy algorithms, when it ends, it has constructed a solution that cannot be
extended to any solution other than itself. Therefore, if we have proven the above, we know
that the solution constructed must be optimal.

4


