Lecture 12
Longest Common Subsequnce

Given: Two sequences x =x1x2 ...xn andy=y1ly2..ym, over some alphabet A
Find: Longest common subsequence z =z1...zk of xandy.

Example: x=TGACTA B
y = GTGCATG \3 =

LCS z=TGCA, or TGAT, or TGCT.

Step 1: Array of optimal Gumericalvalues for sub-problems
A(i,y) = Lok LCS (v,
Step 2: Recurrence A (N, m\ \3\' \jf\ \
A(.I)O): ‘NO\%:O ,,+ A(’_\\'y\\ /\A X. = :31
Al)= TR
A Ry

¥, .Y

o .'."'BS\\QL
Step 3: Fill in the array LC g 2. .. ?(K C

a—

[.

Step 4: Recoved a solution (LCS) from the arrav bv retracing.

307 Lectures Summer 2017 Page 1

Step 4: RecoveY a solution (LCS) from the array by retracing.

Longest Increasing Subsequence

Given: a sequence of integers al, a2, ..., an
Find: a longest increasing subsequence

Example: l,& 18, 4, Z,E_
has 3,4,6 asallS

Step 1: Array

Fineldd answs

Step 2: Recurrence

A(’\‘ l’”"‘w?l\ -<ix

[L4 l \
Chmmn D il fem bla n mminmn / ” fl\. la L‘C

307 Lectures Summer 2017 Page 2

o - - V\

\
Step 3: Fill in the array Z/ CO\) LO
M &

’FM ‘Q M S "‘)V.

: .)
Step 4: Use the array to find an actual LIS (by retracing). . Lli'\/
\/\)l‘h/\ L

At Betdae

DP Summary

e "Bottom up" approach, usually using an array of optim

for sub-problems.

e Efficient recurrence to fill in the array ("Principle of
Optimality")

e Can recover not just the optimal values but actual solutions
achieving optimal values (by tracing through the array).

Se -Qw 1 n

307 Lectures Summer 2017 Page 3

eeeeeeeeeeeeeeeeeeeeeeeeee

Flow network

» Abstraction for material flowing through the edges.
* Digraph G=(V, E) with source s€V and sink r€ V.

* Nonnegative integer capacity c(e) for each e € E. no parallel edges

no edge enters s
no edge leaves t

IS
(s/]j J’L‘ 8 \"_'-\. 10\‘/ t)
\._< 15 \-L‘,\ 6 \1; m/ /

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A and t€B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(4,B) = 3 c(e)

e out of 4

10

5

/

15

capacity = IO+5+15=

307 Lectures Summer 2017 Page 5

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A and t€B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(4,B) = 3 c(e)
e out of A
IU/ \
8 P >(t
/ don't count edges
< from B to A
capacity=10+8+16=]E_)

307 Lectures Summer 2017 Page 6

Minimum cut problem

Def. A st-cut (cut) is a partition (A, B) of the vertices with s€ A and t€B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = Y c(e)

e out of 4

Min-cut problem. Find a cut of minimum capacity.

10

capacity = IO+8+10=

Maximum flow problem

Def. An s-flow (flow) fis a function that satisfies:

* Foreache€E: 0= f(e) = cle) [capacity]
* Foreachvev-{s.1}: Xf(e) = 3 f(e) [flow conservation]
eintov e out of v
flow capacity

inflowatv = 5+5+0 =10

5/9 outflow atv = 10+ 0 =10
. \j‘ 0/ &
o /G\'t -
5/5 _5;'8_)?_“)/“)_)'
’ o
o N
//J‘ {}iS \Q\
10/16

307 Lectures Summer 2017 Page 7

Maximum flow problem

Def. An s-flow (flow) fis a function that satisfies:

* Foreache€E: 0= f(e) = cle) [capacity]
* Foreachvev-{s.1}: Xf(e) = 3 f(e) [flow conservation]
eintov e out of v

Def. The value of a flow 7 is: val(f)= 3 f(e) .

e outof §
5/9
.\Q “f/ J\/
o' ‘s ‘o
5;’5—) 5/8 10/10 @
‘o \\‘b
/4 0
Value=5+10+10=@ \
10/16

307 Lectures Summer 2017 Page 8

Maximum flow problem

Def. An s-flow (flow) fis a function that satisfies:

* Foreache€E: 0= f(e) = cle) [capacity]
* Foreachvev-{s.1}: Xf(e) = 3 f(e) [flow conservation]
eintov e out of v

Def. The value of a flow 7 is: val(f)= 3 f(e) .

eoutof §

Max-flow problem. Find a flow of maximum value.

8/9
NS <. 5
\Q\ /5 /0
5;’5—) 8/8 10/10 @
7 Q
5 b
s Yog o
Value=8+10+10= \
13/16

307 Lectures Summer 2017 Page 9

Towards a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~7 path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.

flow capacity
K) \0 / 4/ &
network G _A A
N 0/2 0. 0/6 o
o ¢ G value of flow
(s) 0/10 () 0/9 () 0/10 (t) o
4 o/ 2
Towards a max-flow algorithm
Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~7 path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.
P Y
network G 4 0/4 W,
Q /V \) O
%ﬁ\\ 0/2 ﬂ/& 0/6 Q)
- P \ L 8 .
(s'j 0/10 W, 0/9 (_J_-e-/lo_}(t) 0+8=8

307 Lectures Summer 2017 Page 10

Towards a max-flow algorithm

Greedy algorithm.

» Start with f(e) =0 for all edge e € E.

* Find an s~7 path P where each edge has f(e) < c(e).

* Augment flow along path P.
« Repeat until you get stuck.

N Y
network G I\‘IJ 0/4 (__/|
o O 29/2 & 0/6 o
Nl l “& d ‘o
_ = 2 N 2 .
(Sj' 0/10 L /9 > 4/ 10mgp(t) 8+2=10
M vy - S~

307 Lectures Summer 2017 Page 11

Towards a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for all edge e € E.

* Find an s~7 path P where each edge has f(e) < c(e).

* Augment flow along path P.
« Repeat until you get stuck.

network G U 0/4 (4

N e
o) 2/2 € 6 el/s T
(s ; 10 () ; () 10 10\/;\ 10+6=16
\‘_./_ / »_’/ 2/9)l._/_J / - + b=
Towards a max-flow algorithm
Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~7 path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.
ending flow value = 16
. .
network G C; 0/4 W,
N 6
o) 2/2 e 6/6 T
(s 6/10 () 8/9 () 10/10 (v) 16
A ."’ vy b / \

307 Lectures Summer 2017 Page 12

Towards a max-flow algorithm

Greedy algorithm.
» Start with f(e) =0 for all edge e € E.
* Find an s~7 path P where each edge has f(e) < c(e).
* Augment flow along path P.
« Repeat until you get stuck.

but max-flow value = 19

network G
\Q > 9
o 0/2 “& S0 o
~ A —~
Q) 9/10 O 9/9 (_) 10/10

307 Lectures Summer 2017 Page 13

®

Residual graph ‘;
(
Original edge: e=(u,v) € E. Z \

original graph G \Y\
* Flow f(e).

u
* Capacity c(e). O

Residual edge.

* "Undo" flow sent.
* e=(u,v)and ek = (v, u).

5|dual graph Gr res

* Residual capacity: 4 capacity
cle)-f(e) if e€E _/
cple) = eIR
f(e) if " EE

Residual graph: G;=(V,E).

+ Residual edges with positive residual capacity. where flow on a reverse edge

negates flow on a forward edge
* E;={e:f(e)< c(e)} U {eR:f(e) > 0}. / ? ’

- Key property: /' is a flow in G,iff f+f'is a flow |D
17

Augmenting path

Def. An augmenting path is a simple s~¢ path P in the residual graph G, .
Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P. q !’

Key property. Letf be a flow and let P be an augmenting path in G;. Q
Then f'is a flow and val(f') = val(f) + bottleneck(Gy, P).

£
AUGMENT (f, ¢, P) } /5\

b « bottleneck capacity of path P. A’ ’
FOREACH edge e € P

IF(e EE) f(e) « f(e) + b. g \.‘

ELSE f(e®)y —f(ef) — b. E
RETURN f. A

307 Lectures Summer 2017 Page 14

() S e vew ‘U&'\J Lrop (>
(2) 95 e v WN?@%&?
MVO&MQ VW O S ‘
4
(H &7 N7
’Ca,ow‘lu/ casdeomly | b> wiin

<< <, CQP-
&\ S’/‘ —~

T
.u:w Lu—.S*(VWHO‘/)
6L e

Vv

eeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeee

th &b S
AQ\,\,Jar
\3/ {a\mw(
, -b | Lot
*\‘/ \LZ;(M\C\AJ
V
b 'O%C \0\
&L’_// Zu(aﬁf
‘&\’\/\qZ,'(“L’S
t e
st Q % w(

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.

» Start with f(e) =0 for all edge e € E.

* Find an augmenting path P in the residual graph G, .

* Augment flow along path P.
« Repeat until you get stuck.

FORD-FULKERSON (G, s, t, ¢)

FOREACH edge e €E £ : f(e) +— 0.
Gy < residual graph.

WHILE (there exists an augmenting path P in Gy)

J < AUGMENT (f, c, P).
Update Gr.

RETURN f.

Ford-Fulkerson algorithm demo

network G flow

N
() 0/4
A
o o
0\\ 0/2 e
e —:—@ 0/s

residual graph G

N

307 Lectures Summer 2017 Page 17

0/6

)
/

O

-
G value of flow
0/10 CD 0

residual capacity

20

Ford-Fulkerson algorithm demo

network G
Py
()} 0/4
A
&
Q
COEN 0/2 a_
o) &
Py '
(s) 0/10 \ \ 0/9
S S
residual graph G
grap f N
[} 4
h
2 &
O
/'-_-'/ I
| S | |)
\ 3) 10 __ 9

307 Lectures Summer 2017 Page 18

0+8=8

21

Ford-Fulkerson algorithm demo

network G
Py Y
¢) 0/4 ()
A A
O O 2-9/2 y 0/6 o
o) & ‘0
X Y & ™ ™
(s) 0/10 () ©/9 () /10 (t) 8+2=10
— A A vy
residual graph Gr _
grap ~ \ ~
A A
® I
2 & 6 ‘o
i *
fsm/ 10 () 9 () s 2 _)/ t)
\ >) __ — _/ 0
8 22
Ford-Fulkerson algorithm demo
network G
Py Y
¢) 0/4 ()
A A
&
Q ®
N 2/2 & 6 98/6 -
\Q\ ~e /0
6 Y 8 P .
(s) /10 () 2/9) 10/10 (t) 10+6=16
S h —
residual graph G
idual graph G I/_.\I A ~
A \f\
2 & 6 ‘o
) | \
(s 10)I\) 7)'\._/ 10 ._\E/.
2 23

307 Lectures Summer 2017 Page 19

Ford-Fulkerson algorithm demo

network G

N

(s\') €/10 () 8/9 .()

residual graph G

o 2 & 6
\ |
a\ N
(5\)— 4) ! O/
6 8

307 Lectures Summer 2017 Page 20

10/10

(t) 16+2=18

24

Ford-Fulkerson algorithm demo

network G
3
2/4 =
/ > T &
Q
A 0/2 ® 6/6 “'/,

o' l | \

9
%/10—»0 /9

residual graph Gr

Ford-Fulkerson algorithm demo

network G

=h max flow

residual graph Gt / - \

nodes reachable from s 2 >

307 Lectures Summer 2017 Page 21

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of 1.

2fle) = Zfle) = w(f)

e out of A einto A

net flow across cut = 5 + 10 + 10 = 25

. 5/9

t value of flow = 25

c\
O 5 @ s @i
'd

. 10/16

307 Lectures Summer 2017 Page 22

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of 1.

2fle) = Xfle) = w(f)

e out of A einto A

net flow across cut = 10 +5 + 10 = 25

5/9
’ ,
\\\
,
“
o & 5
bt -~ -
\ / P
‘\Q 5 0\\
Y
\\‘
5/5* 5/8 10/10 » t value of flow = 25
e
//
//
/5 \\5
/5 /\0
4
//
\y p
10/16

29

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of 1.

2fle) = Xfle) = w(f)

e out of A einto A

net flow acrosscut = (10 +10 +5+10+0+0)-(5+5+0+0) =

,-"9
/ I\ edges from B to A
5
0/4 /
|{)/|o_) t value of flow = 25
//'
///
o
0/4 0/15 v
10/16\

30

307 Lectures Summer 2017 Page 23

Relationship between flows and cuts

Flow value lemma. Letf be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of /.

o Zjo= 6 1
a‘le(, ‘°‘ N %L'\Q 4
i v(f) !mgﬂ{(e) i &J"’\
=

by flow conservation, all terms
exceptv=safe 0 — E

2 fle)- 3 fo

vEA \eoutofv eintov)

2 fle)- 3 fle). =

e out of A einto A

307 Lectures Summer 2017 Page 24

31

Relationship between flows and cuts

Weak duality. Let f be any flow and (4, B) be any cut. Then, v(f) < cap(A, B).

P W) = 3 flo)-

ot 7/0 Z C(e\

flow-value E,M
lemma eoutof A é'
> cle) € O

euutuI'A
Aeé cap(A,B) = O& t\

8/9

/|\ ™,
sé 5/5 —» 7;’5>l—9j’10_y1 5 m—p
N |

/
\"/

AW \l/

12/16 ——3

7/
<

IA

value of flow = 27 capacity of cut = 30 32

Max-flow min-cut theorem

Augmentin . A flow fis a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min@

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (4, B) such that cap(A, B) = val(f).

is a max-flow.

here is no augmentmg ath with respect to f.

CO(" i = i] 60
* Suppose that (4, B) is a cut such that cap(A, B) = val(f).
* Then, for any flow f', val(f) = cap(A, B) = val(f).
* Thus, fis a max-flow. = T T

weak duality by assumption

33

307 Lectures Summer 2017 Page 25

Max-flow min-cut theorem

Augmenting path theorem. A flow fis a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (4, B) such that cap(A, B) = val(f).

ii. f/ is a max-flow.

iii. There is no augmenting path with respect to 1.

[ii = iii] We prove contrapositive: ~iii = ~ii.
* Suppose that there is an augmenting path with respect to 1.
* Can improve flow f by sending flow along this path.
* Thus, f is not a max-flow. =

307 Lectures Summer 2017 Page 26

34

Max-flow min-cut theorem

[iii=i]
* Let fbe a flow with no augmenting paths.

* Let A be set of nodes reachable from s in residual graph G
* By definition of cut A, s € A.

* By definition of flow f, r & A.

edgee= (v, w) withve B, weA

must have f(e) =0
original network G

v(f) = 3 fle)>- X fle)

/" eoutof A einto A A

B
—— e ——
flow-val
- TS cte) o
e out of A
= cap(A,B) =

edge e = (v, w) withve A, weB
must have f(e) = cle)

307 Lectures Summer 2017 Page 27

35

