Lecture 15

Thursday, July 13, 2017 12:50 PM

Randomization

Algorithmic design patterns.
* Greedy.
* Divide-and-conquer.
* Dynamic programming.
* Network flow.

» Randomization.
in practice, access to a pseudo-random number generator

v

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing,
load balancing, Monte Carlo integration, cryptography.
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Contention resolution in a distributed system

Contention resolution. Given n processes P,, ..., P,, each competing for
access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Py

Py —  »

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time r with
probability p = 1/n.

Claim. Let\(S[E, r]): event that process i succeeds in accessing the database at
time t. Then 1/(e-n) <\Pr[S(i.,n]\< 1/(2n).

Pf. By independence, Pr[S(,7)]= ,@» f’-’/ L
/ )

process i requests access none of remaining n-1 processes requé
+ Setting p=1/n, we have Pr[S(i,)] = 1/n(1-1/n)n-1. =

value that maximizes Pr[S(, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
* (1-1/n)n converges monotonically from 1/4 up to 1/e. q

* (1 =1/n)n-1 converges monotonically from 1/2 down to 1/e.

307 Lectures Summer 2017 Page 2



Contention Resolution: randomized protocol

R([Vfif]

en rpunds is at most 1 /e. After e - n (c In n) rounds, the probability <n-. O"'{ d]

Claim. The probability that process i fails to access the database in

Pf. Le @ event that process i fails to access database in rounds 1
through t. By independence and previous claim, we have

|
( Qr)lgv. (U
Pr [F[i, ] < {1 —1/(en)). = |— —

. . [f'i'l ] \en I
+ Choose r=[e-n]: Pr[F(i.0)] = (1-L1)~ = (1—;) .
» Choose t=[e-n|[cInn]: Pr[F(i,1)] = ; chn ¢
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Contention Resolution: randomized protocol

Claim. The probability that all processes succeed withi rounds
i c = &
is=1-1/n. -

Pf. Let F[7] = event that at least one of the n processes fail(s to access
database in any of the rounds 1 through 1.

e I
P Fl1]] = Pr[QF[i,t]] z.s n><)< . ‘,
L/_/% previous slide V\ L l/)

* Choosing t=2 [TI] [cInn]yields Pr[F[f]]<n-n2=1/n. = I

P Comeall succesy| = |-

Pr[['JE,.] < S PiE,]

i=l
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Global minimum cut )25\

Clobal min cut. Given a connected, undirected graph G =(V,E), SG\ "'(
find a cut (A, B) of minimum cardinality. t v

ol
Applications. Partitioning items in a database, identify clusters of related \
documents, network reliability, network design, cirwit design, TSP solvers. Vv “’\T

Network flow solution. V\/‘ /\7 \,@ 6

* Replace every edge (u, v) with two antiparallel edges («, v) and (v, u).
* Pick some vertex s and compute min s- v cut separating s from each
other vertex vE V.

False intuition. Global min-cut is harder than min s-¢ cut.

Contraction algorithm

Contraction algorithm. [Karger 1995] k
* Pick an edge e = (u, v) uniformly at random. \\ } )
* Contract edge e.
- replace « and v by single new super-node w \l =
- preserve edges, updating endpoints of u and v to w \ VZ

- keep parallel edges, but delete self-loops
» Repeat until graph has just two nodes v, and ¥
« Return the cut (all nodes that were contracted to form v,).

N, \

R
:) \>{ Wi= iu‘v

I /
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Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of x and v to w
- keep parallel edges, but delete self-loops
» Repeat until graph has just two nodes v, and Ve
« Return the cut (all nodes that were contracted to form v,).

LEEREEY
rare SS9

Reference: Thore Husfeldt

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/ 2.

Pf. Consider a global min-cut (A*, B¥) of G. (2({ «)\
* Let F* be edges with ofe endpoint in A* and the other in B*. \e/()\ﬁ

* Le | ] = size of min cut )

* In first step, algorithm contracts an edge in F* probability £/ EI. \\’\ (F

*(‘Every node has degree >k §|nce otherwi e (A* B*) would not '
n-cut ::;LIE;’_I;-//&_&;;_} 2\ L ’_, 7V\ R lF“f’\

. Thus algorithm contracts an edge in F* wi abilit 2/ n. N

20\(\/\ (U > K

\J

A* B*

A >< =1 X0
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Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob = 2/ 2.

Pf. Consider a global min-cut (A*, B*) of G.
* Let F* be edges with one endpoint in A* and the other in B*.
* Let k = |F*| =size of min cut.

* Let G' be graph aft@erations. There areﬁ'_:Pijupernodes.
* Suppose no edge in F* has been contracted. The min-cut in G' is still k. i/g\('\c "’?é}

* Since value of min-cutis k, |E'I= ¥ kn'. \W
* Thus, algorithm contracts an edge in F* with probability < 2/n'. \
* Let E;= event that an edge in F* is not contracted in iteration j. \);
-
1A

Pr[E| r‘lEz ---ﬂE”_z] Pr[El] X Pr[E2 |E1] X e X Pr[En_z |E|ﬂ Ez---ﬁE”_?.]
s (1=2)(1-2) - (1-3) (1-2) . x \
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Contraction algorithm

Amplification. To amplify the probability of success, run the contraction
algorithm many times.

with independent random choices,

Claim. If we repeat the contraction algorithm »2In n times,
then the probability of failing to find the global min-cutis =< 1/n2. —( /t

Pf. By independence, the probability of failure is at most ( l
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Contraction algorithm: example execution

- @@?i%&&%|§¥‘

s @Q@@@g
trial 3 ST *.% g < 1

(finds min cut)

??Mmm
w GEdenaddddderso

Reference: Thore Husfeldt
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Global min cut: context

Remark. Overall running time is slow since we perform ©(n2log n) iterations
and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n2?log3n).
 Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/+2 nodes remain.
* Run contraction algorithm until n/+v2 nodes remain.
* Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(@m log3 n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm
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