Randomization

Algorithmic design patterns.

- · Greedy.
- · Divide-and-conquer.
- · Dynamic programming.
- · Network flow.
- · Randomization.

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

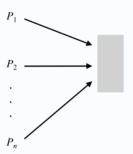
2

Contention resolution in a distributed system

Contention resolution. Given n processes $P_1, ..., P_n$, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.



.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i,t] = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \le \Pr[S(i,t)] \le 1/(2n)$.

Pf. By independence,
$$\Pr[S(i,t)] = p(1-p)^{n-1}$$
.

none of remaining n-1 processes request access

process i requests access

• Setting p = 1/n, we have $Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$.

value that maximizes Pr[S(i, t)]

between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:

- $(1-1/n)^n$ converges monotonically from 1/4 up to 1/e.
- $((1-1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.

 $\left| \begin{array}{c} | \\ | \\ | \\ | \\ | \end{array} \right|$

.

Contention Resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1/e. After $e \cdot n$ ($c \ln n$) rounds, the probability $\leq n^{-c}$. Rejsucus

Pf. Let F[i,t] event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $\Pr[F[i, t]] \le (1 - 1/(en))^t$.

• Choose $t = \lceil e \cdot n \rceil$:

$$\Pr[F(i,t)] \leq \left(1 - \frac{1}{en}\right)^{\left[\frac{en}{en}\right]} \leq \left(1 - \frac{1}{en}\right)^{en} \leq \frac{1}{e}$$

• Choose $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$:

$$\Pr[F(i,t)] \le \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$$

Contention Resolution: randomized protocol

Claim. The probability that all processes succeed within 2e · n ln n rounds is $\ge 1 - 1/n$.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]] \leq n(1-e^{n})$$
union bound previous slide

• Choosing $t = 2 \lceil en \rceil \lceil c \ln n \rceil$ yields $\Pr[F[t]] \le n \cdot n^{-2} = 1/n$. success? >

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] \leq \sum_{i=1}^{n} \Pr[E_i]$$

Global minimum cut

Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers

~~

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s- v cut separating s from each other vertex $v \in V$.

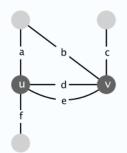
False intuition. Global min-cut is harder than min s-t cut.

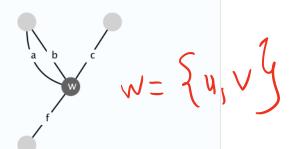
9

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2 .
- Return the cut (all nodes that were contracted to form v_1).



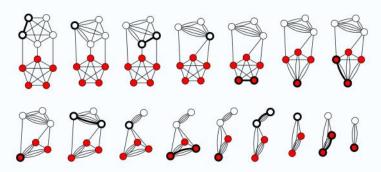


10

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- · Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2
- Return the cut (all nodes that were contracted to form v_1).



Reference: Thore Husfeldt

11

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - Let F^* be edges with one endpoint in A^* and the other in B^* .
 - Let $k \neq |F^*| = \text{size of min cut.}$
 - In first step, algorithm contracts an edge in F^* probability k/|E|.
 - (Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \ge \frac{1}{2} k n$.

• Thus, algorithm contracts an edge in F^* with probability 2/n

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G.

- Let F^* be edges with one endpoint in A^* and the other in B^* .
- Let $k = |F^*| = \text{size of min cut.}$
- Let G' be graph after j iterations. There are n' = n j supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \ge \frac{1}{2} k n'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let E_j = event that an edge in F^* is not contracted in iteration j.

$$\Pr[E_{1} \cap E_{2} \cdots \cap E_{n-2}] = \Pr[E_{1}] \times \Pr[E_{2} \mid E_{1}] \times \cdots \times \Pr[E_{n-2} \mid E_{1} \cap E_{2} \cdots \cap E_{n-3}]$$

$$\geq (1 - \frac{2}{n}) (1 - \frac{2}{n-1}) \cdots (1 - \frac{2}{4}) (1 - \frac{2}{3})$$

$$= \binom{n-2}{n} \binom{n-3}{n-1} \cdots \binom{2}{4} \binom{1}{3} \cdots \binom{2}{4} \binom{1}{3} \cdots \binom{2}{n-1} \binom{n-4}{n-1} \cdots \binom{n-4}{n-1} \binom{n-4}{n-1} \binom{n-4}{n-1} \cdots \binom{n-4}{n-1} \binom{n-4}{n-1} \cdots \binom{n-4}{n-1} \binom{n-4}{n-1} \binom{n-4}{n-1} \binom{n-4}{n-1} \cdots \binom{n-4}{n-1} \binom{n-4}$$

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

with independent random choices,

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1/n^2$.

Pf. By independence, the probability of failure is at most

repeat C

 $\frac{1}{p(x+1/e)} \int_{-\infty}^{\infty} \int_{-\infty$

Contraction algorithm: example execution

trial 2

trial 3

trial 4

trial 6

Reference: Thore Husfeldt

Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^2 \log^3 n)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

1

faster than best known max flow algorithm or deterministic global min cut algorithm

16